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Abstract

Perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops

depends not only on mean net returns, but also on the associated probability distributions and on the risk

preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally produc-

tive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven

biomass yields and prices compared to corn (Zea mays L.) as a benchmark. Next we develop Monte Carlo budget
simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk into

three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal

that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable

and the least risky investment option. It dominates all perennial systems considered across a wide range of

farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk

averse, perennial bioenergy crops have a higher potential to successfully compete with corn under marginal

crop production conditions.

Keywords: bioenergy, cellulosic biomass, energy crops, investment analysis, Monte Carlo simulation, risk, stochastic budget-

ing

Received 9 September 2015; accepted 15 October 2015

Introduction

Although annual corn is currently the most important

bioenergy crop in the United States, perennial crops

such as giant miscanthus (Miscanthus 9 giganteus Greef

& Deuter ex Hodkinson & Renvoize) and switchgrass

(Panicum virgatum L.) have shown the potential system-

atically to produce higher biomass yields (Heaton et al.,

2008; Dohleman & Long, 2009). Perennial crops repre-

sent long-term investments, due to the initial cost of

crop establishment and the delay before harvestable

biomass is available. While production costs may be

predicted with some confidence, farmers are exposed to

potentially large variability in biomass yield and price

(Bocqu�eho & Jacquet, 2010). To understand the potential

for adoption of bioenergy crops, there is a need to

analyze profitability risk associated with investments in

the production of perennial bioenergy crops relative to

crops that farmers already choose to grow.

A critical factor in adopting new crops, such as bioen-

ergy crops, is their profitability relative to that of

existing cropping systems. Most farmers will allocate

land to bioenergy crops only if the economic returns

from these crops are at least equal to returns from the

most profitable conventional alternatives (Jain et al.,

2010; James et al., 2010; Kells & Swinton, 2014). The

adoption of new agricultural technologies is also

affected by risk (Ghadim et al., 2005; Marra et al., 2003;

Chavas, et al., 2009). Farmers’ risk attitudes (Just & Zil-

berman, 1983) and perception about the distribution of

future payoffs from the new technology (Marra et al.,

2003), potential sunk costs (Chavas et al., 1994), and the

opportunity cost of switching to a relatively unknown

production system do affect the uptake of emerging

agricultural technologies. An extensive literature models

the investment uncertainty associated with adopting

new agricultural technologies (Price & Wetzstein, 1999;

Khanna et al., 2000; Pietola & Myers, 2000; Carey &

Zilberman, 2002; Isik & Yang, 2004; Odening et al., 2005;

Koundouri et al., 2006; Tozer, 2009; Schoengold &

Sunding, 2014; Anderson & Weersink, 2014). Yet scant

empirical evidence is available on how investment

uncertainty affects the adoption of bioenergy perennials.

A notable exception is the study by Song et al. (2011)

who model land conversion decisions between tradi-
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tional crops and switchgrass under costly reversibility,

and revenue uncertainty. However, these authors rely

on secondary data and fail to account explicitly for the

effects of crop failure and variable yield trajectories on

investment returns from perennial bioenergy crops.

The agronomic and economic characteristics of bioen-

ergy perennials make them risky choices. Investment in

perennial energy crops is characterized by high establish-

ment cost (Lewandowski et al., 2003), establishment prob-

lems related to extreme climatic and pest events

(Thinggaard, 1997; Clifton-Brown & Lewandowski, 2000),

foregone income while awaiting mature yield (Song et al.,

2011), and considerable removal costs to make land avail-

able for a new crop. Moreover, the risk of investing in

perennial bioenergy crops is aggravated by the absence of

commodity markets or crop insurance for these crops, as

well as limited farming experience with them.

Breakeven budgeting addresses profitability risk by

establishing a lower bound for price or quantity that is

required to cover costs. Various studies have calculated

the average profitability of different biomass feedstock

crops (e.g., Lewandowski et al., 2003; Heaton et al.,

2004). Simple breakeven analysis studies have calculated

the yields and prices at which a producer would cover

costs of production (Mooney et al., 2009). One step more

advanced are comparative breakeven analyses that cal-

culate the yield or price required for a producer to earn

profit at least equal to the return on a reference crop

(Jain et al., 2010; Landers et al., 2012; DeLaporte et al.,

2014; James et al., 2010). These studies rely mostly on

secondary data, and they fail to account explicitly for

risk. All of these studies ignore crop establishment risk

and the temporal distribution of crop yield. Yet the high-

est biomass yielding bioenergy crop—giant miscanthus

—has demonstrated susceptibility to winterkill during

its first year (Kucharik et al., 2013), making establish-

ment risk a serious concern. Moreover, risk associated

with the time delay for perennial crops like giant mis-

canthus and switchgrass to reach harvestable yield may

be substantial (Heaton et al., 2004). Both of these risk fac-

tors supplement conventional year-to-year yield vari-

ability of mature crops in ways that could significantly

affect their profitability appeal to potential adopters.

Past stochastic simulation studies that have calculated

probability distributions of net returns from bioenergy

crops have taken two approaches to the crucial step of

simulating crop yields. In the absence of adequate

data on bioenergy crop yields, one group has relied

upon general crop growth simulation models, such as

ALMANAC and DayCENT (Dolginow et al., 2014; Miao

& Khanna, 2014). These models have the advantage of

being able to simulate crop yield over large regions.

However, they have typically been validated at just a

few individual sites, which may be problematic given

that they lack well-developed parameters for perennial

bioenergy crops. One study (Clancy et al., 2012) statisti-

cally estimates yields of bioenergy crops across time,

using a one-period-lagged, linear and plateau function

and using residuals to simulate the probability distribu-

tion of random variability around expected yields. The

Clancy et al. (2012) study is unique in recognizing the

relevance of winter survival risk in giant miscanthus,

which they assume to be ten percent. Finally, Bocqu�eho

& Jacquet (2010) relied on interview responses and

recorded secondary data for short-term empirical distri-

butions of bioenergy crop yields.

