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Abstract: Colonization of the rhizoplane habitat is an important activity that enables certain 
microorganisms to promote plant growth. Here we describe various types of computer-assisted 
microscopy that reveal important ecological insights of early microbial colonization behavior within 
biofilms on plant root surfaces grown in soil. Examples of the primary data are obtained by analysis 
of processed images of rhizoplane biofilm landscapes analyzed at single-cell resolution using the 
emerging technology of CMEIAS bioimage informatics software. Included are various quantitative 
analyses of the in situ biofilm landscape ecology of microbes during their pioneer colonization of 
white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots where it significantly 
enhances the productivity of this important crop plant. The results show that spatial patterns of 
immature biofilms developed on rhizoplanes that interface rhizosphere soil are highly structured 
(rather than distributed randomly) when analyzed at the appropriate spatial scale, indicating that 
regionalized microbial cell-cell interactions and the local environment can significantly affect their 
cooperative and competitive colonization behaviors. 

Keywords: bioimage informatics; CMEIAS; colonization behavior; computer-assisted microscopy; 
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1. Introduction 

In contrast to the predominantly oligotrophic status of bulk soil, the rhizosphere soil 
surrounding roots and their rhizoplane epidermal surfaces are nutritionally enriched habitats 
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supported by exudation of plant photosynthates, resulting in biofilm colonization by zymogenous 
microorganisms that in turn, can significantly influence plant nutrition, health and disease, and 
therefore are important for sustainability of natural terrestrial ecosystems and agriculture [1]. 

Microscopy is the most direct way to examine microbial colonization of rhizoplane surfaces, but 
most often, that approach is only addressed qualitatively by presentation of “representative” 
micrographs of that landscape domain. The colonization intensity of the rhizoplane biofilm does not 
typically develop into a mature, confluent layer of microorganisms. Instead, its distribution of 
microcolony biofilms is discontinuous and spatially discrete, with an immature substratum coverage 
not typically exceeding 20% while the plant is still actively growing. 

We have been developing a comprehensive suite of scientific software named Center for 
Microbial Ecology Image Analysis System (CMEIAS) to strengthen microscopy-based approaches 
that support microbial ecology research. Advancement of this emerging technology of bioimage 
informatics is driven by the need to fill major gaps using quantitative computational techniques to 
analyze microbes at spatial scales directly relevant to their ecophysiology, and obtain useful 
knowledge of their ecology in situ without cultivation. When fully developed and documented, each 
of these software applications is released for free download at our project website [2]. One of the 
CMEIAS modules features quantitative tools to analyze the landscape ecology of microorganisms 
during their growth within biofilms on biological and non-biological surfaces. Here we describe 
examples of bioimage informatics obtained by CMEIAS computer-assisted microscopy and digital 
image analysis of processed rhizoplane landscapes after their short-term growth in soil. These data 
reveal important insights of the in situ abundance and intensity of cell-cell interactions of 
microorganisms during their pioneer colonization of white clover seedling roots, and of a rhizobial 
biofertilizer strain on rice roots that significantly enhances the productivity of this major cereal crop. 

2. Materials and Methods 

2.1. Pioneer colonization of rhizoplane biofilms 

White clover (Trifolium repens L. var. Dutch) seeds were planted 0.5 cm below the surface of a 
moistened sandy loam soil located at the Long-Term Ecological Research farm at the Michigan State 
University Kellogg Biological Station. Two day old seedlings were gently excavated and processed 
using an optimized protocol to dislodge rhizosphere soil from roots without obvious damage to the 
root hairs so that > 80% of the rhizoplane can be visualized by microscopy [3]. Processed seedling 
roots were stained with acridine orange (AO, 1:10,000 in 1% sodium pyrophosphate, NaPPi) for 1 
minute, then washed with NaPPi, transferred to slides, mounted in 1:1 v:v NaPPi solution plus 
Vectashield photobleaching retardant, covered with a coverslip and examined by laser scanning 
confocal microscopy [4] (Meridian Instruments InFight microscope, 63x objective [1.6 NA], argon 
laser, 488 nm excitation/500–530 emission). Microbial biovolume was calculated using the CMEIAS 
Formula #2 with 98.4% accuracy [5], and their biomass carbon was calculated by the allometric 
scaling conversion of microbial biovolume (µm3) to biomass C (fg) using the formula: 218 × 
biovolume0.86 [5,6]. 
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2.2. Colonization of rice rhizoplanes by a rhizobial biofertilizer strain 

