Kravchenko, A., H. Chun, M. M. Mazer, W. Wang, J. B. Rose, A. Smucker, and M. Rivers. 2013. Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates. Applied Soil Ecology 63:134-142.

Citable PDF link: https://lter.kbs.msu.edu/pub/3278

The study evaluated the effects of soil intra-aggregate pore distributions on movement and fate of E. coli (a global indicator of fecal pollution) within soil aggregates. The first objective was to characterize pore structure of intact soil aggregates (4–6 mm in size) using X-ray computed microtomography and to quantify the differences in pore structures of the aggregates from the same soil type but under >18 year contrasting land use and management settings. The studied settings were (i) conventionally plowed row crop (CT), (ii) no-till row crop (NT), and (iii) native succession vegetation (NS) treatments from Long Term Ecological Research site, W.K. Kellogg Biological Station, southwest Michigan. The second objective was to examine spatial distribution of E. coli introduced into the aggregates and the relationships between E. coli distributions and intra-aggregate pores. The results indicated that E. coli distribution in the aggregates was driven by specific configurations of the intra-aggregate pores. When the aggregates’ initial water contents were relatively low, presence of large (>100 μm) pores in the aggregate interiors limited water and thus E. coli entry. Such centrally located large pores were more abundant in the aggregates from NT and NS treatments as compared to CT aggregates. Medium-sized pores (30–60 μm) were more abundant in the aggregates from CT soil and such pores were relatively homogeneously distributed through entire bodies of CT aggregates. Thus, upon entering the aggregate, E. coli became more uniformly distributed through the CT aggregates, while in NT and NS aggregates it more commonly remained in the aggregate exterior parts without reaching the interiors. Implications of these distributional patterns for E. coli survival and re-entering water flow in soil under different land use need to be addressed in further studies.

DOI: 10.1016/j.apsoil.2012.10.001

Associated Treatment Areas:

T1 T2 T7

Download citation to endnote bibtex

Sign in to download PDF back to index