Our research draws on new bioenergy crop yield data

to construct more nuanced, probabilistic, biomass yield

functions for six bioenergy crop systems, linking those

functions to stochastic price predictions through a

stochastic investment budget model. Specifically, this

study makes three contributions to the literature on

economic risk of bioenergy crop production. First, it

uses new multiyear field data on cellulosic biomass pro-

duction to inform comparative breakeven analysis of

perennial bioenergy crops relative to corn with grain

and stover removal. Second, it explicitly considers three

stochastic elements when evaluating bioenergy invest-

ment projects: (i) crop failure risk, (ii) time to maturity

risk, and (iii) variability in mature yields. Third, it

evaluates the economic performance of a broad range of

bioenergy crops that includes not only corn, giant

miscanthus, and switchgrass, but also restored prairie,

native grasses, and early successional vegetation (long-

term fallow). Using data from southern Michigan and

Wisconsin, the modeling approach offers broader

insights about the comparative riskiness of these

bioenergy crops and what drives that risk.

Materials and methods

Conceptual framework

Rational economic decision-makers are assumed to make crop

production choices by choosing crop j to maximize a utility

function (U) that includes the value of net returns across a

range of possible states of nature (i) in light of the decision-

maker’s risk preferences:

MaxjUðNPVij; kÞ ¼
Z N

i¼1

UðNPVij; kÞfðNPVijÞdNPVij ð1Þ

where NPV is the net present value of crop j, j = 1,2, . . ., M, k

is a measure of risk aversion, t is year, and T is the final year of

the planning horizon. Location matters as well, but we sup-

press that factor to simplify notation.

When the model in Eqn (1) is applied to the case of growing

bioenergy crops, an individual decision-maker makes crop pro-

duction choices based on cash flows over the time horizon (T)
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for the crop investment. The NPV for cropping system j over a

period of T years is defined as follows:

NPVij ¼
XT

t¼1
dtGijt ð2Þ

where d is the discount factor, and Gijt denotes the gross mar-

gin (cash flow) of crop j cultivated in year t under state of nat-

ure i. Eqn (2) provides the discounted value of annual gross

margins. Because crop prices and yields are stochastic, each

time NPVij is a random draw representing state i from the

probability distribution of possible discounted investment net

returns.

The appropriate ranking of biomass investment projects will

depend on the investor’s risk preference. For a risk neutral

decision-maker (k = 0), maximizing Eqn (1) is equivalent to

maximizing the expected net present value. However, most

investors are not indifferent to risk. We adopt an expected util-

ity theory approach to decision-making under risk (Hernstein

& Milnor, 1953; Mongin, 1997). Following a substantial body

of empirical evidence that farmers are risk averse (Pope & Just,

1991, Pannell et al., 2000; Hardaker, 2006), we assume that the

decision-maker exhibits constant absolute risk aversion (CARA;

Pratt, 1964) and that risk preference is embodied in the CARA

function coefficient aversion, k, that can vary over a range from

risk neutral to highly risk averse.

Crop gross margin risk in the term, Gijt, in Eqn (2) can be

decomposed into three yield quantity factors and one price ele-

ment drive: (i) survival risk, (ii) maturation risk, (iii) yield fluc-

tuation risk in mature crops, and (iv) price risk. Survival risk in

bioenergy perennials refers to mortality losses following the

first season after planting. Extreme climatic conditions and pest

infestations are common causes. In particular, giant miscanthus

rhizomes have failed to survive the winter when soil tempera-

tures fall below �3.5 °C for a period of 3 days or more (Clif-

ton-Brown & Lewandowski, 2000; Kucharik et al., 2013).

Figure 1 depicts the effect of establishment failure, and delayed

maturity on the NPV of an investment project of perennial

biomass crops. Figure 1 (Panel a) illustrates the effect of crop

failure risk on the NPV of a biomass investment project. The

top graph shows how establishment failure delays the flow of

biomass yield (Y), while the bottom graph shows the conse-

quences for NPV. At t0, crop establishment costs (�I) have been

incurred and therefore the NPV (bottom of both panels) of a

biomass cropping system is negative. In the subsequent period,

the NPV continues to decrease due to a lack of harvestable bio-

mass (and, thus absence of revenues), alongside rising crop

variable costs, such as fertilization and crop protection. Follow-

ing this period, as harvestable biomass becomes available, the

NPV increases, potentially breaking even. Establishment failure

is especially problematic in a crop like giant miscanthus that is

costly to plant.

Maturation risk refers to variability in both the time required

for a perennial crop to reach a plateau of mature yield and the

level of the plateau that is reached. Figure 1 (Panel b) displays

the effect of a delay in achieving a full yield potential on firm’s

returns. The top graph illustrates how random factors may

delay the maturation of a perennial crop causing the biomass

Fig. 1 Establishment failure (left) and delayed maturity (right) implications on the NPV of an investment project of bioenergy

perennials.
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yield trajectory to shift from the dashed black linen to the solid

gray line. This delay shifts the NPV accumulation trajectory in

the bottom graph to one that takes longer to break even.

Delayed maturity permanently reduces investment return

because early revenues have higher present value. Maturation

risk can increase both the variance and skewness of the distri-

bution of gross margins.

Finally, as with annual crops, revenue risk is also driven by

regular fluctuations in mature yield and in crop prices. Mature

yields vary due to factors such as climate (Parry and Carter,

1985; Nu~nez & Trujillo-Barrera, 2014), soil type (Dinkins &

Jones, 2008), and pests (Skevas et al., 2013). Agricultural prices

vary due to changes in markets, which vary spatially from local

to global (Harwood et al., 1999). We next present the empirical

methods used to analyze how these four sources of risk are

likely to affect farmer decisions about adopting bioenergy

crops.

Empirical model

To examine the effect of risk on likely farmer adoption choices,

we compare results from comparative breakeven budgeting to

those from stochastic simulation of investment analysis. Com-

parative breakeven budgeting is a simple, widely used method

that identifies the minimum price or yield needed for revenues

to cover costs (Dillon, 1993). The version used here is adapted

for investment analysis using the NPV method, so it incorpo-

rates discounting of future cash flows to adjust all values to ini-

tial year ‘present’ values (Kells & Swinton, 2014). To calculate a

comparative breakeven price, crop yield and opportunity of

not adopting the best alternative crop must be known; to calcu-

late a breakeven yield, crop price and opportunity cost must be

known. To accommodate policy incentives to encourage adop-

tion of bioenergy crops, we do sensitivity analysis with both

direct subsidies and crop insurance.

