Dodds, W. K., E. Marti, J. L. Tank, J. Pontius, S. K. Hamilton, N. B. Grimm, W. B. Bowden, W. H. McDowell, B. J. Peterson, H. M. Valett, J. R. Webster, and S. Gregory. 2004. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140:458-467.

Citable PDF link: https://lter.kbs.msu.edu/pub/2510

Stoichiometric analyses can be used to investigate the linkages between N and C cycles and how these linkages influence biogeochemistry at many scales, from components of individual ecosystems up to the biosphere. N-specific NH4+ uptake rates were measured in eight streams using short-term N-15 tracer additions, and C to N ratios (C:N) were determined from living and non-living organic matter collected from ten streams. These data were also compared to previously published data compiled from studies of lakes, ponds, wetlands, forests, and tundra. There was a significant negative relationship between C:N and N-specific uptake rate; C:N could account for 41% of the variance in N-specific uptake rate across all streams, and the relationship held in five of eight streams. Most of the variation in N-specific uptake rate was contributed by detrital and primary producer compartments with large values of C:N and small values for N-specific uptake rate. In streams, particulate materials are not as likely to move downstream as dissolved N, so if N is cycling in a particulate compartment, N retention is likely to be greater. Together, these data suggest that N retention may depend in part on C:N of living and non-living organic matter in streams. Factors that alter C:N of stream ecosystem compartments, such as removal of riparian vegetation or N fertilization, may influence the amount of retention attributed to these ecosystem compartments by causing shifts in stoichiometry. Our analysis suggests that C:N of ecosystem compartments can be used to link N-cycling models across streams.

DOI: 10.1007/s00442-004-1599-y

Associated Treatment Areas:

Regional or Synthesis Cross Site Synthesis

Download citation to endnote bibtex

Sign in to download PDF back to index
Sign In