Gelfand, I., M. Cui, J. Tang, and G. P. Robertson. 2015. Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest. Agriculture, Ecosystems and Environment 212:127-133.

Citable PDF link: https://lter.kbs.msu.edu/pub/3493

Climate change is causing the intensification of both rainfall and droughts in temperate climatic zones, which will affect soil drying and rewetting cycles and associated processes such as soil greenhouse gas (GHG) fluxes. We investigated the effect of soil rewetting following a prolonged natural drought on soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) in an agricultural field recently converted from 22 years in the USDA Conservation Reserve Program (CRP). We compared responses to those in a similarly managed field with no CRP history and to a CRP reference field. We additionally compared soil GHG emissions measured by static flux chambers with off-site laboratory analysis versus in situ analysis using a portable quantum cascade laser and infrared gas analyzer. Under growing season drought conditions, average soil N2O fluxes ranged between 0.2 and 0.8 μg N m−2 min−1 and were higher in former CRP soils and unaffected by nitrogen (N) fertilization. After 18 days of drought, a 50 mm rewetting event increased N2O fluxes by 34 and 24 fold respectively in the former CRP and non-CRP soils. Average soil CO2 emissions during drought ranged from 1.1 to 3.1 mg C m−2 min−1 for the three systems. CO2 emissions increased ∼2 fold after the rewetting and were higher from soils with higher C contents. Observations are consistent with the hypothesis that during drought soil N2O emissions are controlled by available C and following rewetting additionally influenced by N availability, whereas soil CO2 emissions are independent of short-term N availability. Finally, soil GHG emissions estimated by off-site and in situ methods were statistically identical.

DOI: 10.1016/j.agee.2015.07.005

Associated Datatables:

  1. LTER Weather Station - Daily Precip and Air Temp

Associated Treatment Areas:

GLBRC Scale-up Fields

Download citation to endnote bibtex

Get PDF back to index
Sign In