Stochastic simulation for investment analysis allows devel-

oping probability distributions of NPVs that allow comparison

of bioenergy investment alternatives over a broad range of

yield and price conditions and for decision-makers with differ-

ent levels of risk aversion. We first describe methods for com-

parative breakeven analysis, including incentive policy

scenarios; then, we move to methods for stochastic simulation

and comparison of probability distributions of NPVs.

Risk neutral case: Comparative breakeven investment
analysis

Comparative breakeven investment analysis is used to compute

the economic performance of cellulosic biomass feedstock

investment projects. The six biomass investment alternatives

are corn, giant miscanthus, switchgrass, native grasses, restored

prairie, and early successional vegetation (fallow). Revenues

and expenditures are used to calculate annual cash flows for

each cropping system. For convenience in comparing results

between annual and perennial crops, we present all results as

annualized values using the following annuity formula to con-

vert NPVs to annual equivalents (Weston & Copeland, 1986):

A ¼ rNPV

1� 1=ð1þ rÞT
" #

ð3Þ

where A is the annual payment, and r is the discount rate. The

time horizon is 6 years, a time horizon sufficient for most

perennial crops to have attained mature yield for 3–4 years

and hence for farmers to judge the appeal of adopting them.

However, there is evidence that the optimal replacement inter-

val of bioenergy perennials such as miscanthus and switch-

grass can exceed 10 years (Pyter et al., 2007). We assume a real

discount rate of 5%, following Erickson et al. (2004). Each crop-

ping system has a different production cycle, with corn result-

ing in harvestable yield each year of the 6-year time horizon,

while the perennial cropping systems experience delays of 1–

2 years before producing harvestable yield.

The appeal of comparative breakeven budgeting for predict-

ing adoption of new crops is that it builds in the opportunity

cost of foregoing new income from the best benchmark crop.

Given that corn is the most widely grown field crop in the Uni-

ted States, we treat it as the benchmark crop—the basis for

comparison. We conduct the comparative breakeven price and

yield analyses to identify the cellulosic biomass prices and

yields that would make perennial crops equally profitable with

corn. The breakeven price analysis takes into account the direct

costs of production, expected yields, and the opportunity cost

of replacing the existing cropping system. Net returns from

corn are assumed to come from harvesting all grain plus 38%

of stover (Brechbill & Tyner, 2008), a level of stover harvest

consistent with maintaining soil organic matter. Following

Kells & Swinton (2014), the comparative breakeven price of a

cellulosic perennial crop to replace corn is as follows:

BEpr ¼
NPVD þPt

�
ct

ð1þrÞT

�
P

t

�
yct�yDt

ð1þrÞT

� ð4Þ

where BEpr is the comparative breakeven price, NPVD is the

expected NPV of the ‘defender’ crop (corn), ct the expected cost

of producing the new biomass crop, yCt is the expected biomass

yield achieved by the ‘challenger’ bioenergy crop, yDt is the

expected biomass yield of the defender crop, and r and T as

previously defined. The denominator represents the biomass

yield gain of the challenger crop over the defender cropping

system and implies that a new bioenergy crop breaks even in

the comparative sense only if its biomass yield exceeds that of

corn stover.

Comparative breakeven yield identifies the minimum yield

of cellulosic biomass required for a producer to attain annual-

ized investment returns earn equal to corn, given an expected

biomass price. Using the same notation as above, the breakeven

yield YBE is computed as follows:

YBE ¼
NPVD þPt

�
adct

ð1þrÞT

�
P

t

�
Pt�ydct

ð1þrÞT

� ð5Þ

where adct is acreage dependent costs (i.e., cost of planting

material, agrochemicals, and machinery–labor), Pt is the

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 1162–1177

RISK ANALYSIS OF BIOENERGY CROP INVESTMENTS 1165



expected biomass price, and ydc is yield dependent costs (e.g.,

baling, storage, and bale transportation).

Policy incentives for bioenergy crops: Subsidies and
insurance

As variants of the comparative breakeven investment analysis,

we consider two sets of policy incentives to encourage adop-

tion of perennial bioenergy crops. The first set already exists in

the form of the U.S. Department of Agriculture’s Biomass Crop

Assistance Program (BCAP) (USDA, 2014). The second policy

is based on existing crop revenue insurance that has not so far

been extended to perennial bioenergy crops.

Under BCAP, we examine the impact of three BCAP pay-

ment forms on the investment returns from the bioenergy crop

alternatives. The BCAP payments include the following: (i)

establishment payments, (ii) annual rental payments, and (iii)

matching payments. Establishment payments cover 50 percent

of the costs of establishing dedicated energy crops and the total

payments per acre are capped at $500. Annual rental payments

include a payment (for a maximum of 5 years) based on typical

rental rates for cropland, marginal land or forest land. They are

used to cover the foregone income from the land during the

establishment phase (before the crop reaches economically har-

vestable levels). Matching payments of $20 per ton (for a maxi-

mum of 2 years) are used to mitigate the cost of harvesting and

transporting biomass to a biorefinery. The annual payment is

reduced when a matching payment has been earned.

A second potential type of policy would allow growers of

bioenergy crops to purchase revenue insurance to offset some

of the risk associated with production variability. This study

calculates insurance premiums that would support a policy

that would pay off whenever the NPV did not reach the zero

threshold. Based on the insurance premium approach pre-

sented in Goodwin (1994), a premium that is free of distribu-

tional assumptions and accounts for the time that net revenues

cross the zero threshold can be calculated as follows:

Premiumj ¼
Xn

i¼1
hij=n ð6Þ

where hij = 0 � NPVij if NPVij < 0, and 0 otherwise. The calcu-

lation of insurance premiums can indicate the cost of reducing

net revenue risk exposure to potential adopters of bioenergy

crops.

Risk averse case: stochastic capital budgeting

The stochastic capital budgeting model introduces the three

forms of yield risk plus price risk into simulation of probability

distributions of NPVs for each bioenergy crop. It also enables

calculation of the monetary value of the certainty equivalent of

each NPV distribution for a range of decision-makers with

CARA risk preferences. The steps involved in building the

stochastic (Monte Carlo) investment analysis model are

detailed below. They include (i) statistical estimation of the

equations for the three forms of biomass yield risk using

appropriate functional forms, (ii) retention of coefficient

standard errors to simulate random coefficient models, (iii)

fitting of parameters to appropriate probability distributions

for additive random errors, (iv) collection of suitable random

price data, (v) synthesis of these components into a stochastic

simulation of NPV distributions by crop, and (vi) analysis of

results as certainty equivalents for risk neutral and risk averse

decision-makers.

