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Abstract

Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, under-

standing how cropping systems affect soil microbial communities is important for productive and sustainable
management. We characterized and compared soil microbial communities under restored prairie and three

potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental

designs – side-by-side plots where plant communities were in their second year since establishment (i.e., inten-
sive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e.,

extensive sites). We assessed microbial community structure and composition using lipid analysis, pyrosequenc-

ing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH
genes. For the more recently established intensive sites, soil type was more important than plant community in

determining microbial community structure, while plant community was the more important driver of soil
microbial communities for the older extensive sites where microbial communities under corn were clearly differ-

entiated from those under switchgrass and restored prairie. Bacterial and fungal biomasses, especially biomass

of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more

active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition

and ecosystem retention of carbon, water, and nutrients.
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Introduction

To help reduce dependence on fossil fuels, there is great

interest in using plant biomass for energy. Significant

efforts are underway to understand what biomass crops

should be grown, where they should be grown, and

how they can be managed in sustainable ways (Kim

et al., 2012; Gao et al., 2013; Werling et al., 2014). Annual

crops such as corn continue to be the most readily abun-

dant and available crops for biofuel production in the

United States (US-DOE, 2011), while canola and soy-

beans have been used to produce biodiesel (IEA, 2007).

However, these crops are monocultures that require

high-energy inputs to maintain, lose soil and nutrients,

and serve as key food crops for humans and/or live-

stock. Their use for biofuel may increase food costs and

may encourage more land to be converted to agricul-

ture, which has negative ramifications for ecosystem

carbon balance, wildlife habitat, and a host of other

ecosystem services (Fargione et al., 2008).

The disadvantages listed above have encouraged a

focus on perennial grasses such as Panicum virgatum

(switchgrass) for lignocellulosic ethanol production

(IEA, 2007). Switchgrass produces high amounts of bio-

mass and is a native species of North America that

should require less intensive agricultural management

than annual crops (Wright & Turhollow, 2010). Biologi-

cally diverse, low-input systems consisting of mixtures

of native grasses are also candidates for cellulosic
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biomass crops because they can be highly productive,

while conserving nutrients (Jach-Smith & Jackson, 2015),

can positively affect the diversity of other groups of

organisms (Werling et al., 2014), and result in lower

greenhouse gas emissions than annuals and perennial

monocultures (Tilman et al., 2006; Oates et al., 2015).

Theoretically, more diverse plant communities will

improve sustainability by requiring fewer inputs than

monocultures, although support for this hypothesis in

agricultural production settings is scant (but see Tilman

et al., 2006; Webster et al., 2010). In more productive

soils, it may be more important to have a particular

plant community, for example, one that includes the

most productive taxa, to minimize inputs, while

improving stability and resilience (Adler et al., 2009).

All agricultural activity affects biodiversity, soil fertil-

ity, and water resources (Groom et al., 2008), and these

factors should be assessed when evaluating the sustain-

ability of biofuel cropping systems. Considering the

impacts on microbial soil communities is an important

component of this assessment because most soil-based

ecosystems services such as organic matter degradation,

nitrogen fixation, nitrification, denitrification, soil aggre-

gation, and water retention are driven by microbial

activity (Swift et al., 2004). As has been shown for other

crops, the cultivation of biofuel crops can be expected to

influence soil microbial communities, thus affecting the

key ecosystem processes and the services they provide

(Groom et al., 2008; Liang et al., 2012). Corn is presently

the major crop used for ethanol production in the

United States, and soil microbial communities under

corn and prairie have often been contrasted, showing

differences in microbial community composition and

improved carbon storage and soil aggregation under

prairie (Bailey et al., 2002; Allison et al., 2005; Bach et al.,

2010; Fierer et al., 2013; Murphy & Foster, 2014). The

growing interest in using switchgrass and other grasses

for cellulosic biomass production has sparked similar

investigations contrasting soil microbial communities

under these grasses with those under corn (Jesus et al.,

2010; Mao et al., 2011, 2013; Liang et al., 2012). The ways

and extent to which these crops have been found to

influence soil microbial communities varied according

to the methods used, spatial sampling schemes, soil and

environmental variables, land management and land

history, but a general finding has been that cultivation

of perennial grasses stimulates communities more simi-

lar to those under prairies (Liang et al., 2012). This is a

desirable outcome, because systems with soil microbial

communities similar to those under prairies should

require fewer external inputs and, for this reason, be

more sustainable. But for the most part, these studies

have been performed in local settings and the need to

carry out studies at larger geographic scales, including

sites with different management types, different times

since crop establishment, and for a range of soil condi-

tions is necessary to better examine shifts in microbial

communities.

For this reason, we used a more holistic approach for

our study. Our initial hypothesis was that the cultiva-

tion of switchgrass and mixed grasses would lead to

microbial communities more similar to those under

prairie species, implying a more sustainable system. To

test this hypothesis, we sampled over a larger geo-

graphic scale, including sites in two states with a range

of soil conditions, with different times since crop con-

version, and under two different sampling strategies.

We compared microbial communities in soils cultivated

with three potential biofuel crops (corn, switchgrass,

and mixed grasses) and with prairie species, and in two

spatial experimental designs. One design consisted of

side-by-side plots where plant communities were in

their second year since establishment (i.e., intensive

sites), and the other consisted of regionally distributed

fields where plant communities had been in place for at

least 10 years (i.e., extensive sites). We assessed the

microbial communities using three different methods:

lipid analysis, pyrosequencing of ribosomal genes (that

target fungi, bacteria, archaea, and lower eukaryotes),

and targeted metagenomics of a gene important for a

key ecological function, nifH coding for nitrogen reduc-

tase (N2 fixation). Our main questions were as follows:

(i) how do the different biofuel crops affect soil micro-

bial communities, that is, are soil microbial communities

under switchgrass and mixed grasses more similar to

those under prairie, (ii) how are any effects modified by

location and soil type, and (iii) how do alternative soil

microbial assay methods compare in revealing commu-

nity differences?

Materials and methods

Site description and soil sampling

Soil samples were collected from sites in southern Michigan

and southern Wisconsin under two different designs that have

been used for other studies by the Great Lakes Bioenergy

Research Center (GLBRC) (Fig. S1). These two designs are in-

tensive and extensive.

The intensive plots were located at the Kellogg Biological

Station (KBS) in Michigan and at the Arlington Agricultural

Research Station (AARS) in Wisconsin. The plots were arrayed

in randomized complete blocks designs consisting of five repli-

cated 30 9 40 m plots of each of four plant communities –

corn, switchgrass, mixed grasses, and restored prairie – and

were harvested annually for biomass. We sampled from three

of the five blocks 2 years after their establishment.

The extensive sites were fields located on working farms or

reserves in Michigan and Wisconsin and were selected from
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among those studied by Werling et al. (2014) to cover the range

of soil types and conditions of the southern regions of both

states. Nine fields were sampled in each state – three in corn,

three in switchgrass, and three in restored prairie – but only

the corn fields were harvested. All sites had been under their

respective vegetation for at least 10 years.

Three composite samples were taken at random from each

of the sampling units. Each composite sample consisted of five

soil cores taken to a depth of 10 cm. All samples were trans-

ported on ice to the laboratory and then stored at �20 °C until

processing.

Soil analysis

Soil samples were analyzed for elemental composition (Al, B,

Ca, Cu, Fe, K, Mg, Mn, Na, P, S, and Zn), total C, total N, pH,

and soil texture as previously described (Liang et al., 2012).

Lipid analysis

Microbial community composition was determined using a

hybrid procedure of phospholipid fatty acid (PLFA) and fatty

acid methyl ester (FAME) analysis as previously described

(Liang et al., 2012). The total biomass of bacteria (B), fungi (F),

and protozoa was estimated. Bacteria were further subdivided

into Gram-positive (Gm+) and Gram-negative (Gm�) cate-

gories, and the fungi, into arbuscular mycorrhizal fungi (AMF)

and saprophytic fungi (SF) (Liang et al., 2012).

