McSwiney, C. P. and G. P. Robertson. 2005. Non-linear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays sp.) cropping system. Global Change Biology 11:1712-1719.

Citable PDF link: https://lter.kbs.msu.edu/pub/2442

The relationship between nitrous oxide (N2O) flux and N availability in agricultural ecosystems is usually assumed to be linear, with the same proportion of nitrogen lost as N2O regardless of input level. We conducted a 3-year, high-resolution N fertilizer response study in southwest Michigan USA to test the hypothesis that N2O fluxes increase mainly in response to N additions that exceed crop N needs. We added urea ammonium nitrate or granular urea at nine levels (0-292 kg N ha(-1)) to four replicate plots of continuous maize. We measured N2O fluxes and available soil N biweekly following fertilization and grain yields at the end of the growing season. From 2001 to 2003 N2O fluxes were moderately low (ca. 20 g N2O-N ha(-1) day(-1)) at levels of N addition to 101 kg N ha(-1), where grain yields were maximized, after which fluxes more than doubled (to > 50 g N2O-N ha(-1) day(-1)). This threshold N2O response to N fertilization suggests that agricultural N2O fluxes could be reduced with no or little yield penalty by reducing N fertilizer inputs to levels that just satisfy crop needs.

DOI: 10.1111/j.1365-2486.2005.01040.x

Associated Treatment Areas:

Resource Gradient

Download citation to endnote bibtex

Sign in to download PDF back to index
Sign In