Estimation of stochastic biomass yields was performed in

three parts: first, estimation of the chance of crop establishment

failure at each site (giant miscanthus only); second, estimation

of time-to-maturity trajectories for each crop; and third, fitting

of probability distributions for additive random errors. Estima-

tions of time-to-maturity risk and risk in mature yields were

based on 6 years of field experiments from 2008 to 2013 at

Arlington (ARL) in south-central Wisconsin and the Kellogg

Biological Station (KBS) in southwest Michigan. At each site,

there were five plots each of corn, switchgrass, giant miscant-

hus, restored prairie, mixed native grasses, and early succes-

sional vegetation treatments. At ARL, there was winter kill of

giant miscanthus in 2008/2009, and it was not replanted until

2010. In addition, at KBS, switchgrass, native grasses, and

restored prairie all experienced crop failure in 2008 due to

heavy rains and were replanted in 2009. As a result, these

crops have fewer years of data.

Simulation of the probability of winterkill was conducted for

giant miscanthus, based on evidence of plant mortality when

soil temperatures at a depth of 10 cm fall below �3.5 degrees

C. for a duration of three or more days (Kucharik et al., 2013).

Soil temperature data from the University of Wisconsin Exten-

sion Ag Weather network spanning 20 years (August 1994-June

2014) revealed that 9 of 20 years exceeded that threshold at

ARL, for a 45% chance of rhizome winterkill. Soil temperature

data from KBS were not available; instead, data from Michigan

State University’s Enviroweather series collected in East Lans-

ing between January 1996 and December 2014 were used.

Because average soil temperature at 10 cm was not available,

the 10 cm minimum and maximum temperatures were

averaged and 3-day running means were calculated. Two of

nineteen years of data (including 1996) saw soil temperatures

fell below the �3.5 degree threshold, for a 10.5% probability of

winterkill at KBS.

Data from the two sites were used to estimate the trajectory

of biomass yield over the first 6 years, using a set of theoreti-

cally consistent functional forms. The functions evaluated

included Spillman and Mitscherlich, as both increase to a

plateau or upper asymptote, as well as linear and step-to-

plateau functions. The Mitscherlich function and simpler linear

functions performed well for crops that take time to reach

mature yields such as switchgrass, giant miscanthus, and

native grasses. For the crop yield trajectories that were

modeled using the Mitscherlich function, coefficients were

estimated using nonlinear least squares. Table 1 shows the

functional forms and parameter estimates for yield trajectories

of perennial crops at ARL and KBS. The Mitscherlich function

has a marginal product that is unrestricted but nonswitching in

sign, the linear function has a marginal product that is unre-

stricted in sign but constant in value. For further background,

Griffin et al. (1987) review the properties of these functional

forms and their optimality conditions. For these crops that

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 1162–1177
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exhibited time-to-maturity risk, that risk was simulated using

random slope coefficients, where the coefficients were drawn

from normal distributions with mean at the estimated parame-

ter and standard deviation equal to the estimated coefficient

standard error. For early successional vegetation and restored

prairie, yields showed no trend over time, so mean values

suffice. Choices of functional form were based chiefly on theo-

retical consistency and supported by Davidson–MacKinnon

tests (this test is not valid when comparing linear functions vs.

mean values because of collinearity). Although linear yield

functions fail to exhibit the expected diminishing marginal pro-

duct over time, these functions were selected as the best fit for

the native grasses, and they are acceptable for simulations that

are limit to a 6-year time horizon.

In addition to time to maturity risk, yields were assumed to

have an additive random error to account for yearly fluctua-

tions on yield. Table 2 presents the probability distributions of

random additive annual yield disturbance terms that were

drawn from continuous distributions fitted from regression

residuals using the @Risk add-in to Microsoft Excel.

To abstract from current market conditions, biomass prices

were drawn at random from stochastic simulations of corn and

warm season grass prices projected to 2018 that were prepared

for the March 2014 outlook report by Food and Agricultural

Policy Research Institute at University of Missouri (FAPRI-MO)

(Personal communication by Wyatt Thompson to Scott Swinton

by email, Dec. 13, 2014).

The stochastic budgeting model was programmed in

Microsoft Excel and simulated using @Risk. Latin hypercube

sampling with a sample size of 1000 was used to estimate the

distribution of the stochastic variables for each risky invest-

ment.

The flowchart of the steps performed in implementing the

stochastic capital budgeting analysis appears in Fig. 2. The

stochastic simulation cycles differed between corn, an annual,

and the five perennial bioenergy crops. As shown on the left

side of Fig. 2, each 6-year corn simulation cycle begins with

drawing six corn grain prices and six biomass prices. For each

Table 1 Yield trajectories of perennial crops at ARL and KBS: functional forms and parameter estimates (explanatory variable

t = 0–5 is years since planting)

Crop (location) Functional form Maximum (a) Slope (b, m) Intercept (b) Mean (a)

Switchgrass (ARL) Mitscherlich

y = a(1-exp(�bt))
9.0392*** (.7983) 0.4521*** (0.0923) n/a n/a

Switchgrass (KBS) Linear

y = 0 if t = 0 y = mt + b if t > 0

n/a 1.6358*** (0.3018) 3.5848*** (0.5647) n/a

Giant miscanthus (ARL) Mitscherlich

y = a(1-exp(�bt))

15.0085*** (2.7872) 0.8912* (0.4503) n/a n/a

Giant miscanthus (KBS) Mitscherlich†

y = a(1-exp(�bt))
28.8517* (14.2383) 0.2182** (0.1661) n/a n/a

Native grasses (ARL) Linear

y = 0 if t = 0 y = mt + b if t > 0

n/a 0.3300* (0.1710) 4.4244*** (0.4189) n/a

Native grasses (KBS) Linear

y = 0 if t = 0 y = mt + b if t > 0

n/a 0.7876* (0.4311) 3.2506*** (0.8065) n/a

Early successional (ARL) Mean value

y = a

n/a n/a n/a 2.9843

Early successional (KBS) Mean value

y = a

n/a n/a n/a 2.365

Restored prairie (KBS) Step to mean value

y = 0 if t = 0 y = a if t > 0

n/a n/a n/a 2.8925

Restored prairie (ARL) Step to mean value

y = 0 if t = 0 y = a if t > 0

n/a n/a n/a 4.1296

Note: Numbers in parenthesis are standard errors of parameter estimates. ***Significant at 1% level, **significant at 5% level, *signifi-

cant at 10% level.