DNA extraction

DNA was extracted from each well-mixed 500 mg soil sample

using MoBio’s Power Soil DNA Isolation Kit (Mobio Laborato-

ries Inc., Carlsbad, CA, USA) according to the manufacturer’s

instructions. The DNA was quantified with a Nanodrop ND-

1000 spectrophotometer (Nanodrop Technology, Wilmington,

DE, USA) and stored at �20 °C until use.

Preparation of 16S/18S (SSU) rRNA gene amplicon
libraries for pyrosequencing

The V6-V8 region of smal subunit (SSU) rRNA was amplified

from the template DNA using primers 926F (50- cct atc ccc

tgt gtg cct tgg cag tct cag AAA CTY AAA KGA ATT GRC

GG- 30) and 1392R (50 - cca tct cat ccc tgc gtg tct ccg act cag

- <XXXXX> - ACG GGC GGT GTG TRC - 30). Primer

sequences were modified by the addition of 454 A or B adap-

ter sequences (lower case). In addition, the reverse primer

included a 5 bp bar code (designated by <XXXXX> above)

for multiplexing of samples during sequencing. Twenty

microliter PCRs were performed in duplicate and pooled to

minimize PCR bias using 0.4 ll Advantage GC 2 Polymerase

Mix (Advantage-2 GC PCR Kit, Clonetech, Mountain View,

CA, USA), 4 ll 59 GC PCR buffer, 2 ll 5 M GC Melt Solu-

tion, 0.4 ll 10 mM dNTP mix (MBI Fermentas, Amherst, MA,

USA), 1.0 ll of each 25 nM primer, and 10 ng sample DNA.

The thermal cycler protocol was 95 °C for 3 min, 25 cycles of

95 °C for 30 s, 50 °C for 45 s, and 68 °C for 90 s, and a final

10-min extension at 68 °C. PCR amplicons were purified

using SPRI Beads and quantified using a Qubit fluorometer

(Thermo Fisher Scientific Inc., Waltham, MA, USA). Samples

were diluted to 10 ng ll�1 and mixed in equal concentra-

tions. Emulsion PCR and sequencing of the PCR amplicons

were performed following the Roche 454 GS FLX Titanium

technology manufacturer’s instructions. Sequencing tags were

analyzed using the software tool PYROTAGGER (Kunin &

Hugenholtz, 2010) using a 180 bp sequence length threshold

as described in Engelbrektson et al. (2010).

16S/18S rRNA gene nucleotide sequences were deposited in

the European Nucleotide Archive (http://www.ebi.ac.uk/ena)

as part of study PRJEB6704 under accession numbers

ERR571396 through ERR571438.

Preparation of 28S (LSU) rRNA gene amplicon
libraries for pyrosequencing

PCR amplification of template DNA was also performed using

the primers LR3 (50-CCGTGTTTCAAGACGGG-30) and LR0R

(50-ACCCGCTGAACTTAAGC-30) (Liu et al., 2012). These pri-

mers target a 625 bp fragment of the large subunit (LSU) rRNA

gene in fungi. Detailed amplification and purification protocols

are given in Penton et al. (2013). Adapters and bar codes were

ligated to the amplicons prior to sequencing at Utah State

University using Lib-L kits.

28S rRNA gene nucleotide sequences were deposited in the

European Nucleotide Archive (http://www.ebi.ac.uk/ena) as

part of study PRJEB6704 under accession numbers ERR571439

through ERR571456.

Preparation of nifH amplicon libraries for
pyrosequencing

The extracted DNA also served as template to prepare nifH

gene libraries as described in Wang et al. (2013). The primers

were based on those of Poly et al. (2001), which target an

approximately 320 bp region of the nifH gene. NifH gene

libraries were sequenced by the Research Technology Support

Facility (RTSF) at Michigan State University (East Lansing).

NifH nucleotide sequences were deposited in the European

Nucleotide Archive (http://www.ebi.ac.uk/ena) as part of

study PRJEB6704 under accession numbers ERR571353 through

ERR571395.

Data analysis

Principal component analysis (PCA) was used to display dis-

tances between sites based on their soil attributes. For these

analyses, the arc sin transformation was first applied to per-

centages of sand and silt, and then all soil variables were stan-

dardized to zero mean and unit variance prior to PCA on the

correlation matrix using the R (R Core Team, 2012) package

VEGAN’s (Oksanen et al., 2012) rda function. To aid interpreta-

tion, vectors for the soil variables were added to the PCA plots

using vegan’s envfit function.
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Total carbon concentrations were compared by analysis of

variance (ANOVA) using the lm function of the R package stats

and a cutoff value of a = 0.05.

Lipid data were used to estimate microbial biomass, and the

following ratios were calculated: fungi/bacteria (F/B), arbuscu-

lar mycorrhizal fungi/saprophytic fungi (AMF/SF), and Gram-

positive bacteria/Gram-negative bacteria (Gm+/Gm�). Data

were displayed per crop, and mean and errors bars were calcu-

lated for each of the experiments types. Treatment differences

were tested in the same manner as total carbon. When ANOVA

was significant, treatment contrasts were made with the

TukeyHSD function of the R package stats.

All 28S LSU rRNA sequences were first processed through

RDP’s pyrosequencing initial processing tool (http://pyro.c-

me.msu.edu/). Because the amplicons were ligated with the

adapters and bar codes, both primer sequences were entered in

the forward primer box. Filter parameters were 0 mismatches

to the forward primer, 250 bp length filter, maximum number

of N’s = 0, and minimum quality score of 20. Because some

sequences were read from each direction, it was not possible to

align them. The sequences were therefore classified directly

using the Ribosomal Database Project (RDP) classifier (Wang

et al., 2007) with a manually curated LSU gene training set v1

(Liu et al., 2012) also used in Penton et al. (2013) which pro-

vides additional detail. Sequences were binned by genus if

identified with confidence of 0.5 or greater, or otherwise to the

lowest rank category for which confidence was at least 0.5,

resulting in 639 categories.

All 16S/18S rRNA gene sequences that passed the quality

controls of the GL FLX software were uploaded on the PYROTAG-

GER pipeline (Kunin & Hugenholtz, 2010). Raw sequences were

sorted by bar code, trimmed, filtered to remove sequences of

low quality (10% threshold), and aligned. The minimum

sequence length allowed was 150 bp. Potential chimeras were

identified and excluded from downstream analysis. Sequences

were clustered at the level of 97% identity, and the best hit in

Greengenes (for prokaryotes) and Silva (for eukaryotes) data-

bases was determined for each cluster. The output OTU0.03

tables were used for statistical analysis.

All nifH sequences also were initially processed using the

pyrosequencing pipeline tools on RDP’s Web site. Reads pass-

ing the initial filters were frame shift corrected and translated

into NifH protein sequences using the RDP FrameBot tool

(Wang et al., 2013). About 15% of the sequences had frame shift

errors detected and corrected by FrameBot, such that more

than 99% of the sequences were retained for analysis. The pro-

tein sequences were aligned using the HMMER3 aligner, clus-

tered at 95% identity, and the representative sequences for

each cluster classified using the FunGene Pipeline (Fish et al.,

2013) to find the nearest match among 675 protein sequences in

a curated reference set (Wang et al., 2013).

Good’s coverage (Good, 1953) was calculated as a percentage

for each sample from the 16S/18S rRNA, 28S rRNA, and NifH

data as 100 times the quantity one minus the number of single-

tons divided by the total number of sequences.
PCA was used to display distances between sites based on

all four data types (lipid, 16S/18S rRNA, 28S rRNA, and NifH).

For these analyses, the Hellinger transformation (Legendre &

Gallagher, 2001) was applied to the OTU count data using

vegan’s decostand function prior to PCA on the variance–covari-

ance matrix using vegan’s rda function. Multivariate analysis of

variance by permutation (PMANOVA) was used to test for signifi-

cant differences in dispersion among groups and for differ-

ences between group centroids (Anderson, 2001, 2006) using

vegan’s betadisper and adonis functions. The factors considered

in these analyses were state (location), crop, and the interaction

between them. Here, ‘state’ is actually a proxy for several cor-

related soil attributes, differing between intensive and exten-

sive experiments, as explained in the Results section.