Rice (Oryza sativa) variety Giza 177 seeds were germinated and grown for 20 days in a clay 
loam soil (pH 7.29, 2.31% organic matter, 53.47 meq/100 g cation exchange capacity, 
43.8:10.74:487.05 N: P:K) used for rice cultivation in the Kafr El-Sheikh governorate within the 
Egypt Nile delta. Washed roots were examined by indirect immunofluorescence microscopy using an 
antiserum specific for Rhizobium leguminosarum bv. trifolii strain E11 [7,8], and images were 
acquired by epifluorescence photomicrography (Ilford XP2 400 color film). This strain was isolated 
from surface-sterilized roots of rice grown in the Nile delta and is a biofertilizer inoculant that 
promotes rice growth and grain production under agronomic field conditions [9–11]. The local 
density of individual, brightly immunofluorescent cells was assessed within 30–35 quadrat transects 
(each microscope field was 440 μm in length) along the elongating axis of the replicated seedling 
rootlets. 

2.3. Image analysis and statistics 

Images were segmented, thresholded and analyzed using CMEIAS software [5,8,12–16]. 
Extracted data were statistically analyzed using EcoStat [17], Ecological Methodology [18],   
PAST [19], StatistiXL [20] and GS+ [21] software. 

3. Results and Discussion 

3.1. Pioneer rhizobacterial colonization 

Figure 1A is an 8-bit grayscale image of a confocal optisectioned landscape area of the white 
clover rhizoplane after 2 days of growth in soil, with resolution of individual, AO-stained fluorescent 
bacteria. Figure 1B is its accurately segmented, thresholded derivative that was analyzed by various 
CMEIAS attributes of microbial abundance and spatial pattern of their distribution to obtain the data 
providing insights on their colonization behavior within the rhizoplane biofilm. 

Various CMEIAS-extracted metrics that indicate the spatial abundance of all 135 fluorescent 
bacteria in Figure 1 are provided in Table 1. The magnitude of these metric values can be used to 
compare the size of the standing crop of microbial populations and communities in situ within 
biofilm landscapes [5,22,23]. They also provide significant insights on several ecologically relevant 
activities that drive biological diversity, including cell-cell interactions impacting on their 
colonization behavior, allometric scaling relationships between individual body size and metabolic 
activities, recent status of nutrient resource concentrations / apportionment / acquisition efficiency, 
intensity of predator-prey interactions, coexistence among neighbors competing for the same limited 
resources, community dominance-rarity relationships, productivity related to food web dynamics, 
and starvation stress physiology [5,16,23–28]. 
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Figure 1. (A) Laser scanning confocal micrograph of an optisectioned rhizoplane 
landscape and associated microbial biofilm developed on a white clover seedling 
root grown in soil. Bar scale is 20.0 µm. (B) Segmented, binary derivative of Figure 
1A that was thresholded to 100 grayscale brightness for image analysis. 

Table 1. Spatial abundance of microorganisms computed by CMEIAS image analysis 
of the immature biofilm developed on the white clover rhizoplane (Figure 1). 