†Davidson–MacKinnon test was inconclusive.

Table 2 Probability distributions of additive random annual

crop biomass yield disturbance terms that were drawn using

@Risk

Crop Site Distribution

Giant miscanthus ARL Logistic (�0.1015, 1.8406)

KBS Normal (0.0702, 4.8657)

Switchgrass ARL Logistic (0.0212, 0.4584)

KBS ExtValueMin (0.7540, 1.2934)

Restored prairie ARL Weibull (2.8858, 4.4978) �4.0046*

KBS ExtValue (�0.5164, 0.9432)

Native Grasses ARL ExtValue (�0.5765, 0.9889)

KBS ExtValueMin (1.0837, 1.8946)

Early successional ARL Weibull (1.8545, 2.4424) �2.1731*

KBS ExtValueMin (0.5234, 0.9372)

*Weibull distribution shifted down by value of this constant

(RiskShift parameter in @Risk).
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year (1–6), the model first draws biomass and grain yields; then

with random price and production cost, it calculates annual

cash flow. After 6 years, it calculates the NPV for that period.

The simulation cycle is repeated 1000 times. The simulation

process for perennial bioenergy crops appears on the right side

of Fig. 2. Each 6-year simulation cycle begins with drawing

random biomass prices and coefficients for the random param-

eters yield function. If the crop fails in Year 1, it is replanted. If

it survives, the biomass yield for that year is computed from

the yield function plus an additive random error. Annual cash

flow is the product of random biomass price and the computed

yield, minus expected production cost. As with the corn model,

NPV is calculated after 6 years. Upon completion of the 1000

simulation runs, cumulative distributions are constructed by

ordering outcomes from smallest to largest.

Comparison of the alternative bioenergy crop NPV cumula-

tive distributions for decision-makers who may be risk averse

is performed using stochastic dominance criteria. These criteria

allow ranking of investment prospects by comparing the

empirical distributions of investment returns without requiring

explicit knowledge of individual risk preferences. Common

stochastic dominance criteria are first-degree (FSD) and sec-

ond-degree stochastic dominance (SSD). FSD requires only the

assumption that the decision-maker prefers higher returns to

lower returns, and it covers all risk preferences. SSD requires

the added assumption that the decision-maker is risk averse, so

it omits risk-preferring individuals. Both approaches involve

pairwise comparison of the cumulative distribution functions

(CDF) of NPVs from alternative investment options. When FSD

and SSD cannot identify preferred alternatives, an approach

with more restrictive assumptions but stronger discriminating

power is stochastic efficiency with respect to a function (SERF)

(Hardaker et al., 2006). Under the assumption that a decision-

maker’s risk preferences are known (as CARA with assumed

coefficients, in this case), certainty equivalent (CE) values can

be calculated as the monetary value that would leave the deci-

sion-maker indifferent between receiving the CE and the entire

CDF from the risky investment. SERF ranks a set of risky alter-

natives in terms of CEs. Following Pratt (1964), we use the neg-

ative exponential constant absolute risk aversion (CARA)

utility function: UCARA(G) = � e�kG. Using this function, the

CE is computed as follows:

CECARAðG; kÞ ¼ � ln � 1

n

Xn
i

e�kG

 !�
k ð7Þ

The CE represents the amount of money a decision-maker

would require to be indifferent between receiving that amount

for certain and receiving a potential result from the risky

investment. When using agronomic experimental data, CARA

is an appropriate utility function because there is no need to

Fig. 2 Flowchart of stochastic simulation of 6-year net present values of investment returns.
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account for heterogeneity in decision-maker wealth levels.

Following King & Robison (1981) and Cochran et al. (1985), the

risk aversion coefficients used in this analysis range from 0

(risk neutral) to 0.001 (highly risk averse).

Data

The analyses reported here draw bioenergy crop management

practices and yields from the 6-year period 2008–2013 from the

Great Lakes Bioenergy Research Center (GLBRC) Biofuel Crop-

ping System Experiment established at the Kellogg Biological

Station (KBS) at Hickory corners, MI, and at the Arlington

(ARL) Agricultural Research Station in Arlington, WI (see

details at http://data.sustainability.glbrc.org/pages/1.html,

and in Sanford et al., 2016). The cropping system treatments dis-

cussed here include corn (with stover removal), giant miscant-

hus, switchgrass (Cave-in-Rock variety), native grasses, restored

prairie, and early successional. Yield data and output prices are

presented in Table 3. For the breakeven investment analysis,

2018 FAPRI price forecasts for corn are used, while cellulosic

feedstock price is assumed to be $50 mg�1. At $159 Mg�1

(=$4 �1), the simulated mean corn grain price is lower than the

observed price during 2008–2013 ($196 Mg�1 (=$5 bu�1)

(National Agricultural Statistics Service). The $159 price was

chosen for this analysis because 1) the observed price is an his-

toric high that appears not to be indicative of likely future val-

ues and 2) using the same price as for the stochastic simulation

analysis later in the paper allows direct comparison of results.

The cellulosic feedstock price was selected because it is close to

the rounded average of the 2018 Food and Agricultural Policy

Research Institute (FAPRI) price forecasts for warm season grass

(i.e., $50.79 mg�1) and the Michigan State University T.B. Simon

power plant energy biomass purchases (of switchgrass and

restored prairie) from GLBRC in 2013 (i.e., $51.14 Mg�1).

The Simon power plant payments are meaningful, because

they are based on the energy equivalent of coal, and thus

indicative of what commercial power plants would pay for

delivered biomass for co-firing with coal. For the stochastic

capital budgeting, 2018 FAPRI price forecasts for corn and

warm season grass were used. These prices are calculated from

500 simulated iterations. The average FAPRI price for corn and

warm season grass was $159 Mg�1 (i.e., $4 bu�1) and

$51 Mg�1, respectively. Tables 1 and 2 in the appendix present

the costs of the main inputs used in crop production for each

cropping system and location. These costs include planting

materials, agrochemicals, machinery–labor, and postharvest.

Input cost data come from secondary sources, and when there

was a lack of cost data for Wisconsin or Michigan, cost data

from neighboring states were used. The input cost data used in

the current study represent 2008–2013 production conditions in

the southern Great Lakes region.

