Costamagna, A. C. and D. A. Landis. 2011. Lack of strong refuges allows top-down control of soybean aphid by generalist natural enemies. Biological Control 57:184-192.

Citable PDF link: https://lter.kbs.msu.edu/pub/2107

Refuges have been shown to be important mediators of predator–prey interactions, and in particular, have been proposed as a potential mechanism allowing herbivore populations to reach outbreak levels. However, very little research on the role of refuges has been conducted in systems dominated by generalist predators. We investigated the existence of refuges from predation for the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) at multiple scales. This species invaded North America and in spite of previous studies demonstrating strong suppression by generalist natural enemies, its populations periodically cause significant economic losses. Using naturally occurring populations of soybean aphid and its natural enemies, we tested for the presence of A. glycines spatial and dynamic refuges at the within-field, single plant, and within-plant scale. At the within-field level, we found only weak and transient spatial patterns in aphid populations suggesting the lack of spatial refuges at this scale. Similarly, at the plant level we found no individual colonies that escaped predation and aphid suppression was 9- to 28-fold greater in comparison with caged controls regardless of initial aphid density. When high aphid populations were exposed to predation they were rapidly reduced to levels close to the average field density and showed reduced per capita growth rates, indicating an absence of dilution of predation risk at increased aphid density. Finally, we found a significant shift in the distribution of aphids to the lower portions of the plant in the presence of generalist predators, suggesting a partial refuge from predation at the within-plant scale. Overall, we found the naturally occurring community of generalist predators to exert strong top-down suppression of soybean aphid populations at multiple scales, and no evidence that the presence of refuges at the scales studied can lead to outbreak populations. The partial refuge from predation at the within-plant scale revealed in our study may have important consequences for the within-season population dynamics of A. glycines, since it may be associated with low plant quality tradeoffs, and therefore warrants further research.

DOI: 10.1016/j.biocontrol.2011.03.006

vist the Publishers website

Download citation to endnote bibtex

Sign in to download PDF back to index