Bruns, M. A., M. R. Fries, J. M. Tiedje, and E. A. Paul. 1998. Functional gene hybridization patterns of terrestrial ammonia-oxidizing bacteria. Microbial Ecology 36:293-302.

Citable PDF link: https://lter.kbs.msu.edu/pub/2793

The biochemical pathway and genetics of autotrophic ammonia oxidation have been studied almost exclusively in Nitrosomonas europaea. Terrestrial autotrophic ammonia-oxidizing bacteria (AAOs), however, comprise two distinct phylogenetic groups in the beta-Proteobacteria, the Nitrosomonas and Nitrosospira groups. Hybridization patterns were used to assess the potential of functional probes in non-PCR-based molecular analysis of natural AAO populations and their activity. The objective of this study was to obtain an overview of functional gene homologies by hybridizing probes derived from N. europaea gene sequences ranging in size from 0.45 to 4.5 kb, and labeled with P-32 to Southern blots containing genomic DNA from four Nitrosospira representatives. Probes were specific fur genes encoding ammonia monooxygenase (amoA and amoB), hydroxylamine oxidoreductase (hao), and cytochrome c-554 (hcy). These probes produced hybridization signals, at low stringency (30 degrees C), with DNA from each of the four representatives; signals at higher stringency (42 degrees C) were greatly reduced or absent. The hybridization signals at low stringency ranged from 20 to 76% of the total signal obtained with N. europaea DNA. These results indicate that all four functional genes in the ammonia oxidation pathway have diverged between the Nitrosomonas and Nitrosospira groups. The hao probe produced the most consistent hybridization intensities among the Nitrosospira representatives, suggesting that hao sequences would provide the best probes for non-PCR-based molecular analysis of terrestrial AAOs. Since N. europaea can also denitrify, an additional objective was to hybridize genomic DNA from AAOs with probes for Pseudomonas genes involved in denitrification. These probes were specific for genes encoding heme-type dissimilatory nitrite reductase (dNir), Cu-type dNir, and nitrous oxide reductase (nosz). No hybridization signals were observed from probes for the heme-type dNir or nosz, but Nitrosospira sp. NpAV and Nitrosolobus sp. 24-C hybridized, under low-stringency conditions, with the Cu-type dNir probe. These results indicate that AAOs may also differ in their mechanisms and capacities for denitrification.

DOI: 10.1007/s002489900116

Download citation to endnote bibtex

Sign in to download PDF back to index
Sign In