Results

Profitability by cropping system at 2008–2013 prices and
yields

The mean profitability of the bioenergy cropping sys-

tems at KBS in southwest Michigan and ARL in south-

central Wisconsin is presented as annualized NPV in

Figs 3 and 4. In both locations, the profitability of corn

far exceeded that of any of the perennial crop systems

for two primary reasons. First, corn revenues benefit

from two components: the valuable grain product plus

the less valuable cellulosic biomass product. Second,

predicted corn prices at $4 bushel�1 are strong com-

pared to historic levels, despite being below the high

levels of 2008–2013. Although agrochemicals are more

costly in corn than any of the other cropping systems,

revenues offset those costs. By contrast, the high cost of

giant miscanthus planting material (rhizomes) is not

fully compensated at current prices, despite the high

biomass yield of giant miscanthus. Due to better soils at

ARL than KBS, all crops except giant miscanthus

yielded better at ARL. However, the relative benefit of

good soils was greater for corn yield than for the

biomass yield of giant miscanthus, switchgrass, and

early successional vegetation—indicating that lower

Table 3 Crop yields and prices in the southern Great Lakes

area in 2008–2013 (basis for comparative breakeven investment

analysis)

Crop Location

Yield*

(Mg ha�1)
Output price†

($ Mg�1)Mean SD

Corn grain ARL 12.65 1.61 159

KBS 9.82 3.19

Corn stover ARL 5.88 1.40 50

KBS 2.62 1.58

Switchgrass ARL 4.88 3.21 50

KBS 4.08 3.46

Giant miscanthus ARL 5.93 6.75 50

KBS 11.02 8.16

Native grasses ARL 4.24 2.30 50

KBS 2.95 2.93

Early successional ARL 2.99 1.23 50

KBS 2.37 1.10

Restored prairie ARL 3.44 2.11 50

KBS 1.89 1.61

*Yield data are from field trials at the Great Lakes Bioenergy

Research Center (GLBRC), intensive research sites at the

University of Wisconsin agronomic research station at Arling-

ton (ARL) in south-central Wisconsin and at the Kellogg Bio-

logical Station (KBS) in Hickory Corners, Southwest Michigan.

†Corn grain price is the average (FAPRI) 2018 price forecast for

corn. The respective corn grain price in $ bu�1 is 4. The bio-

mass price is derived from rounding to the nearest $5 Mg�1

both the average (FAPRI) 2018 price forecast for dry biomass

from warm season grass and the Michigan State University

T.B. Simon power plant purchases of switchgrass and restored

prairie biomass from GLBRC in 2013 (based on coal-equivalent

BTU content).
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productivity at KBS is less pronounced for bioenergy

perennial crops than for corn. The following breakeven

analysis examines just how close each site and cropping

system comes to matching the profitability of corn.

Comparative breakeven prices

Breakeven prices for cellulosic biomass refer to prices

that producers of continuous corn must receive in order

Fig. 3 Revenues and production costs (annualized NPV in $ ha�1) of biomass crops, ARL, WI.

Fig. 4 Revenues and production costs (annualized NPV in $ ha�1) of biomass crops, KBS, MI.
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to earn equal profit from a cellulosic perennial crop.

Table 4 presents comparative breakeven prices for each

cropping system assuming a corn grain price of

$159 Mg�1 ($4 bu�1). The giant miscanthus figures are

underestimates, because they ignore the risk of win-

terkill. Even so, no system can break even at ARL

because the mean corn stover yield there exceeds the

mean biomass yield of any of the perennial bioenergy

crops. At KBS, however, corn stover yields are lower,

and three perennial bioenergy crops have the potential

to break even at a sufficiently high biomass price. Giant

miscanthus, the crop with highest biomass yield, could

match the profitability of corn at a biomass price of

$203 Mg�1. Switchgrass would require $642 Mg�1,

while the native grasses would require the price of a

new, small car for each ton of biomass, because their

mean yield barely exceeded that of corn stover.

Restored prairie and early successional vegetation at

KBS produce less biomass than corn stover and so can-

not break even at any biomass price.

Comparative breakeven yields

Table 4 also presents comparative breakeven yields for

each cropping system at the ARL and KBS sites, assum-

ing a biomass price of $50 Mg�1. Breakeven yield shows

the minimum yield required for a producer to earn

equal profit to corn. Breakeven yields for all crops are

higher at ARL compared to KBS, due to higher yields of

the corn system at ARL. The crop with the lowest break-

even yield at ARL is early successional vegetation,

which has the lowest costs—just the cost of fertilization

and biomass harvest. Next lowest are the native grasses,

restored prairie, and switchgrass. At KBS, switchgrass

has the lowest breakeven yield, followed by early

successional vegetation, native grasses, and restored

prairie. Comparing current yields (Table 3) and breake-

ven yields (Table 4), at the corn and biomass prices

assumed, nearly all of the perennial bioenergy crops

would require a tenfold yield boost to break even with

corn. However, the magnitude of yield gains needed is

much smaller at KBS than at ARL, due to the lower pro-

ductivity of the corn reference system and the relatively

better yields of switchgrass and giant miscanthus at the

KBS site.

BCAP and insurance premium results

The USDA Biomass Crop Assistance Program (BCAP) is

a current policy designed to enhance the profitability of

dedicated bioenergy crops. Figures 5 and 6 compare the

profitability of the bioenergy cropping systems at ARL

and KBS under no BCAP financial assistance and under

four different BCAP scenarios: matching payments for

biomass at time of sale, annual rental payments, estab-

lishment cost share payments, and all three combined.

An important observation is that BCAP payments cannot

bridge the profitability gap between corn and bioenergy

perennials. However, in the ‘all BCAP payments’ com-

bined scenario, the profitability of most bioenergy peren-

nials turned from negative to positive. This was the case

for all bioenergy perennials except giant miscanthus in

both locations. In two cases (early successional vegeta-

tion at KBS and switchgrass and early successional vege-

tation at ARL), individual BCAP payments such as

annual rental and matching payments could also reverse

the expectation of negative profitability.

