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Abstract.   Nitrous oxide (N2O) is a potent greenhouse gas (GHG) contributing to global warming, with the agriculture 
sector as the major source of anthropogenic N2O emissions due to excessive fertilizer use. There is an urgent need to enhance 
regional-/watershed-scale models, such as Soil and Water Assessment Tool (SWAT), to credibly simulate N2O emissions to 
improve assessment of environmental impacts of cropping practices. Here, we integrated the DayCent model’s N2O emission 
algorithms with the existing widely tested crop growth, hydrology, and nitrogen cycling algorithms in SWAT and evaluated 
this new tool for simulating N2O emissions in three agricultural systems (i.e., a continuous corn site, a switchgrass site, and a 
smooth brome grass site which was used as a reference site) located at the Great Lakes Bioenergy Research Center (GLBRC) 
scale-up fields in southwestern Michigan. These three systems represent different levels of management intensity, with corn, 
switchgrass, and smooth brome grass (reference site) receiving high, medium, and zero fertilizer application, respectively. 
Results indicate that the enhanced SWAT model with default parameterization reproduced well the relative magnitudes 
of N2O emissions across the three sites, indicating the usefulness of the new tool (SWAT-N2O) to estimate long-term N2O 
emissions of diverse cropping systems. Notably, parameter calibration can significantly improve model simulations of 
seasonality of N2O fluxes, and explained up to 22.5%–49.7% of the variability in field observations. Further sensitivity analysis 
indicates that climate change (e.g., changes in precipitation and temperature) influences N2O emissions, highlighting the 
importance of optimizing crop management under a changing climate in order to achieve agricultural sustainability goals.
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Introduction

Increasing greenhouse gas emissions have raised growing 
concerns about their potential warming impacts on the 
global climate system (Lashof and Ahuja 1990, Solomon 
et al. 2009). Although the concentration of N2O in the at-
mosphere is much lower than that of CO2 and CH4 
(Flückiger et al. 1999), N2O plays a disproportionately im-
portant role in contributing to global warming due to a 
long atmospheric lifetime (Ko et al. 1991) that contributes 
to its high global warming potential (Lashof and Ahuja 
1990). In addition, N2O is the primary ozone-depleting gas 

in the stratosphere (Ravishankara et al. 2009). The agricul-
ture sector is the major source of anthropogenic N2O emis-
sions due to excessive fertilizer use (Reay et al. 2012).

N2O emissions are regulated by numerous factors 
including soil nitrogen contents, soil temperature, soil 
water, and quality of organic residues (Firestone et  al. 
1980, Novoa and Tejeda 2006, Butterbach-Bahl et al. 2013). 
Production of N2O through reduction of nitrate (NO3

−) 
and oxidation of ammonia (NH4

+) is directly controlled 
by levels of the two inorganic nitrogen species. Excessive 
nitrogen input via chemical fertilizer application has been 
considered as a key driver for the high N2O emissions from 
agricultural ecosystems (Thomson et al. 2012). However, 
non-linear correlations between fertilizer application and 
N2O emissions suggested that additional factors, such 
as soil temperature and moisture, may add variability 

Manuscript received 13 November 2016; revised 30 December 
2016; accepted 3 January 2017. 
7 E-mail: xuesong.zhang@pnnl.gov

RESEARCH ARTICLE

https://doi.org/10.1002/ehs2.1259
mailto:xuesong.zhang@pnnl.gov


2

YANG ET AL. SWAT N2O emission simulation

Volume 3(2)  v  Article e01259Ecosystem Health and Sustainability

to the response of N2O production to fertilizer addition 
(Kim et al. 2013b). Microbial activities during nitrification 
and denitrification tend to be more active under higher 
temperatures (Kätterer et  al. 1998), suggesting that air 
temperature plays an important role in the seasonal pat-
terns of N2O fluxes (Rezaei Rashti et al. 2015). Soil water 
content is another factor with significant role in regulat-
ing N2O emissions. Water-filled pore space (WFPS) deter-
mines the reduction and oxidation environment in soils 
and thus controls the relative contribution of nitrification 
and denitrification to total N2O emissions (Bateman and 
Baggs 2005). Other factors, such as soil pH, soil carbon 
(Shcherbak et al. 2014), and soil texture, also impact N2O 
emissions, either through regulating microbial activities 
or through affecting soil water content (Weier et al. 1993).