Microbial Abundance Metric Attribute Value 

Image Area Analyzed (μm2) 21,666.7 

Cell Count 135 

Spatial Density (cells/mm2) 6,231 

Cumulative Biovolume (μm 3) 211.1 

Biovolume Intensity (um3 / mm2) 4,573,840.37 

Cumulative Biomass C (ng) 42.22 

Biomass C Intensity (ng C/mm2) 1,948.45 

Cumulative Biosurface Area (μm 2) 1,028.47 

Biosurface Area Intensity (μm 2/mm2) 47,467.12 

Substratum Coverage (%) 1.21 

The dependence of spatially structured heterogeneity on ecosystem function [28] provides the 
impetus to include spatial pattern analysis and landscape ecology in studies of microbial     
biofilms [23,29,30]. In situ spatial pattern analysis of microbes within biofilms reveals statistically 
defendable models indicating that their colonization behavior involves a spatially explicit process 
rather than occur independent of their location in this habitat [23,31]. Spatial dependence is positive 
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when neighboring organisms aggregate due to cooperative interactions promoting their growth, and 
is negative when conflicting/inhibitory interactions result in their uniform, self-avoiding colonization 
behavior [23,31,32]. The protocol to measure these distinctions of spatial proximity typically 
involves a sequence of initial statistical tests of the null hypothesis of complete spatial randomness, 
followed by additional quantitative measures of spatial dispersion/aggregation, and finally by 
powerful geostatistical analyses that model the spatial autocorrelation among neighboring pairs of 
organisms to define the in situ radial distances at which they interact with each other, plus produce 
interpolation maps of the intensities of those measured activities over the entire spatial domain, even 
at locations not sampled [23,29,31]. 

CMEIAS can extract various data from landscape images to perform these 3 major types of 
spatial pattern analyses that distinguish positive (aggregated), random (neutral) and uniform 
(negative) interactions [23,29,31]. The first is a plot-less point pattern analysis of nearest neighboring 
objects derived from measurement of distances between their object centroids. The second performs 
plot-based measurements of spatially explicit characteristics within contiguous quadrats defined by 
an optimized grid-lattice overlay of the landscape image. The third type of analysis explores the 
variation and connectivity in continuously distributed “Z-variate” attributes measured at 
georeferenced X, Y coordinate locations of sampling points within a landscape domain. 

Several point pattern analyses of microbial distribution show a preponderance of aggregated 
spatial patterns and minor proportions of random plus uniform patterns in the rhizoplane biofilm 
landscape (Figure 1A). 87.4% of the 1st vs. 2nd nearest neighbor distances (Figure 2A) for all 135 
microbes in the landscape area form a tight cluster within the 1st quartile of the full range, consistent 
with the majority having a clustered pattern over the entire domain. The empirical cumulative 
distribution function of the ranked plot of the 1st nearest neighbor distances (Figure 2B) is dominated 
by aggregated patterns of cells based on the position of their data points above the diagonal random 
trendline. 

 

Figure 2. Point pattern analyses of pioneer rhizobacterial colonization. (A) 2-d 
scatterplot of 1st vs. 2nd nearest neighbor distances, with % proportions in each 
quartile. (B) Empirical cumulative distribution function of the 1st nearest neighbor 
distance. 
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Ripley’s [33] multi-distance spatial cluster analysis is a useful sequel to the empirical 
cumulative distribution function and tests if the point pattern characteristics change with distance of 
the spatial scale of analysis. It plots the average point density as a function of distance from every 
object centroid within the landscape, indicating if the object at the specified distance is clustered, 
over-dispersed or enclosed within a simulated envelope of random distribution at multiple distances 
[19,33]. The results (Figure 3) indicate multimodal patterns, with 54.6% of the data points indicating 
clustered patterns above the random 95% confidence envelope, 13.1% within the simulated random 
confidence envelope, and 32.3% below the confidence envelope indicating their uniform patterns. 

 

Figure 3. Ripley’s K spatial pattern analysis of the microbes in the rhizoplane 
biofilm landscape image (Figure 1B). Donnelly edge-corrected Ripley’s K (L(d)-d) 
points (black dots) and the simulated 95% confidence envelope of spatial 
randomness (red dots) are indicated. 

 

Figure 4. Smooth 2-d map of the kernel density of pioneer microbes in the 
rhizoplane biofilm landscape. The pseudocolored isopleth scaling identifies the 
clustered cell aggregates by providing an estimate of the number of microbes per 
local neighboring area. 
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Point pattern data can also be evaluated by statistical inference tests for complete spatial 
randomness and by plots that address the local density and directionality of microbial patterns within 
the biofilm landscape. Significant spatial aggregation was indicated by the Holgate’s test with an A 
value of 0.553 (A > 0.5; p < 0.05), and by the Clarke and Evans Z value of −9.22 (Z < 1.96; p <  
2.86 × 10−20). The local positioning of aggregated microbial cells creating microcolony biofilms is 
revealed by a 2-d kernel plot of point density clusters within the biofilm (Figure 4). 