Crop revenue insurance offers another potential

means to avert negative profitability. Table 5 presents

insurance premiums needed to insure against NPV fall-

ing below zero. Premiums are very low (i.e., $1–2 ha�1)

only in the instances where among the 1000 simulations,

the NPV rarely failed to be positive. That occurred only

for corn at ARL and corn and switchgrass at KBS. Insur-

ance premiums are higher at ARL for all crops except

restored prairie; four bioenergy crops there frequently

generated negative annualized NPVs, including giant

miscanthus (100% of cases), switchgrass (98%), native

grasses (88%), and early successional vegetation (75%).

At KBS, only giant miscanthus (98% of cases) and

restored prairie (99% of cases) generated negative annu-

alized NPVs most of the time.

Stochastic simulation results

Up to this point, all results have been based on mean

values, ignoring production and price risk. Summary

statistics from the 1000 stochastic simulations of the six

Table 4 Comparative breakeven prices ($ Mg�1), and yields

(Mg ha�1) of biomass feedstocks with respect to a corn grain

price of $4.00 bu�1 ($159 Mg�1), and biomass price of

$50 Mg�1 at ARL and KBS sites

Crop

Breakeven

prices ($ Mg�1)

Breakeven

yields

(Mg ha�1)

Breakeven

yield as

percent of

current

yield (%)

ARL KBS ARL KBS ARL KBS

Switchgrass N/A* $642 56 19 1050 362

Giant miscanthus N/A $203 104 67 1654 510

Native grasses N/A $15 482 52 32 1119 989

Restored prairie N/A N/A 55 33 1513 1633

Early successional N/A N/A 51 23 1626 882

*N/A denotes that the cropping system cannot break even

since it does not produce as much biomass as corn stover.
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bioenergy crops at KBS and ARL are presented in

Table 6. Corn stands out as having the highest mean

profit, as measured by annualized NPV; it also had the

highest maximum at both sites. However, corn presents

a high standard deviation, and its minimum values are

lower than several perennial bioenergy cropping

systems. Giant miscanthus did poorly at both sites

because of winter kill. Over the 20-year simulation per-

iod, giant miscanthus had a 45% chance of winter kill at

ARL and a 10.5% chance at KBS.

First- and second-degree stochastic dominance identi-

fied certain systems as relatively efficient in the sense

Fig. 5 BCAP scenarios: Annualized NPVs, ARL, WI.

Fig. 6 BCAP scenarios: Annualized NPVs, KBS, MI.

Table 5 Insurance premiums (in $ ha�1) that would support a policy that would pay off whenever the zero threshold (in net

returns) is met

Giant miscanthus Switchgrass Native grasses Restored prairie Early successional Corn

ARL 1032 83 45 18 49 2

KBS 626 2 42 136 32 1
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that they were not dominated by any other cropping

system at their site. Corn appeared in the efficient set at

both sites, joined by native grasses and early succes-

sional vegetation at ARL and by switchgrass at KBS.

Giant miscanthus was dominated by all other crops

under one criterion or the other. At ARL it did so

poorly that it lost money even in its best iteration. Con-

sequently, it was strictly dominated under FSD by all of

the other crop systems at ARL. At KBS, giant miscant-

hus was dominated under FSD by switchgrass, and corn

and under SSD by restored prairie, native grasses, and

early successional. The restored prairie treatment also

fared poorly, being dominated at KBS under FSD by

switchgrass, native grasses, early successional vegeta-

tion and corn, as well as dominated at ARL under SSD

by corn. The remaining perennial bioenergy crops

differed in their stochastic dominance results between

the two sites. Although switchgrass was in the efficient

set at KBS, at ARL it was dominated under FSD by

native grasses and early successional. The early succes-

sional vegetation and native grass treatments that were

in the efficient set at ARL were dominated at KBS under

FSD by switchgrass (the FSD and SSD results are not

reported in full detail in this paper, but can be provided

by the authors upon request).

Although corn was accompanied in the FSD and SSD

risk efficient sets by switchgrass at KBS and by native

grasses and early successional vegetation at ARL, corn

was the more profitable system under all but the very

worst outcomes simulated. At ARL, corn was more

profitable than native grasses and early successional

vegetation in over 99.5% of the outcomes. Likewise at

KBS, corn was more profitable than switchgrass 95% of

the time. Only when the higher cost corn crop failed

repeatedly, did it fail to come out ahead of its closest

competitors.

Because more than one cropping system remained in

the risk efficient sets at each site under FSD and SSD,

SERF was used to rank the full set of bioenergy invest-

ment projects at each site. Certainty equivalent (CE) val-

ues for corn and perennial crops are presented for the

range of CARA levels from 0 (risk neutral) to 0.001

(highly risk averse) in Figs 7 and 8. At CARA=0, the

CEs equal the mean expected annualized NPV. The CEs

decline as risk aversion increases (i.e., as CARA values

become larger). In both locations, the locus of CE values

for corn is higher everywhere than that for all bioenergy

perennials, indicating that producers who are both risk

neutral and risk averse over a very wide range of risk

aversion would prefer corn to bioenergy perennials. The

next best alternative investment is restored prairie in

ARL or switchgrass in KBS, but the differences between

perennial crops (except giant miscanthus) are very

small.

On comparing the capital budgeting (i.e., risk neutral

case) and the stochastic budgeting (i.e., risky case)

results, we see both similarities and differences in the

ranking of risky bioenergy investment projects. Corn is

the preferred crop in both the risk neutral and the risky

cases and at both locations. The difference between corn

and bioenergy perennials is consistently higher at ARL

than at KBS, which is attributable to more fertile soils in

the former that result in higher corn yields at ARL. The

most prominent difference when comparing the results

of the risk neutral and the risky case is the change in

the ranking of bioenergy perennials (e.g., early succes-

sional vegetation ranks second in the risk neutral case

in ARL, but when it comes to the risky case, it takes the

third place). Small differences in the profitability of

most bioenergy perennials (except giant miscanthus)

and the fact that stochastic simulation covers a wide

range of states of nature may explain ordering changes

when moving from the risk neutral to the risky case.