The sequences contributing most significantly to the ordi-

nations were identified using Biodiversity. R’s ordiequilibrium-

circle function (Kindt & Coe, 2005), and indicator group

analysis (Dufrene & Legendre, 1997) was used to identify

OTUs whose occurrences were linked to specific crop types

using labdsv’s indval function (Roberts, 2012) and the pack-

age QVALUE (Dabney et al., 2012) to assign statistical signifi-

cance. Procrustes analysis (Cox & Cox, 2001) was applied to

determine whether there were significant correlations

between ordinations based on the four types of data using

vegan’s protest function.

Results

Soil chemical and physical analysis

Michigan and Wisconsin intensive sites differed mark-

edly in their physical and chemical soil attributes

(Fig. S2, Tables S1 and S2). Samples from the two states

were separated along the first PCA axis, which

explained 75.1% of the variance and represent a sand/

silt gradient (Fig. S2). Except for pH and Cu, the mea-

sured soil variables, which are all linked to nutrient

concentrations in the soil, were positively correlated

with higher percentages of silt. Of the variables mea-

sured, pH had the highest projection on the second

PCA axis, which explained only 8.4% of the variance.

A sand/silt gradient also separated the extensive sites

by state, but fewer of the soil variables were strongly

correlated with this gradient (Fig. S3). Indeed, Mg, Ca,

and pH were orthogonal to the gradient, while K, Na, S,

and total C were nearly so. However, none of these soil

variables separated sites by crop.

There were important differences between states and

experiments in total soil carbon. For the intensive sites,

total soil carbon was higher in the Wisconsin samples

for each of the studied crops (ANOVA, P < 0.001, Fig. 1b).

For the extensive sites, total carbon tended to be higher

in the Wisconsin samples for each crop, but the differ-

ences were less pronounced and not significant (ANOVA,

P = 0.15).

Lipid analysis

In most cases, small sample size and high variance

precluded detection of statistically significant among
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treatment differences in lipids characterizing various

microbial groups. For this reason, we are limited to

discussing trends in the data, the strengths of which

may be judged from the relative error bars in Figs 1–3.
For the intensive sites, total lipid biomass per treat-

ment did not differ between states (Fig. 1a). We

observed a trend for higher total microbial biomass

under perennial species than under corn for both states.

For Michigan, this modest difference was accounted for

by increases of both bacteria and fungi under the peren-

nial grasses, with a slightly higher proportion of AMF

in mixed grasses and prairie (Fig. 2a,b). For Wisconsin,

(a)

(b)

Fig. 1 Total lipid biomass (a) and total carbon (b) under different biofuel cropping systems at intensive and extensive sites in Wis-

consin and Michigan. Bars represent � 1 standard error.

(a)

(b)

(c)

(d)

Fig. 2 Abundance (left axis) of fungi and bacteria (a), arbuscular mycorrhizal (AMF) and saprophytic fungi (SF) (b), Gram-positive

(Gm+) and Gram-negative bacteria (Gm�) (c), actinomycetes and protozoa (d), and the F/B, AMF/SF and Gm+/Gm� ratios (right

axis) of microbial communities under corn, switchgrass, mixed grasses, and prairie at intensive sites in Michigan and Wisconsin. Bars

represent � 1 standard error.
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this increased total biomass under the perennials was

accounted for mainly by the fungi, and of the fungi,

mainly by the AMF, especially in switchgrass. There

were no differences in actinomycetes or protozoa lipid

markers among treatments for either state (Fig. 2d).

The extensive sites exhibited much greater differences

in total biomass between the two states (Fig. 1a). Micro-

bial biomass per treatment was higher for the extensive

sites in Wisconsin than for those in Michigan, but mark-

edly so only for the prairie sites. It also tended to

increase among treatments from corn to switchgrass to

prairie, especially in Wisconsin. Wisconsin extensive

sites exhibited higher microbial biomass per treatment

than corresponding intensive sites, especially for the

corn and prairie sites.

For the extensive sites in Wisconsin, the higher bio-

mass under perennial grasses was due to an increase in

the biomass of both fungi and bacteria, and more so to

fungi, but for those sites in Michigan, it was due to

fungi only (Fig. 3a). For both states, the Gram-positive/

Gram-negative (Gm+/Gm�) ratio was lower (Fig. 3c)

and the AMF/SF ratio was greater (Fig. 3b) under the

perennial grasses. AMF increased from 3.5 � 0.9 lg g�1

in Wisconsin and 2.9 � 0.6 lg g�1 in Michigan under

corn to 28.3 � 1.6 lg g�1 and 12.1 � 3.4 lg g�1 in the

prairie. Actinomycetes and protozoa markers were more

abundant in Wisconsin; however, there were no appar-

ent differences in these two groups among treatments

for either state (Fig. 3d).

28S rRNA gene pyrosequencing

We obtained 124 654 28S rRNA gene sequences for

the 16 extensive sites samples retained in the study,

with an average read length of 446 bp. Samples

MIE.Co.16 and WIE.Co.2, extensive corn sites in MI

and WI, respectively, were excluded for yielding too

few sequences. Sequences not identified as fungi by

the RDP classifier with the confidence filter set at 0.5

were removed, leaving a total of 119 793 sequences in

632 categories, 94 of which were universal singletons.

Sequences per sample ranged from 1979 to 13 280.

Good’s coverage was high, ranging from 97.2 to 99.6

with a mean of 98.9%.

The three most abundant identifiable phyla were

Ascomycota (67% of total sequences), Basidiomycota

(a)

(b)

(c)

(d)

Fig. 3 Abundance (left axis) of fungi and bacteria (a), arbuscular mycorrhizal (AMF) and saprophytic fungi (SF) (b), Gram-positive

(Gm+) and Gram-negative bacteria (Gm�) (c), actinomycetes and protozoa (d), and the F/B, AMF/SF and Gm+/Gm� ratios (right

axis) of microbial communities under corn, switchgrass, and prairie at the extensive sites in Michigan and Wisconsin. Bars represent

� 1 standard error.
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(15%), and Chytridiomycota (4%) (Fig. S4). Fungi

unclassified at the phylum level made up 13% of the

sequences. Basidiomycota were most abundant at the

Michigan prairie, and Chytridiomycota were most

abundant at the Wisconsin prairie.

By IndVal analysis, the genera Ascobolus, Podospora,

Coprinellus, Ascodesmis, and Byssonectria characterized

the corn sites, with Ascobolus being the most abun-

dant (Table S3). Of the many genera characteristic of

the prairie, unclassified Helotiales, Clavaria, and

Tricladium were the most abundant. Beauveria was

characteristic of the switchgrass sites, but weakly so

because it was not abundant and was also found at

prairie sites.

As arbuscular mycorrhizal fungi (AMF) were identi-

fied by lipids analysis as an abundant group, we sought

to identify fungal sequences belonging to this group in

the 28S rRNA gene pyrosequencing data. We found that

only 0.13% of the sequences were classified to Glom-

eromycota. Of these, Paraglomus sequences were by far

the most abundant in the dataset. Most of the AMF

sequences were recovered from prairie soils, which also

presented the highest detected richness, with a combi-

nation of at least four genera per site. In contrast, just

one or two genera could be found in soils cultivated

with switchgrass, with a predominance of Paraglomus.

The same applies to soils cultivated with corn in Wis-

consin. No AMF sequences were recovered from soils

cultivated with corn in Michigan.

16S/18S rRNA gene pyrosequencing

We obtained 167 848 16S/18S rRNA gene sequences

with an average of 7570 � 894 sequences per sample

and a minimum read length of 150 bp. These samples

were aligned and clustered into 10 092 clusters (OTUs)

at a distance of 3%; 6628 of these clusters were global

singletons with Good’s estimated sample coverage of 52

to 92% and averaging 85%.