Further point pattern analyses address the angular positioning of these rod-shaped bacteria in 
the rhizoplane biofilm. The circular map (Figure 5A) shows the dominant, near-horizontal (0°) 
angular alignments of the microbial cells’ major axis angle relative to the elongating axis of the 
rhizoplane landscape image. The corresponding Rayleigh’s angular positioning test statistic of 
circular-uniform distribution computes a strong mean resultant vector Z value of 92.0 with an 
associated probability of 8 × 10−10 that this angular alignment is due to chance; therefore it cannot be 
dismissed as trivial or random. Further support of the ecological relevance of a preferential 
alignment of cells is provided by a 2-d directional plot that uses a continuous sector method [34] to 
identify linear point alignments. That plot reveals 33 point alignments that are dominated by 
near-horizontal configuration and whose angular orientations generate 28 intersecting “hot spot” 
epicenters of interpoint interactions (Figure 5B). Detailed inspection of the rhizoplane biofilm 
landscape image (Figure 1) corroborates this in situ colonization behavior by revealing the strong 
congregation of closely neighboring, sessile bacteria whose angular orientation is near-horizontal, 
aligned within the interepidermal grooved junctions of the elongating axis between adjacent 
epidermal cells where roots preferentially exude nutrients. (Note: the Figure 1 image is rotated 90° to 
conveniently fit on the printed page. The above discussion relates to the real vertical orientations of 
the interepidermal junctions of the rhizoplane on the geotropically growing root.) 

 

Figure 5. Angular positioning analyses of individual bacteria within the landscape 
image of the white clover rhizoplane biofilm. (A) Circular map indicating the 
angular orientation of individual bacteria. (B) Linear point alignments of the 
microbial cells showing numerous localized epicenters of clustered colonization 
behavior. 
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The CMEIAS Quadrat Maker is a computing tool designed to alleviate the important but 
cumbersome, time-consuming tasks of optimizing the dimensions of the grid-lattice overlay of 
landscape images and producing the individual quadrat image derivatives for plot-based spatial 
distribution analysis of the landscape domain [14]. These quadrat-based analyses are designed to 
examine how spatial patterns of the organisms of interest vary with the scale at which they are 
measured. Figure 6 shows the graphical user interface of CMEIAS Quadrat Maker, with the 
optimally gridded 7 × 4 index image of the pioneer rhizobacteria on the rhizoplane landscape and 
column-row annotation of the contiguous quadrats that cover the entire spatial domain. Figure 7 is a 
3-d surface plot of the discontinuous distribution of microbial biovolume allocated to each quadrat. 

 

Figure 6. Graphical user interface of the CMEIAS Quadrat Maker software and the 
segmented rhizoplane landscape image of pioneer rhizobacteria (From Figure 1B) 
overlaid with the optimized quadrat grid-lattice raster that is annotated to indicate 
each quadrat’s column-row location. 

Several plot-based metrics use the distribution of cell abundance within the array of quadrat 
counts from the landscape image to compute indices of dispersion that distinguish aggregated vs. 
random vs. uniform spatial pattern distributions. Table 2 presents 3 commonly used spatial pattern 
indices derived from the quadrat-based abundance data of the pioneer rhizoplane biofilm developed 
on the white clover rhizoplane. Each test result indicates that the spatial pattern of distribution for the 
rhizobacteria is aggregated, consistent with the point pattern spatial analyses of the same landscape. 
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Figure 7. 3-dimensional surface plot of the microbial biovolume distribution in the 
grid raster of the rhizoplane biofilm (Figure 6). Quadrats are georeferenced based 
on their object-weighted X, Y Cartesian coordinates relative to the 0, 0 landmark 
origin located at the bottom center corner. 

Table 2. Spatial analysis of cell dispersion based on the abundance of pioneer 
microbial cells in contiguous quadrats of the rhizoplane landscape analyzed by 
CMEIAS. 

Quadrat-Based Index Index Value Spatial Pattern 

V/M Index of Dispersion 4.689 (p = 0.001) aggregated (> 1) 
Morisita Index of Dispersion 1.889 aggregated (> 1) 
Standardized Morisita Index 0.5139 aggregated (> 0) 

The geostatistical method of spatial pattern analysis measures the degree of dependency among 
observations in a geographic space to evaluate the continuity or continuous variation of spatial 
patterns over that entire domain [35]. It quantifies the resemblance between neighbors as a function 
of spatial separation distance [35]. Data are autocorrelated when nearby neighbor pairs are more 
similar than far neighbor pairs, as is the case in aggregated distributions [36]. When found, 
autocorrelation results can be mathematically modeled to connect various spatially dependent 
relationships derived from regionalized variable theory and also make optimal, statistically rigorous 
interpolation (kriging) maps of the parameter at unmeasured locations within that spatial domain, 
based on analysis of its weighted average from neighboring sampled locations [35]. 