Discussion

This paper supplements standard capital budgeting and

comparative breakeven analysis with stochastic simula-

tion to assess the competiveness of bioenergy perennials

relative to corn with grain and stover removal. Using

data from 2008 to 2013 from two sites in the Great Lakes

Region at Arlington, WI, and Kellogg Biological Station

(KBS) at Hickory Corners, MI, we simulate four stochas-

tic variables that affect investment returns to bioenergy

Table 6 Stochastic annualized NPVs of bioenergy crops at ARL and KBS sites, 1000 simulation iterations (in U.S. dollars)

Crop

ARL (Arlington, WI) KBS (Hickory Corners, MI)

Mean SD Median Min Max Mean SD Median Min Max

Corn 943 439 932 �265 2527 328 168 319 �136 830

Switchgrass �83 40 �81 �199 34 99 66 98 �113 304

Giant miscanthus �830 145 �821 �1175 �361 �623 272 �670 �1148 311

Native grasses �43 39 �40 �153 112 �14 85 �21 �206 276

Restored prairie 94 135 86 �278 503 �136 49 �138 �249 47

Early successional �39 61 �43 �183 215 �16 55 �23 �130 171
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crops: crop failure risk, time to maturity risk, variability

in mature yields, and price risk.

The standard, average capital budgeting analyses

show that the profitability of corn dominates all other

cropping systems at both sites. Corn’s dominance comes

from 1) providing income from both grain and cellulosic

biomass, and 2) its consistently strong yields as an

annual crop (unlike the slow buildup of the perennial

crops). Although BCAP payments can reduce profitabil-

ity losses from adopting perennial bioenergy crops, they

are not sufficient to bridge the profitability gap with

corn. Future research could seek to assess how much

Fig. 8 Certainty equivalents for decision-makers who are risk neutral to highly risk averse with constant absolute risk aversion:

stochastic efficiency with respect to a function (SERF) comparison of results from 1000 stochastic simulations of annualized net

returns from bioenergy investment projects at Kellogg Biological Station (KBS), MI.

Fig. 7 Certainty equivalents for decision-makers who are risk neutral to highly risk averse with constant absolute risk aversion:

stochastic efficiency with respect to a function (SERF) comparison of results from 1000 stochastic simulations of annualized net

returns from bioenergy investment projects at Arlington, WI.
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the gap could be narrowed using policies that provide

farmers with payments for ecosystem benefits related to

perennials.

The comparative breakeven price analysis shows that

corn stover yields are so high at ARL that there is no

biomass price at which perennial bioenergy crops can

match the profitability of corn. Meanwhile, on the

poorer soils of KBS, switchgrass, giant miscanthus, and

native grasses require very high prices to break even

when the price of corn is $4 per bushel. Of the KBS

bioenergy crops, giant miscanthus has the lowest break-

even price. This result is in line with previous literature

that computes breakeven prices for switchgrass and

miscanthus in Ontario (DeLaporte et al., 2014), the

Midwestern United States (Jain et al., 2010), southern

Michigan (James et al., 2010), and Illinois (Khanna et al.,

2008). However, the breakeven prices for giant miscant-

hus and switchgrass in the current study are higher

than those observed elsewhere. The differences may be

due to the use of secondary yield and production cost

data in those studies vs. primary data in this study. The

comparative breakeven yield results find that perennial

bioenergy crops require tenfold yield gains at ARL to

generate net revenue equal to corn at the prices

assumed, with levels at KBS also very high at three- to

fivefold gains needed for switchgrass and giant miscant-

hus. All values are higher than the significant increases

needed that were predicted by James et al. (2010) for

southern Michigan. Both the comparative breakeven

price and yield analyses demonstrate that although

most perennial bioenergy crops are far from achieving

average profitability comparable to corn at either site,

the potential for bioenergy crops eventually to compete

with corn is greater at KBS, where corn productivity is

lower.

Results of the investment risk analysis were largely

similar. Stochastic efficiency analysis of the investment

returns shows annual corn to be an even more resilient

benchmark than prior profitability studies that ignored

risks of establishment failure and time to maturity of

perennial bioenergy crops. Corn was the only crop in

the risk efficient set under FSD and SSD at both sites.

Under the SERF analysis, corn dominated all other

systems over the entire range of risk aversion levels

simulated at both locations. No other system came close

at ARL in Wisconsin. At KBS in Michigan, switchgrass

came second—within competitive range at the

$50 Mg�1 biomass price if corn grain prices were to fall

to by more than half to the $2 per bushel levels of the

1990s and early 2000s. Among the bioenergy perennials,

only switchgrass generated positive profits at KBS most

of the time (94%). In ARL, apart from corn, only

restored prairie generated positive net returns most of

the time (73% of cases).

Although earlier studies found that giant miscanthus

performs better than other bioenergy perennials (Clancy

et al., 2012; Dolginow et al., 2014), we find that in the

U.S. Great Lakes region, it has an extremely high proba-

bility of generating negative investment returns. Our

more negative results were driven by high current

rhizome costs and the high probability of winter kill in

the establishment year in ARL (45%) and lower but still

notable probability of winter kill at KBS (10.5%).

In the absence of changes in agronomic technology or

market prices, the pattern of low investment returns

from perennial bioenergy crops implies a need for large

subsidies to make perennial bioenergy crops equally

attractive with corn, with mean differences ranging

from $75–385 per acre at KBS to $343–717 per acre at

ARL. The bioenergy crops with the lowest subsidy

requirements were switchgrass at KBS and restored

prairie at ARL. One factor mitigating the cost of poten-

tial subsidies required is that the variance of investment

returns for bioenergy perennials is lower than for corn

(except for giant miscanthus in ARL). Another measure

that can increase the attractiveness of bioenergy peren-

nials is BCAP payments. Although these payments

cannot make bioenergy perennials equally attractive to

corn, they can reduce expected losses and (except for

giant miscanthus) the probability of a negative invest-

ment return.

Overall, the results indicate that these perennial

bioenergy crops are currently both less profitable and

riskier than corn for farmers in the Great Lakes region.

However, the lower corn yields on poorer soils at KBS

reduce the revenue gap between corn and most bioen-

ergy perennials, compared to the gap at ARL, where

soils are highly productive. Like Miao & Khanna (2014),

we find that while bioenergy crops remain significantly

poorer investments than corn, their lower opportunity

cost under more marginal crop production conditions

indicates the potential for regional comparative advan-

tages at more marginally productive sites if relative

prices, technological change, or policy advantages were

to favor perennial bioenergy crops. The ranking of

biomass investment projects presented here offers infor-

mation on the comparative riskiness of bioenergy

investment projects in the southern Great Lakes region.

Future research could apply this modeling approach to

assess the comparative riskiness of bioenergy crops in

other regions, where climatic and soil conditions may

have different effects on crop establishment risk and the

temporal distribution of crop yields.
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