Prokaryote sequences accounted for 86.3% of the

recovered sequences and eukaryote sequences

accounted for 9.2% (Fig. S5). Unassigned sequences

accounted for 4.5%. Prokaryote sequences (86.3%) were

mostly bacterial with only 0.02% belonging to Archaea.

The most abundant bacterial phyla in the libraries were

Proteobacteria, Actinobacteria, and Acidobacteria, at both

intensive and extensive sites. Fungi, Metazoa, and Cer-

cozoa were the more abundant eukaryotic phyla at both

intensive and extensive sites.

No significant differences among locations or treat-

ments were evident at the phylum level. Although such

differences were observed for OTUs, interpretation was

problematic due to the large number of clusters, most

containing few sequences, and due to the poor identifi-

cation of representative sequences, with many not being

identified past the phylum level.

NifH gene pyrosequencing

We obtained 195 385 NifH sequences for the 41 samples

retained in the study, with a mean of 4765 sequences

per sample and a standard deviation of 811. The aver-

age read length was 320 bp. After frame shift correction

and translation into amino acids, they were clustered at

a distance of 0.05 yielding 2799 OTUs. Of these, 773

were global singletons, with Good’s estimated sample

coverage varying among samples from 93.1 to 98.4 with

a mean of 96.4%. FrameBot, included in the Fungene

Pipeline (Fish et al., 2013), was used to match represen-

tative sequences from each cluster to 187 of 782 unique

NifH reference sequences. These 187 matches fell into

100 genera.

More than 95% of the recovered NifH sequences were

assigned to Proteobacteria (Fig. S6). Within this phylum,

closest matches to the Alphaproteobacteria and Betapro-

teobacteria were generally more abundant and Gammapro-

teobacteria least abundant. Variances were large, but

there was a tendency for Alphaproteobacteria affiliates to

be higher in the extensive sites and Betaproteobacteria to

be higher in the intensive sites, the latter especially for

switchgrass. Matches to the Deltaproteobacteria were most

abundant in the Michigan extensive switchgrass sites,

dominating all three replicates. Unidentified environ-

mental sequences and sequences known in Actinobacteria,

Bacteroidetes, Chlorobi, Cyanobacteria, Euryarchaeota, Firmi-

cutes, Fusobacteria, Nitrospirae, Spirochaetes, Synergistetes,

and Verrucomicrobia were also detected.

For the NifH data, sequences contributing the most

significantly to ordination of the intensive sites were

closest matches to Azospirillum, Bradyrhizobium, Rubrivi-

vax, Leptothrix, Dechloromonas, and Geobacter (Fig. S7). Of

these, Geobacter-like sequences were present in all sam-

ples, but they were especially abundant in Michigan,

representing more than 20% of the sequences in soils

under prairie, mixed grasses, and switchgrass. Bradyrhi-

zobium and Rubrivivax-related sequences were more

characteristic of Wisconsin: Rubrivivax-like sequences

accounted for more than 17% of the sequences from

soils under corn, prairie, and switchgrass in that state.

Azospirillum, Dechloromonas, and Leptothrix-like

sequences did not distinguish samples by state, being

more related to the pH gradient.

Genera contributing most significantly to the ordina-

tion of the extensive sites were Geobacter- and Hyphomi-

crobium-related (Fig. S8). Geobacter-like sequences

represented 60% of the sequences from Michigan switch-

grass samples, while Hyphomicrobium-like sequences

were most abundant in prairie soil from both states.
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Microbial community structure

Microbial data (lipid, 16S/18S rRNA, and NifH data)

from the intensive sites were analyzed by PCA and PMA-

NOVA (Table 1 and Fig. 4) and for differences in disper-

sion among factors. PMANOVA indicated that the 16S/18S

rRNA and NifH data separated the samples by location

only, and centroids are drawn for location only in

Fig. 4b,c. The only significant difference in dispersion

(a = 0.05) was for the NifH data by location (Fig. 4c),

indicating that the Wisconsin samples were also more

variable. For the lipid data, however, the interaction term

was significant, indicating a crop effect differing by state.

Centroids drawn for all treatment combinations (Fig. 4a)

depict no separation of Michigan samples by crop, but

do reveal a separation of Wisconsin samples by crop. In

particular, corn and to a lesser extent mixed grasses are

separated from prairie and switchgrass.

In contrast to what was observed for the intensive

sites, all four data types (lipid, 28S rRNA, 16S/18S

rRNA, and NifH) separated communities by crop in the

extensive sites (Table 2 and Fig. 5), and there were no

significant differences in dispersion (a = 0.05). The 28S

rRNA gene data separated prairie and corn sites from

each other, but samples from the switchgrass sites over-

lapped both (Fig. 5a). The lipid data separated corn from

switchgrass and prairie (Fig. 5b). The 16S/18S rRNA

gene data separated all three crops (Fig. 5d). For the

NifH data, there was some overlap between the corn

and Wisconsin switchgrass samples, but otherwise crops

were separated (Fig. 5e). Additionally, the lipid and

NifH data separated the samples by location (Table 2

and Fig. 5c,f).

Procrustes analysis

We performed Procrustes analyses to determine

whether there were significant correlations between

ordinations based on the four types of data (lipid, 28S

rRNA, 16S/18S rRNA, and NifH). For the intensive

sites, ordination by the lipid data was correlated with

those by 16S/18S rRNA and by NifH, but ordinations

by 16S/18S rRNA and NifH differed significantly. The

difference was primarily due to two Michigan corn

samples having a greater distance from their centroid

by 16S/18S rRNA gene data than by NifH data (Fig. 4b,

c), but this did not influence interpretation of results.

For the extensive sites, ordinations were correlated with

the exceptions of 16S/18S rRNA vs. NifH data and 16S/

18S rRNA vs. 28S rRNA.

Discussion

The three methodological approaches we used to char-

acterize microbial communities provided complimen-

tary insights. Lipid analysis provided general

taxonomic information coupled to biomass estimates

that gave insight into ecosystem function (Kirk et al.,

2004). Moreover, the lipid data proved more sensitive to

cropping system treatments showing the importance of

management on ecosystem processes. Pyrosequencing

the rRNA gene provided in-depth taxonomic informa-

tion (Roesch et al., 2007), and gene-targeted metage-

nomics provided information on a subset of the

community responsible for a certain function (Iwai

et al., 2010, 2011). In our case, we targeted the nifH gene,

which codes for dinitrogenase reductase, a component

of nitrogenase, the enzyme responsible for N2 fixation.

N2-fixing bacteria were chosen as a model to test the

effect of cultivation on an important functional group as

opposed to information provided by taxonomic mark-

ers. Indeed, there is evidence that perennial grasses

with potential for biofuel production, such as Miscant-

hus, may be associated with N2-fixing bacteria (Tjep-

kema & Burris, 1976; Davis et al., 2010; Mao et al., 2013;

Keymer & Kent, 2014), which points to N2-fixing

microorganisms as an important target group. Addition-

ally, we expected NifH to be less conserved than riboso-

mal genes, thus giving us a contrast to the highly

conserved rRNA gene.

All three approaches revealed similar differences

among cropping systems in community structure. This

agreement between approaches indicates that similar

factors are shaping the structure of bacteria, fungi, and

N2-fixing communities under our studied conditions

and that disparate taxa are being affected similarly by

cultivation, soil type, and land use. Differences in com-

munity structure could be linked to both treatment and

environmental factors, but the relative importance of

the linkages differed between intensive and extensive

sites.

Our initial hypothesis that soil microbial communities

under switchgrass and mixed grasses would be more

Table 1 Results of multivariate analysis of variance by per-

mutation (function adonis in VEGAN package) of sequence data

for the intensive sites

Source of

variation

Lipids rRNA NifH

df† F statistics df F statistics df F statistics

Location 1 5.2*** 1 2.9*** 1 6.3***

Crop 3 2.2* 3 1.2NS 3 1.3NS

Interaction 3 2.7** 3 1.1NS 3 1.0NS

Residuals 13 14 15

Total 20 21 22

Significance codes: ***0.001; **0.01; *0.05; NS, non significant.