We developed a CMEIAS Cluster Index as an ideal geostatistical “Z-variate” metric that sizes 
the intensity of aggregated colonization behavior commonly occurring among neighboring cells 



478 

AIMS Bioengineering                                  Volume 2, Issue 4, 469–486. 

during microbial biofilm development [7,23,29,31]. CMEIAS computes this index as the inverse of 
the separation distance between the object centroid of each bacterial cell and its 1st nearest cell 
neighbor [7]. Figure 8A shows the quartile sample posting of the bin range of the Cluster Index for 
each bacterial cell in situ within the landscape image of the pioneer rhizoplane biofilm. Figure 8B is 
a plot of the Moran’s Intensity index for the spatially autocorrelated Z variate relationship between 
paired observations among neighboring cells in the landscape image. The result indicates both 
positive (cooperative) and negative (conflicting) autocorrelated interactions between neighboring 
cells that affect their aggregation behavior over the 60 µm range of separation distances examined. 
The cumulative sum of Moran’s I value is positive (Figure 8B), indicating that cooperative spatial 
aggregation is the dominant pattern/behavior that exceeds what would be expected if random within 
the examined geographic space, which is consistent with the point pattern and quadrat-based results. 

 

Figure 8. Quartile sample posting (A) and Moran’s Index (B) of the intensity of the 
CMEIAS Cluster Index for the bacteria within the pioneer rhizoplane biofilm. 

At the center of the geostatistical analysis is the semivariogram plot, which defines the extent to 
which the measured Z-variate (e.g., intensity of cell aggregation pattern) exhibits autocorrelated 
spatial dependence between pairs of sampled locations [35]. Geostatistical analysis of the CMEIAS 
cluster index for the microbes in the pioneer rhizoplane biofilm produced the semivariogram 
mathematical model shown in Figure 9. The high coefficient of determination (r2; 0.865) and low 
residual sum of squares (2.397 × 10−4) indicate a good fit of the spherical isotropic variogram model 
to the geostatistical data showing significant spatial autocorrelation of the microbes’ clustered 
colonization behavior. The nugget value (Y intercept of 0.00250 at X = 0 separation distance) 
indicates the very low amount of measured microstructure that is not spatially dependent over the 
separation range examined. Its small value also indicates that the sampling points are sufficient in 
quantity and are sampled at the proper spatial scale for the geostatistical analysis. Also indicated in 
Figure 9 (green arrow) is the effective separation range (the X-axis intercept at 95% of the asymptote 
height). This metric defines the maximal separation distance between sampling points at which the Z 
variate is autocorrelated. In this example, the effective separation range extends out from individual 
cells to a distance of 22.0 μm, representing the in situ, real-world distance at which bacterial cells 
influence their neighbor’s ability to congregate locally within the defined spatial domain. CMEIAS 
object analysis indicates that the furthest 1st nearest neighbor distance for the bacteria in the pioneer 
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biofilm landscape is 4.3 μm, thus they are positioned well within the 22.0 μm effective separation 
range of influence. Also, this distance of interaction is sufficiently extended to include the 
cluster-to-cluster microcolony biofilm interactions in situ. Ecophysiological processes resulting in 
this type of positive autocorrelation would, inter alia, include nutritional cross-feeding, elaboration 
of signal molecules that activate genes positively affecting cell growth into microcolonies, localized 
detoxification/degradation of extracellular metabolic wastes, and refuge from predatory activity [23]. 

 

Figure 9. Geostatistical semivariogram of the spatially autocorrelated Cluster index 
for the pioneer rhizobacteria colonizing the white clover rhizoplane biofilm. 
Effective range is 22.0 µm. 