Investigating the confounding impacts of multiple envi-
ronmental factors on N2O emissions is critical for enrich-
ing understanding of N2O production, emission, and 
mitigation (Deng et al. 2016, Liu et al. 2016). Numerical 
modeling investigations are important in complement-
ing and extrapolating field observations. While model 
simulation experiments are useful in disentangling the 
complex interactions among different environmental 
factors and ecological processes (Yang et al. 2015, Yang 
and Zhang 2016), process-based algorithms have been 
developed and applied to quantify contributions of mul-
tiple processes and factors to N2O emissions, as well as 
to project N2O emissions under alternative climate and 
management scenarios (Del Grosso et al. 2008, Abdalla 
et al. 2010, Rafique et al. 2014). There is an urgent need to 
enhance regional-/watershed-scale agricultural models 
to simulate N2O emissions to complement their existing 
strengths in assessing impacts of cropping practices on 
soil quality, soil erosion, and water quality.

The Soil and Water Assessment Tool (SWAT, Arnold 
et al. 1998) has been widely applied to assess impacts of 
crop cultivation on biogeochemical cycling (El-Khoury 
et al. 2015), hydrological dynamics (Wu et al. 2012, Leta 
et al. 2015), and environmental pollutions (Holvoet et al. 
2008).  Recent efforts (Zhang et al. 2013) incorporated the 
CENTURY model (Parton et al. 1994) into SWAT to sim-
ulate residue-soil organic matter (SOM) dynamics. N2O 
production and subsequent emissions are, however, not 
represented in the model, limiting application of SWAT 
to provide comprehensive assessment of agricultural 
activities on nitrogen cycling.

Our primary objective of this study was to improve 
SWAT’s representation of soil nitrogen cycling by modi-
fying its nitrification and denitrification algorithms and 
adding N2O emission algorithms. Specifically, we integrat-
ed the DayCent model’s nitrification, denitrification, and 
N2O production modules (Del Grosso et al. 2000) with the 
existing widely tested crop growth, hydrology, and nitro-
gen cycling processes in the SWAT. We tested this new tool 
for simulating N2O emissions at three cropping sites (i.e., a 
continuous corn site, a switchgrass site, and a reference site 
dominated by smooth brome grass) located in the Great 

Lakes Bioenergy Research Center (GLBRC) scale-up fields 
in southwestern Michigan. A local parameter sensitivity 
analysis was conducted to understand how N2O estimates 
respond to changes in key parameters. We also analyz-
ed how changes in precipitation and temperature affect 
N2O emissions. This work strengthens SWAT’s capability 
to provide comprehensive assessment of sustainability of 
agricultural ecosystems under a changing climate.

Methods

Integrating DayCent’s N2O emission algorithms 
into SWAT

The SWAT N2O emission algorithms are based on Parton 
et  al. (2001) that simulate N2O production from both 
nitrification and denitrification. Specifically, soil ammo-
nia oxidation is simulated with the following equations:

where Nnit is soil nitrification rate (g N·m−2·d−1); fmoist 
represents impacts of soil water on nitrification, and fst 
represents soil temperature impacts; fpH refers to the pH 
impacts on nitrification; SW is soil water content (mm 
H2O); STH is soil depth (mm); WP is soil moisture at wilt-
ing point (mm H2O); FC is soil moisture at field capaci-
ty (mm H2O); SWmim is minimum volumetric soil water 
content (unitless); SWdel is minimum volumetric soil 
water content below wilting point (0.042, unitless); ST is 
soil temperature (Celsius degree); SPH refers to soil pH; 
NH4 is soil ammonia content (g N/m2); Nnit_max is maxi-
mum nitrification rate (0.4 g N·m−2·d−1); Nnit is denitrifi-
cation rate (g N·m−2·d−1); Nnit_base is minimum nitrification 
rate (0.00001 g N·m−2·d−1); fnit_max is maximum fraction of 
ammonia that is nitrified during nitrification (unitless).