†Degrees of freedom.
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like those under prairies was confirmed in the older,

extensive sites, but not in the young, intensive sites. In

the second case, soil type was a stronger predictor of

community structure and composition. Here, soil type

is confounded with location (state), meaning that we

cannot separate the effects of soil type from the effects

of geographical distance. We assume, however, that soil

type is the key factor because of the sharp difference in

soil texture and fertility between our intensive sites in

the two states (Fig. S2). The Michigan soils we studied

are sandier and have lower fertility than the Wisconsin

soils, which are loess-derived. Our results agree with

those of Mao et al. (2013) who also compared microbial

soil communities under biofuel crops by pyrosequenc-

ing 16S rRNA and nifH genes and found that site-to-site

variation surpassed variation stemming from plant

type.

In contrast, communities at the extensive sites tended

to group more strongly by crop, indicating that plant

species had a stronger influence on microbial communi-

ties as the plant communities effects on soil microbes

accumulated over time. Our results were similar to

those of Allison et al. (2005) and Mao et al. (2013) in that

communities under corn were separated from those

under perennial grasses by lipids and 16S rRNA gene

analysis, respectively. Mao et al. (2013), however, were

not able to detect differences in N2-fixing communities

between crops, while we did for the extensive sites.

The differential response to crops observed between

intensive and extensive experiments is likely related to

the length of time the crops had been grown at the sites.

Previous experiments by Murphy & Foster (2014) and

Buckley & Schmidt (2003) demonstrated that despite

changes in plant cover and management, soil microbial

communities remained similar even after 6 and 7 years,

respectively. In another experiment, Jangid et al. (2011)

found an even longer historical effects lasting through

17 years of succession in a previously cultivated field.

At the time of our sampling, crops at the intensive sites

had been cultivated for only 2 years, which likely was

(a) (b) (c)

Fig. 4 Principal components analysis of soil microbial communities from Michigan and Wisconsin intensive sites as evaluated by

sequencing of SSU rRNA genes (a), lipid analysis, (b) and NifH sequences (c). Ellipses are 95% confidence intervals about centroid

means and were drawn to indicate the main factors related to community structure.

Table 2 Results of multivariate analysis of variance by permutation (function adonis in VEGAN package) of sequence data for the

extensive sites

Source of variation

28S rRNA Lipids 16S rRNA NifH

df† F statistics df F statistics df F statistics df F statistics

Location 1 1.5NS 1 3.2* 1 1.0NS 1 2.5**

Crop 2 2.2*** 2 8.0*** 2 1.8** 2 2.6***

Interaction 2 1.0NS 2 1.7NS 2 1.0NS 2 1.3NS

Residuals 10 11 11 12

Total 15 16 16 17

Significance codes: ***0.001; **0.01; *0.05; NS, non significant.

†Degrees of freedom.
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not enough time to imprint significant differences on the

structure of the communities. In contrast, the extensive

sites were much older, >10 years, allowing time for a

more pronounced differentiation of community struc-

ture according to crop type. Our findings reinforce the

previous findings of these authors, but in the context of

a larger geographical scale, and including two different

cultivation settings and a diverse range of soil types,

especially for the extensive sites.

The one exception to this generalization was that

the lipid data did reveal a crop effect on microbial

community structure for the intensive Wisconsin sites.

This may have to do with the differences in relative

proportion of AMF biomass between treatments for

the two states. Bacterial and SF biomasses were simi-

lar among treatments for intensive sites in both

states. For the richer Wisconsin soils, however, there

was a greater relative difference in AMF biomass

between corn and the other crops, especially switch-

grass (Fig. 2b), which plots farthest from corn in

Fig. 4a. Herzberger et al. (2014) also reported total

biomass, and especially AMF biomass, was higher

under restored prairie than corn two years after

establishment at Wisconsin intensive sites. Commu-

nity differences due to AMF would not be revealed

by the rRNA or NifH data.

As previously observed (Liang et al., 2012), when

compared to corn, perennial grasses favored the accu-

mulation of microbial biomass as well as an increase in

F/B and AMF/SF ratios in both states, indicating that

these grasses favor the accumulation of biomass and

fungi, especially AMF. This was especially true among

the extensive sites in Wisconsin, which had more time

to become established than the intensive sites and had

higher C (Fig. 1b) and clay (Table S1) contents than the

Michigan sites. Soils with higher C and clay contents

are often associated with higher microbial biomass

because there is more C available for microbial growth

(Bach et al., 2010). On the other hand, the higher abun-

dance of Gram-positive bacteria and actinomycetes

under corn indicates a more stressful environment,

because these organisms are known for thriving in

(a) (b) (c)

(d) (e) (f)

Fig. 5 Principal components analysis of soil microbial communities from Michigan and Wisconsin extensive sites as evaluated by

28S rRNA gene sequences (a), lipid analysis (b and c), SSU rRNA gene sequences (d), and NifH protein sequences(e and f). Ellipses

are 95% confidence intervals about centroid means and were drawn to indicate the main factors related to community structure.
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stressful environments and for producing spores (Yao

et al., 2000; Fierer et al., 2003).

The perennial character of switchgrass and prairie

assemblages likely contributes to the accumulation of

fungal biomass, especially AMF biomass, while hyphae

are disrupted by tillage at corn sites. Tillage breaks the

hyphae of AMF and increases the decomposition of

organic matter, which might decrease the abundance of

AMF and favor saprophytic fungi. Mycorrhizal fungi

are known to enhance P absorption and utilization, so

an increase in AMF implies an improvement in the

absorption and utilization efficiency of this nutrient.

Additionally, recently reported results showed that

mycorrhizae increased the amount of total N in shoots

of switchgrass (Schroeder-Moreno et al., 2012), indicat-

ing that mycorrhizae can also contribute to the

increased utilization of this nutrient. The higher fungal

biomass under perennial grasses implies greater poten-

tial for C accumulation under these crops (Blanco-Can-

qui, 2010) because it is assumed that root production is

higher (Zan et al., 2001), soil aggregates form more

quickly and to a higher degree (Jastrow, 1987; Jarchow

& Liebman, 2012) and that fungi produce C compounds

more difficult to degrade (Allison et al., 2005). Tilman

et al. (2006) also noted that C sequestration was higher

under native grassland perennials than under corn, and

Bailey et al. (2002) observed larger quantities of C and

larger activity ratios in the soil of a restored prairie

compared to a neighboring corn farmland.

Fungal species specific to each crop were all sapro-

phytic fungi. Only a few sequences belonging to AMF

were identified, but they did reveal some interesting

patterns. Among these, there was a greater abundance

and richness (number of OTUs) of AMF under prairies

for both states, including groups known to have distinct

functional traits, such as Paraglomerales and Diversis-

porales (van der Heijden & Scheublin, 2007). The higher

number of OTUs observed under prairie may be a con-

sequence of its higher plant diversity, because a greater

diversity of plant hosts creates a greater diversity of

niches for AMF. In addition, it is possible that the lower

AMF richness under corn stemmed from higher soil dis-

turbance in the cultivation of this crop, because there is

evidence that soil disturbance was responsible for

reducing the phylotype richness of AMF communities

under seminatural grasslands (Schnoor et al., 2011).

AMF was linked previously to higher plant productivity

(Maherali & Klironomos, 2007), so this greater AMF

richness under prairies may positively influence the

productivity of the prairie vegetation. It is worth noting

that most of the AMF sequences found at our studied

sites, and especially those in the prairie soils, belonged

to the genus Paraglomus. Previous researchers found

Paraglomerales are difficult to detect in roots and soils

and that commonly used primers for AMF fail to

amplify Paraglomerales sequences (Lumini et al., 2010;

Gosling et al., 2014). Thus, our data indicate that Mid-

western prairies may be good places to study the diver-

sity and ecology of this lesser known AMF genus.