 

Figure 10. Detection of anisotropy in the spatial pattern of pioneer rhizobacteria 
colonized in the pioneer biofilm on the rhizoplane landscape. (A) Rose plot of 
foreground object mean intercept lengths with an aspect ratio >1.000. (B) 
Semivariograms of cluster index autocorrelation with varying effective ranges 
measured at four different compass directions. 
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Geostatistics can detect patches of organisms whose patterns of distribution have significant 
departure from the null hypothesis of isotropy, and instead have anisotropic spatial autocorrelation in 
patterns of directionally dependent intensities at certain compass directions. This occurs sometimes 
during biofilm formation on rhizoplanes where the bacteria selectively partition into local 
microenvironments favored by increased availability of nutrient resources located between adjacent 
cylindrical epidermal cells oriented parallel to the longitudinal axis of the root as described earlier. A 
few clusters of bacteria have anisotropic alignment in Figure 1 (also see Figure 5). This anisotropy is 
indicated in the rose plot (Figure 10A) where the radial lines of the mean intercept length of 
foreground object pixels vary in length, producing a polygon with aspect ratio greater than 1.000. In 
this case, lines of bacterial cell intercepts have greater lengths in the horizontal orientation, with an 
aspect ratio of 2.232. Geostatistical anisotropy is also indicated when the effective separation range 
changes significantly in semivariograms plotted in different compass directions (Figure 10B). 

 

Figure 11. Three-dimensional kriging map of the spatially autocorrelated, clustered 
colonization behavior of the pioneer rhizobacteria within the rhizoplane biofilm 
landscape of white clover. The Z-variate parameter used in this geostatistical 
analysis is the CMEIAS cluster index. 

After computing the best-fit geostatistical autocorrelation model, a kriging map can be built to 
indicate a continuous interpolation of the spatial variability in intensity of the Z-variate parameter 
within the entire spatial domain, even in areas not physically sampled. The map’s isopleth contour 
lines connect points of equal Z-variate values, and the pseudocolored scale reveals the relative 
gradient of its intensity. The 3-dimensional kriging map of Figure 11 shows the intense peaks and 
valleys of clustered colonization behavior associated with the pioneer rhizobacterial biofilm on the 
clover rhizoplane landscape. Such geostatistical methods have been used in previous CMEIAS-based 
studies that predict the in situ diffusion gradients of extracellular signal molecules that 
influence/mediate these positive, cooperative cell-to-cell interactions within biofilms developed on 
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roots [1,23,29,30]. 
Biofilm landscapes commonly have complex architectures that exhibit self-similar fractal 

geometry when measured at different spatial scales [15,37–39]. Fractal dimension values greater than 
1.000 for this self-similarity metric arise from the scale-dependent heterogeneous fractal variability 
in limiting resource partitioning, and reflect the high efficiency at which organisms cooperatively 
position themselves spatially and physiologically when faced with the interactive forces of 
coexistence to optimize their allocation of nutrient resources on a local scale [40]. Various ecological 
studies suggest that metabolic processes used for growth physiology rely on the hierarchical 
fractal-like nature of resource distribution networks, and that organisms have exploited a fourth 
spatial dimension by evolving hierarchical fractal-like structured spatial distributions designed to 
maximize nutrient resource acquisition and allocation [40–42]. We will soon release CMEIAS JFrad 
software featuring a unique combination of algorithms to compute fractal dimension of foreground 
object coastlines, enabling the user to discriminate the fractal geometry of microbial biofilm 
architectures at both microcolony and single-cell resolutions [15]. JFrad analysis of the rhizoplane 
landscape in Figure 1 indicates that the spatial pattern of the pioneer rhizobacteria has positive fractal 
geometry, with fractal dimensions of 1.104, 1.144, and 1.798 obtained using the computational 
methods of Eucledian distance map, dilation and parallel lines, respectively. 

3.2. Colonization of rice roots by indigenous populations of rhizobia 

We have described a natural, plant growth-promoting association between selected strains of 
Rhizobium leguminosarum bv. trifolii and rice roots, and our translational studies have shown that 
this plant-microbe interaction can be exploited by biofertilization technologies that use selected 
strains to enhance rice production under real-world agroecosystems [9–11,29]. An important 
autecological topic currently under investigation is the extent that the indigenous population of a key 
inoculant strain is able to colonize the rice rhizoplane biofilm while significantly enhancing the 
productivity of this very important cereal crop. Our approach has been to use computer-assisted 
microscopy to quantify the in situ colonization intensity of the rhizobial strain of interest within the 
rhizoplane biofilm developed when the roots are grown in soils used for rice production. 

