The influence of potential biofuel cover crops on nitrous oxide (N₂O) emissions from Midwest row-crops

Neville Millar¹, Dean G. Baas², and G. Philip Robertson¹

1. W.K. Kellogg Biological Station, and Dept. of Plant, Soil and Microbial Science, Michigan State University. 2. Michigan State University Extension, Michigan State University.

OBJECTIVE and OVERVIEW

To quantify $N_2 O$ emissions response to the addition of potential biofuel cover-crops in conventionally managed annual row-crops.

- Nitrous oxide (N₂O) is the largest contributor to the greenhouse gas burden of cropping systems in the U.S.
- Perennializing annual crop systems through year-round soil cover can:
 - Reduce nutrient run-off and soil erosion.
 - Provide a cellulosic biofuel feedstock additional to the primary grain crop.
 - Provide climate stabilization through additional soil carbon storage and perhaps $N_{\rm 2}0$ mitigation.
- Potential biofuel cover crops include grasses, legumes and Brassicas.
- There is little N₂O emissions data from cover crop systems.

EXPERIMENTAL SITE & DESIGN

Fig 1. Red clover and annual ryegrass cover crop mix over-seeded into corn.

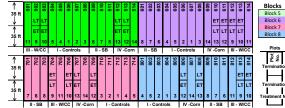


Fig 2. Experimental Randomized Split-Split Block (RSSB) design at KBS.

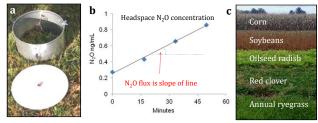


Fig 3. a) Chamber design, b) $N_2 0$ flux calculation, and c) cash and cover crops grown at the experimental site at Kellogg Biological Station.

United States Department of Agriculture

METHODS & MANAGEMENT

Design: 3 crop phases, 3 cover crops, 4 blocks (Figs 1 & 2).

Annual Crop Rotations: Corn-Soybean-Wheat - all phases each year. Biofuel Cover Crops: Grass - annual ryegrass, Legume - red clover,

Brassica - oilseed radish (Fig 3).

Management: Synthetic N, Chisel plow, Herbicides, Pesticides. Independent according to common practice; timing based on growing season.

Gas Sampling: Management driven - ~40 days 2012-2014 (Fig 3).

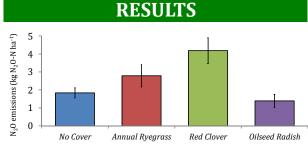
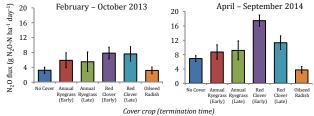
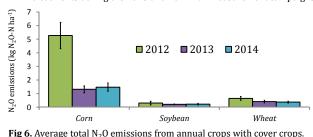




Fig 4. Average total N_20 emissions from no cover crop and cover crop treatments during the 2013 - 2014 flux measurement campaigns.

Fig 5. Average daily N₂O fluxes from no cover crop and cover crop treatments during the 2013 and 2014 flux measurement campaigns.

Extension

KBS LTER

MICHIGAN STATE

UNIVERSITY

BIOENERGY

RESULTS (continued)

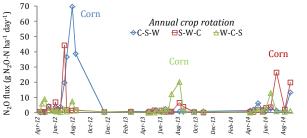


Fig 7. Daily N_20 fluxes from cash crops without cover crops (2012 – 2014).

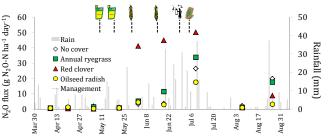


Fig 8. Daily N_2O fluxes from no cover crop and cover crop treatments showing management timing and rainfall patterns during 2014.

CONCLUSIONS

- Including potential biofuel cover crops in annual crop systems affected total N₂O emissions compared to their absence (Fig 4).
 - $_{\odot}~$ The red clover, and to a lesser extent annual ryegrass, increased total $N_{2}0$ emissions, whereas the oilseed radish did not.
- Average daily N_2O emissions from biofuel cover crop treatments decreased in the order Legume > Grass > Brassica (Figs 4 & 5).
- Late cover crop termination time increased N₂O emissions in the red clover treatment, but not the annual ryegrass treatment (Fig 5).
- N₂O emissions were highest in corn (vs. wheat and soybean) in all years, irrespective of cover crop presence or absence (Figs 6 & 7).
- Highest N_2O fluxes occurred following fertilization, soil disturbance (annual crop planting and cover crop termination), and rainfall (Fig 8).
- Including Grass and Brassica cover crop species into annual crop rotations can provide additional biomass for biofuel conversion without much affect on soil N₂O emissions.

We thank J. Dykstra, T. Martin, K. Kahmark, S. VanderWulp, C. McMinn, and others. Funding from the Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494), DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830), and USDA NIFA (ORG: 2011-51106-31046).