There was an inconsistency in the AMF prevalence

indicated by the lipid method where AMF were 41% of

the fungal biomass and the pyrosequencing methods

where only 0.13% of the fungal 28S rRNA sequences

were assigned to Glomeromycota. A similarly low frac-

tion of AMF was observed in the 18S rRNA data. Both

SSU and LSU primers used were perfect matches to

most known strains, so mismatch is not a likely expla-

nation, although other biases have been observed in

competitive rRNA gene amplification. One possible

explanation is that the biomass (hyphae) measured by

lipid may not be filled with protoplasm or with nuclei.

Cytoplasmic streaming is known to occur in soil fungi,

often resulting in evacuated hyphae because their proto-

plasm is concentrated at the growing tips (Klein &

Paschke, 2004). The reason for this large discrepancy is

important to resolve for proper accounting of this

important group of soil fungi.

While we could specifically link SSU rRNA gene

sequences to crops and soils, and given that these

sequences provide better taxonomical resolution, the

detection of large numbers of uncultured organisms

and taxa with no clearly defined roles limited physio-

logical and functional interpretation. Furthermore, the

large number of sequences and OTUs made it difficult

to detect relevant indicator organisms based on rRNA

pyrosequencing data. This is a problem common to

many SSU rRNA sequencing studies, especially for

environmental samples. On the other hand, sequence

assignment and the identification of indicator organisms

were more informative with the NifH sequences,

although some horizontal gene transfer may cloud pre-

cise taxonomic resolution.

Contrary to what we expected, the faster evolving

protein coding gene nifH provided no better resolution

than the other methods after conversion of nucleotide

sequences to amino acid sequences, which was neces-

sary to correct for sequencing errors as well as to reflect

function. The low diversity we found for NifH may be

the result of the primers we used not amplifying all

nifH variants. The primers used are reported as being

selective for Proteobacteria sequences (Diallo et al., 2008).

However, it is worth noting that these authors used a

previous PCR step, with different primers, which might

have introduced extra bias into their PCR. In a more

recent study, Gaby & Buckley (2012) reported that no

nifH primers were comprehensive for the known nifH

genes and that the primers developed by Poly et al.

(2001) do exclude certain groups. A trade-off exists
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between finding primers and conditions that give the

best coverage for groups important in the habitat and

reliable amplification. We decided the Poly primers

were the current best choice because amplification with

the broader coverage Zehr & McReynolds (1989) pri-

mers was troublesome, probably because of their high

degeneracy.

We conclude that location, a proxy primarily for soil

type but also including site history, landscape, and

climate, was the major factor determining microbial

communities in our 2-year-old intensive sites and that

these study sites were not under cultivation long

enough for the crop to impose a strong signature on the

microbial communities. The only exception to this was

that the lipid data revealed a crop effect in the richer

Wisconsin soil. In contrast, when the same crop had

been grown on a site for 10 years or longer, a crop effect

was observed, with communities under corn clearly dif-

ferentiated from those under perennial grasses. Both

presence of perennial plants and higher plant diversity

likely favored the accumulation of microbial biomass

and fungi, especially AMF, under switchgrass, mixed

grasses, and prairie, leading to a more stable environ-

ment and highlighting that these alternatives to corn for

biofuels may improve soil functional stability and

sustainability.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Locations of the sampling sites. Intensive sites were located at the Arlington Agricultural Research Station (AARS) in
Wisconsin and at the Kellogg Biological Station (KBS) in Michigan (triangles). Other symbols show locations of extensive sites.
The AARS symbol masks the symbol for one corn extensive site (WIE.Co.1) and one switchgrass extensive site (WIE.Sw.1).
Figure S2. PCA biplots for the intensive sites based on their soil attributes. Scaling 1 depicts distances between sites. Scaling 2
depicts higher correlations between variables as smaller angles between vectors.
Figure S3. PCA biplots for the extensive sites based on their soil attributes. Scaling 1 depicts distances between sites. Scaling 2
depicts higher correlations between variables as smaller angles between vectors. Environmental data were not available for sample
WIE.Sw.2.
Figure S4. Relative abundances of fungal phyla at extensive sites determined from 28S rRNA gene sequences. Others includes
Blastocladiomycota, Glomeromycota, and Neocallimastigomycota, each <1% of the total sequences in any sample. MIE = Michigan
extensive sites; WIE = Wisconsin extensive sites; Co = corn; Pr = prairie; Sw = switchgrass. Bars represent �1 standard error.
Figure S5. Relative abundances of prokaryotic and eukaryotic phyla determined from SSU rRNA gene sequences. MII = Michigan
intensive sites; MIE = Michigan extensive sites; WII = Wisconsin intensive sites; WIE = Wisconsin extensive sites; Co = corn; Mp =
mixed grasses; Pr = prairie; Sw = switchgrass. Bars represent �1 standard error.
Figure S6. Percentages of total NifH gene sequences, binned by taxonomic class, among sample categories. Others includes
sequences from Actinobacteria, Bacteroidetes, Chlorobi, Cyanobacteria, Euryarchaeota, Firmicutes, Fusobacteria, Nitrospirae, Spirochaetes,
Synergistetes, and Verrucomicrobia. MII = Michigan intensive sites; MIE = Michigan extensive sites; WII = Wisconsin intensive sites;
WIE = Wisconsin extensive sites; Co = corn; Mp = mixed grasses; Pr = prairie; Sw = switchgrass. Bars represent �1 standard error.
Figure S7. PCA for intensive site NifH data aggregated by genera. IndVal results indicated Geobacter was significantly associated
with Michigan sites and Bradyrhizobium and Rubrivivax were significantly associated with Wisconsin sites.
Figure S8. PCA for extensive site NifH data aggregated by genera. Genera contributing the most to the ordination were Geobacter,
most abundant in the Michigan switchgrass samples, and Hyphomicrobium, characteristic of prairie sites in both states.
Table S1. Carbon, nitrogen, pH and texture of soils from Michigan (MI) and Wisconsin (WI) intensive and extensive sites. Crops
are corn (CO), mixed grasses (MP), prairie (PR) and switchgrass (SW).
Table S2. Chemical attributes of soils from Michigan (MI) and Wisconsin (WI) intensive and extensive sites. Crops are corn (CO),
mixed grasses (MP), prairie (PR) and switchgrass (SW).
Table S3. IndVal results based on 28S rRNA sequences for genera distinguishing extensive sites by crop. Indval analysis was lim-
ited to clusters with at least 10 sequences. Percentages were calculated based on all OTUs initially present. q cutoff was 0.05.
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Fig. S1: Locations of the sampling sites. Intensive sites were located at the Arlington 

Agricultural Research Station (AARS) in Wisconsin and at the Kellogg Biological 

Station (KBS) in Michigan (triangles). Other symbols show locations of extensive 

sites. The AARS symbol masks the symbol for one corn extensive site (WIE.Co.1) 

and one switchgrass extensive site (WIE.Sw.1). 
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Fig. S2: PCA biplots for the intensive sites based on their soil attributes.  Scaling 1 

depicts distances between sites. Scaling 2 depicts higher correlations between 

variables as smaller angles between vectors. 
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Fig. S3: PCA biplots for the extensive sites based on their soil attributes. Scaling 1 

depicts distances between sites. Scaling 2 depicts higher correlations between 

variables as smaller angles between vectors. Environmental data were not available 

for sample WIE.Sw.2. 
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Fig. S4: Relative abundances of fungal phyla at extensive sites determined from 28S 

rRNA gene sequences.  Others includes Blastocladiomycota, Glomeromycota, and 

Neocallimastigomycota, each less than 1% of the total sequences in any sample.  

