Woltz, J. M. and D. A. Landis. 2013. Coccinellid immigration to infested host patches influences suppression of Aphis glycines in soybean. Biological Control 61:330-337.

Citable PDF link: https://lter.kbs.msu.edu/pub/3284

Generalist natural enemies may be well adapted to annual crop systems in which pests and natural enemies re-colonize fields each year. In addition, for patchily-distributed pests, a natural enemy must disperse within a crop field to arrive at infested host patches. As they typically have longer generation times than their prey, theory suggests that generalist natural enemies need high immigration rates to and within fields to effectively suppress pest populations. The soybean aphid, Aphis glycines Matsumura, is a pest of an annual crop and is predominantly controlled by coccinellids. To test if rates of coccinellid arrival at aphid-infested patches are crucial for soybean aphid control, we experimentally varied coccinellid immigration to 1 m2 soybean patches using selective barriers and measured effects on A. glycines populations. In a year with low ambient aphid pressure, naturally-occurring levels of coccinellid immigration to host patches were sufficient to suppress aphid populations, while decreasing coccinellid immigration rates resulted in large increases in soybean aphid populations within infested patches. Activity of other predators was low in this year, suggesting that most of the differences in aphid population growth were due to changes in coccinellid immigration. Alternatively, in a year in which alate aphids continually colonized plots, aphid suppression was incomplete and increased activity of other predatory taxa contributed to adult coccinellid predation of A. glycines. Our results suggest that in a system in which natural enemy populations cannot track pest populations through reproduction, immigration of natural enemies to infested patches can compensate and result in pest control.

DOI: 10.1016/j.biocontrol.2012.11.012

Associated Treatment Areas:

LTER Scale-up Fields

Download citation to endnote bibtex

Sign in to download PDF back to index
Sign In