Figure 12 shows a portion of the rice rhizoplane landscape containing the rhizobial biofertilizer 
strain detected by immunofluorescence microscopy using a strain-specific antibody, and a matrix 
plot of the rhizoplane colonization intensity by this strain in contiguous 440 µm-long quadrat 
transects along the elongating axis of 3 replicated rice rootlets grown in soil. The variation in 
colonization intensities is noteworthy. This patchy pattern likely reflects a combination of the 
discontinuous distribution of local indigenous population densities that encounter the root as it grows 
geotropically into deeper regions within the soil, and the cooperative behavior of attached cells that 
grow into rhizoplane microcolony biofilms in situ. This result emphasizes the importance of 
measuring the distribution of microbes on roots at the appropriate micrometer spatial scales that are 
directly relevant to the niches they occupy at the rhizoplane/rhizosphere soil interface. 

The various quantitative indices of dispersion indicated in Table 2 can be used to compute the 
overall spatial pattern for these quadrat-based data. Another method, called the “two-term local 
quadrat variance” (TTLQV), can also be used to analyze the spatial pattern of this 1-dimensional 
transect of indigenous population intensity of the target strain on the rhizoplane biofilm. TTLQV is 
an optimal choice because it does not lose spatial information derived from the relative positions of 
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the quadrat sampling units [43]. It involves a sampling of contiguous quadrat units of equal size 
spanning a linear transect that can then be combined into larger blocks to evaluate spatial patterns of 
local densities at multiple spatial scales [18,43,44]. The intensity data are evaluated by plotting the 
variance in intensity along the transect against a range of contiguous quadrat block sizes of the 
transect. Patterns of distribution are aggregated when distinct peaks are indicated at a block size 
equivalent to the radius of the microcolony area, random when the data fluctuate irregularly with no 
pattern, and uniform when the variances are low and do not fluctuate with block size [18]. 

 

Figure 12. Colonization of rice roots by indigenous populations of R. leguminosarum 
bv. trifolii biofertilizer strain E11 in soil. Left: detection of individual cells in the 
rhizoplane biofilm by immunofluorescence microscoy (epifluorescence, 24-bit color 
photomicrograph). Bar scale is 10 µm. Right: matrix plot of colonization intensity 
by indigenous populations of E11 in rhizoplane biofilms on 3 rice rootlets. 

 

Figure 13. TTLQV plot indicating an aggregated pattern of colonization intensity of 
indigenous populations of R. leguminosarum bv. trifolii strain E11 along transects of 
rice rootlets grown in soil. 
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Figure 13 shows an example of this TTLQV analysis applied to the quadrat counts for the 
positive immunofluorescent cells along the elongating axis of the rice rootlet. The peak at a block 
size of 4–5 quadrat lengths indicates that aggregates of greatest E11 colonization intensity are 
separated from each other on the rootlets by an average distance of 3.52–4.40 mm (i.e., twice the 
peak block size). 

4. Conclusions 

Colonization of the rhizoplane habitat is an important activity that enables certain 
microorganisms to promote plant growth. In this paper, we describe various applications of 
computer-assisted microscopy using CMEIAS bioimage informatics software to reveal important 
ecological insights of early microbial colonization behavior within biofilms developed on root 
surfaces grown in soil. These quantitative analyses of in situ microbial colonization behavior are 
optimally performed with images of immature biofilms acquired at single-cell resolution, during 
early seral stages of development before microcolony biofilms become 3-dimensional and approach 
their mature climax coverage of the substratum (typically ≤ 20% on the rhizoplane). Included are 
various quantitative analyses of the in situ landscape ecology of microbes during their pioneer 
colonization of white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots while 
it significantly enhances the productivity of this crop plant. The results show that spatial patterns of 
immature microcolony biofilms developing on rhizoplanes that interface rhizosphere soil are highly 
structured and symphonic (rather than distributed randomly) when analyzed at the appropriate spatial 
scale, indicating that regionalized microbial cell-cell interactions and the local environment can 
significantly affect their cooperative and competitive colonization behaviors. This emerging 
technology of CMEIAS bioimage informatics provides several analytical tools to explore the 
landscape ecology and bioengineering applications of natural and managed microbial biofilms. 
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