MIE = Michigan extensive sites; WIE = Wisconsin extensive sites; Co = corn; Pr = 

prairie; Sw = switchgrass. Bars represent ±1 standard error. 
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Fig. S5: Relative abundances of prokaryotic and eukaryotic phyla determined from 

SSU rRNA sequences.  MII = Michigan intensive sites; MIE = Michigan extensive 

sites; WII = Wisconsin intensive sites; WIE = Wisconsin extensive sites; Co = corn; 

Mp = mixed grasses; Pr = prairie; Sw = switchgrass. Bars represent ±1 standard 

error. 
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Fig. S6: Percentages of total NifH sequences, binned by taxonomic class, among 

sample categories.  Others includes sequences from Actinobacteria, Bacteroidetes, 

Chlorobi, Cyanobacteria, Euryarchaeota, Firmicutes, Fusobacteria, Nitrospirae, 

Spirochaetes, Synergistetes, and Verrucomicrobia. MII = Michigan intensive sites; 

MIE = Michigan extensive sites; WII = Wisconsin intensive sites; WIE = Wisconsin 

extensive sites; Co = corn; Mp = mixed grasses; Pr = prairie; Sw = switchgrass. Bars 

represent ±1 standard error. 
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Fig. S7: PCA for intensive site NifH data aggregated by genera.  IndVal results 

indicated Geobacter was significantly associated with Michigan sites and 

Bradyrhizobium and Rubrivivax were significantly associated with Wisconsin sites. 
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Fig. S8: PCA for extensive site NifH data aggregated by genera.  Genera 

contributing the most to the ordination were Geobacter, most abundant in the 

Michigan switchgrass samples, and Hyphomicrobium, characteristic of prairie sites 

in both states. 
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Table S1. Carbon, nitrogen, pH and texture of soils from Michigan (MI) and Wisconsin (WI) intensive and extensive sites. 

Crops are corn (CO), mixed grasses (MP), prairie (PR) and switchgrass (SW). 

Intensive sites Total C (%) Total N (%) pH Sand (%) Silt (%) Clay (%) Texture 

MII-CO 1.23 ± 0.09 0.11 ± 0.01 6.20 ± 0.21 56 ± 6 33 ± 6 11 ± 1 Sandy Loam, Loam 

MII-MP 1.34 ± 0.04 0.11 ± 0.00 7.00 ± 0.06 47 ± 0 42 ± 1 11 ± 1 Loam 

MII-PR 1.24 ± 0.06 0.10 ± 0.01 6.83 ± 0.03 54 ± 7 36 ± 6 10 ± 1 Sandy Loam, Loam 

MII-SW 1.21 ± 0.07 0.09 ± 0.01 6.90 ± 0.06 53 ± 6 35 ± 5 12 ± 1 Sandy Loam, Loam 

WII-CO 2.61 ± 0.12 0.27 ± 0.02 6.43 ± 0.03 9 ± 1 69 ± 1 22 ± 0 Silt Loam 

WII-MP 2.22 ± 0.24 0.22 ± 0.03 6.97 ± 0.03 9 ± 1 68 ± 1 23 ± 2 Silt Loam 

WII-PR 2.35 ± 0.14 0.24 ± 0.03 6.73 ± 0.12 9 ± 1 67 ± 1 24 ± 0 Silt Loam 

WII-SW 2.30 ± 0.11 0.23 ± 0.02 6.87 ± 0.03 8 ± 0 67 ± 1 25 ± 1 Silt Loam 

Extensive sites 
      

  

MIE-CO 2.07 ± 0.78 0.15 ± 0.05 7.10 ± 0.45 51 ± 8 32 ± 5 18 ± 4 Sandy Loam, Loam 

MIE-PR 1.48 ± 0.17 0.11 ± 0.02 6.27 ± 0.28 60 ± 9 30 ± 7 10 ± 3 Sandy Loam, Loamy Sand, Loam 

MIE-SW 1.44 ± 0.08 0.12 ± 0.01 6.67 ± 0.35 45 ± 10 40 ± 7 15 ± 4 Sandy Loam, Loamy Sand, Loam 

WIE-CO 2.16 ± 0.30 0.22 ± 0.04 6.80 ± 0.21 12 ± 4 66 ± 5 21 ± 1 Silt Loam 

WIE-PR 2.06 ± 0.37 0.20 ± 0.05 6.13 ± 0.13 13 ± 0 67 ± 3 20 ± 3 Silt Loam 

WIE-SW 2.36 ± 0.46 0.24 ± 0.04 6.60 ± 0.20 10 ± 3 72 ± 1 18 ± 2 Silt Loam 
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Table S2. Chemical attributes of soils from Michigan (MI) and Wisconsin (WI) intensive and extensive sites. Crops are corn 

(CO), mixed grasses (MP), prairie (PR) and switchgrass (SW). 

 

P K Ca Mg S Zn B Mn Fe Cu Al Na

Intensive sites % % % % % ppm ppm ppm ppm ppm ppm ppm

MII-CO 0.04 ± 0.003 0.11 ± 0.01 0.20 ± 0.01 0.15 ± 0.01 0.01 ± 0.001 37.88 ± 1.20 6.31 ± 0.45 624 ± 94 9816 ± 746 5.17 ± 0.18 10775 ± 1052 49 ± 3

MII-MP 0.04 ± 0.001 0.15 ± 0.00 0.24 ± 0.01 0.19 ± 0.00 0.02 ± 0.000 43.73 ± 0.90 6.21 ± 0.54 634 ± 27 11118 ± 152 7.88 ± 0.37 13323 ± 134 52 ± 1

MII-PR 0.04 ± 0.003 0.13 ± 0.01 0.23 ± 0.02 0.17 ± 0.01 0.01 ± 0.001 39.67 ± 3.73 6.79 ± 0.25 515 ± 133 10279 ± 327 6.27 ± 0.34 11985 ± 551 50 ± 5

MII-SW 0.04 ± 0.001 0.13 ± 0.01 0.23 ± 0.01 0.17 ± 0.00 0.01 ± 0.001 39.31 ± 2.93 6.04 ± 0.19 691 ± 148 10086 ± 401 7.04 ± 0.65 11870 ± 616 53 ± 3

WII-CO 0.10 ± 0.014 0.29 ± 0.01 0.39 ± 0.02 0.29 ± 0.01 0.02 ± 0.002 80.79 ± 7.75 9.53 ± 0.23 858 ± 53 14761 ± 279 7.39 ± 0.62 18844 ± 309 77 ± 3

WII-MP 0.08 ± 0.018 0.27 ± 0.02 0.39 ± 0.04 0.31 ± 0.01 0.02 ± 0.002 66.94 ± 9.51 14.04 ± 2.82 701 ± 72 14876 ± 439 6.67 ± 0.62 18656 ± 749 86 ± 6

WII-PR 0.08 ± 0.007 0.28 ± 0.01 0.36 ± 0.01 0.29 ± 0.01 0.02 ± 0.002 68.91 ± 4.22 9.54 ± 0.65 759 ± 31 14931 ± 96 7.16 ± 0.25 18876 ± 358 74 ± 4

WII-SW 0.08 ± 0.010 0.29 ± 0.01 0.41 ± 0.06 0.33 ± 0.03 0.02 ± 0.000 72.33 ± 3.82 10.55 ± 0.40 768 ± 21 15338 ± 327 7.23 ± 0.45 19584 ± 517 76 ± 1

Extensive sites

MIE-CO 0.06 ± 0.007 0.26 ± 0.08 1.36 ± 0.91 0.58 ± 0.32 0.02 ± 0.011 57 ± 6.25 12.33 ± 3.97 429 ± 142 11881 ± 1850 9.10 ± 2.54 13556 ± 2738 84 ± 27

MIE-PR 0.04 ± 0.003 0.14 ± 0.05 0.19 ± 0.01 0.18 ± 0.03 0.01 ± 0.002 37 ± 1.10 7.36 ± 2.07 594 ± 150 9654 ± 919 3.70 ± 1.17 10012 ± 1358 54 ± 8

MIE-SW 0.05 ± 0.013 0.17 ± 0.04 0.24 ± 0.05 0.20 ± 0.04 0.01 ± 0.001 44 ± 6.39 7.61 ± 1.48 572 ± 238 10733 ± 1496 5.64 ± 2.12 11627 ± 2504 61 ± 12

WIE-CO 0.09 ± 0.028 0.30 ± 0.04 0.44 ± 0.08 0.36 ± 0.02 0.03 ± 0.004 64 ± 5.67 11.23 ± 0.72 806 ± 44 15711 ± 564 11.43 ± 1.57 22956 ± 213 98 ± 9

WIE-PR 0.08 ± 0.006 0.29 ± 0.02 0.32 ± 0.03 0.32 ± 0.02 0.02 ± 0.004 62 ± 5.52 10.92 ± 0.80 785 ± 94 16490 ± 419 10.03 ± 0.63 22525 ± 628 83 ± 1

WIE-SW 0.13 ± 0.065 0.23 ± 0.04 1.14 ± 0.77 0.30 ± 0.02 0.12 ± 0.096 57 ± 6.58 10.51 ± 1.63 875 ± 279 14394 ± 1213 9.83 ± 0.94 17132 ± 4172 80 ± 8
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Table S3. IndVal results based on 28S rRNA sequences for genera distinguishing extensive 

sites by crop.  Indval analysis was limited to clusters with at least 10 sequences.  

Percentages were calculated based on all OTUs initially present. q cut-off was 0.05. 

 

OTU genus group indval pvalue freq MIE.Co MIE.Pr MIE.Sw WIE.Co WIE.Pr WIE.Sw

OTU0665 Ascobolus Corn 0.9292 0.0052 14 2.5860 0.0064 0.0593 8.6197 0.1450 0.1907

OTU1029 Podospora Corn 0.9044 0.0086 13 0.3414 0.0147 0.0129 1.1564 0.0059 0.0309

OTU1683 Coprinellus Corn 0.8276 0.0012 12 0.2015 0.0024 0.0041 0.4254 0.0180 0.0083

OTU0668 Ascodesmis Corn 0.8257 0.0026 7 0.4348 0.0024 0.0000 0.0382 0.0614 0.0000

OTU0706 Byssonectria Corn 0.7889 0.0043 5 0.1062 0.0000 0.0044 0.2758 0.0000 0.0000

OTU1803 Camarophyllopsis Prairie 1.0000 0.0003 6 0.0000 0.0388 0.0000 0.0000 0.0350 0.0000

OTU1337 unclassified_Ceratobasidiaceae Prairie 0.9742 0.0016 8 0.0000 0.2608 0.0132 0.0000 0.1517 0.0055

OTU1715 Lagarobasidium Prairie 0.9606 0.0013 11 0.0035 0.2356 0.0148 0.0066 0.2889 0.0055

OTU0601 Tricladium Prairie 0.9563 0.0000 11 0.0439 2.0780 0.1914 0.0000 1.6480 0.1155

OTU0035 Scolecobasidiella Prairie 0.9518 0.0024 8 0.0212 0.0977 0.0066 0.0000 0.3181 0.0000

OTU2275 unclassified_Glomeromycetes Prairie 0.9412 0.0004 7 0.0000 0.0432 0.0000 0.0000 0.0314 0.0055

OTU2115 unclassified_Tremellaceae Prairie 0.9363 0.0016 13 0.0231 0.7304 0.0281 0.0266 0.1225 0.0496

OTU1723 Sebacina Prairie 0.9298 0.0013 7 0.0000 0.2071 0.0750 0.0000 0.3873 0.0000

OTU1444 unclassified_Entolomataceae Prairie 0.9243 0.0001 14 0.0123 0.8034 0.0880 0.0133 0.2614 0.0215

OTU2195 Kappamyces Prairie 0.8821 0.0024 14 0.0196 0.6017 0.0947 0.0199 0.0761 0.0268

OTU2208 Spizellomyces Prairie 0.8505 0.0028 8 0.0000 0.0717 0.0000 0.0266 0.0463 0.0053

OTU2120 unclassified_Tremellomycetes Prairie 0.8470 0.0055 12 0.0141 0.4020 0.0838 0.1562 0.2264 0.0168

OTU1722 Piriformospora Prairie 0.8442 0.0015 8 0.0266 0.1270 0.0000 0.0000 0.0220 0.0000

OTU0185 Neottiosporina Prairie 0.8333 0.0023 5 0.0000 0.0805 0.0000 0.0000 0.1079 0.0000

OTU1900 unclassified_Tricholomataceae Prairie 0.8318 0.0005 12 0.0141 0.1761 0.0417 0.0066 0.1887 0.0141

OTU1339 Uthatobasidium Prairie 0.8246 0.0095 7 0.0000 1.0559 0.0132 0.0000 0.0888 0.0107

OTU0223 Septoria Prairie 0.8213 0.0032 6 0.0000 0.0224 0.0066 0.0000 0.1499 0.0000

OTU1788 uncultured_Thelephoraceae Prairie 0.8207 0.0044 6 0.0000 0.0514 0.0000 0.0066 0.1631 0.0000

OTU2273 unclassified_Diversisporales Prairie 0.8197 0.0012 8 0.0000 0.0473 0.0000 0.0066 0.0112 0.0028

OTU0905 unclassified_Chaetosphaeriaceae Prairie 0.8182 0.0015 10 0.0000 0.0674 0.0287 0.0000 0.0930 0.0163

OTU2109 Asterotremella Prairie 0.8170 0.0081 10 0.0071 0.1021 0.0133 0.0266 0.0538 0.0056

OTU1436 Entoloma Prairie 0.8114 0.0027 6 0.0000 0.1046 0.0044 0.0000 0.0295 0.0000

OTU0331 Cladophialophora Prairie 0.8030 0.0073 12 0.0318 0.8913 0.1920 0.0000 0.3597 0.0270

OTU0200 Paraphaeosphaeria Prairie 0.7986 0.0056 6 0.0000 0.1006 0.0000 0.0000 0.0951 0.0107

OTU0337 Sarcinomyces Prairie 0.7957 0.0094 7 0.0141 0.0160 0.0265 0.0000 0.4729 0.0000

OTU1913 unclassified_Agaricomycetes Prairie 0.7933 0.0107 17 0.1753 0.7931 0.7391 0.3905 4.2167 1.2139

OTU1346 Clavaria Prairie 0.7903 0.0049 6 0.0000 2.3848 0.0000 0.0000 1.9438 0.4317

OTU1511 Myxarium Prairie 0.7802 0.0033 7 0.0088 0.1021 0.0000 0.0000 0.0715 0.0056

OTU2246 leaf Prairie 0.7799 0.0023 15 0.0370 0.5289 0.3685 0.0582 0.5531 0.0641

OTU2270 Paraglomus Prairie 0.7797 0.0043 11 0.0000 0.1367 0.0483 0.0000 0.1528 0.0993

OTU1164 unclassified_Xylariales Prairie 0.7654 0.0004 13 0.0833 0.2391 0.0482 0.0249 0.1240 0.0162

OTU0624 Lachnum Prairie 0.7652 0.0046 8 0.0000 0.2176 0.1990 0.0000 0.2107 0.0053

OTU1131 Hilberina Prairie 0.7520 0.0098 7 0.0000 0.0719 0.0949 0.0000 0.4228 0.0000

OTU2119 unclassified_Tremellales Prairie 0.7323 0.0017 12 0.0106 0.1453 0.0751 0.0631 0.0804 0.0053

OTU0638 Mitrula Prairie 0.7313 0.0058 9 0.0000 0.0761 0.1083 0.0000 0.0943 0.0055

OTU0642 Torrendiella Prairie 0.7246 0.0067 6 0.0071 0.0259 0.0000 0.0000 0.0303 0.0000

OTU1107 Papulosa Prairie 0.7161 0.0101 8 0.0035 0.0629 0.0000 0.0000 0.0803 0.0295

OTU0647 unclassified_Helotiales Prairie 0.6885 0.0053 17 1.1430 2.3123 1.0967 0.6464 2.2541 0.4398

OTU0305 unclassified_Dothideomycetes Prairie 0.6674 0.0082 17 0.2034 0.3317 0.1334 0.1329 0.5583 0.1431

OTU0937 Beauveria Switchgrass 0.8372 0.0076 9 0.0000 0.0123 0.1160 0.0000 0.0199 0.0334

OTU1161 unclassified_Sordariales Switchgrass 0.6238 0.0086 17 0.2174 0.2109 1.1582 0.1811 0.2754 0.3632

Mean Percentage of Sequences per SampleIndval Result