N2O production from nitrification is calculated as a 
fraction of nitrified ammonia:

(1)Nnit = fmoist× fst× fpH×Nnit_max+Nnit_base

(2)fmoist =
1

1+30×e−9×rel_wc

(3)relwc =

SW

STH
−SWmim

FC

STH
−SWmim

(4)SWmim =

WP

STH
−SWdel

(5)
fst = e

4.5×(1−(
−5−ST

−40
)7 )×(

−5−ST

−40
)
4.5

7

(6)fpH =0.56+
1

π

×atan (π×0.45×(SPH−5))

(7)Nnit_max = fnit_max×NH4,

(8)EN2O_nit = fN2O_to_nit×Nnit
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where EN2O_nit is N2O production from nitrification 
(g  N·m−2·d−1); fN2O_to_nit is the ratio of N2O to nitrified 
ammonia (unitless); adjfc is maximum ratio of N2O pro-
duction to nitrified N at field capacity (calibrated param-
eter, unitless); adjwp is minimum ratio of N2O production 
to nitrified ammonia at wilting point (calibrated parame-
ter, unitless); dDOfc and dDOwp are normalized diffusivi-
ty in soil at field capacity and wilting point, respectively 
(unitless); dDOsf refers to the normalized diffusivity of 
the top soil layer (unitless). More details about calcula-
tion of the diffusivity factors are provided in the sup-
porting information.

Following Parton et  al. (2001) and Del Grosso et  al. 
(2000), we also revised SWAT to simulate N2O production 
from denitrification, which is influenced by soil nitrate 
content, temperature, soil water, and soil respiration:

where EN2O_den is N2O production rate through nitrifica-
tion on a given day (g N·m−2·d−1); EN2O is denitrification 
rate (g N·m−2·d−1); Rn2n2o is ratio of N2 to N2O (unitless); 
fRno3_co2 represents CO2 effect on the ratio of N2 to N2O 
(unitless); wfps is water-filled pore space (unitless); nppm 
is soil nitrate content (ppm N/m2); co2  ppm is CO2 con-
centration in soils (ppm); Cunit is a conversion coefficient 
to change unit from ppm to g/g (10−6); ρsoil is soil density 
(g soil/cm3); Dtotflux is the denitrified nitrogen (ppm N/d); 
fRwfps represents effect of wfps on the ratio of N2 to N2O 
(unitless); fDwfps represents effect of wfps on denitrifica-
tion; fDco2 is denitrification rate due to CO2 concentration 
(ppm N/d); fDno3 is denitrification flux due to soil nitrate 
(ppm N/d); xinflextion denotes impacts of CO2 concentration 
on fDwfps (unitless); co2correction is corrected CO2 concen-
tration (ppm); min_nit is minimum nitrate concentration 
required in a soil layer for trace gas calculation (ppm N); 
respc is soil respiration (g C·m−2·d−1); wfpsthreshold is a thresh-
old value for water-filled pore space (unitless); wfps_adj 
is the adjustment on inflection point for water-filled pore 
space effect on denitrification curve (unitless); aa denotes 
impacts of soil diffusivity on soil CO2 concentrations 
(unitless); M is an intermediate parameter in calculating 
xinflextion (unitless); dD0fc is normalized soil diffusivity at 
field capacity (unitless). Details about calculation of this 
variable are introduced in the supporting information.

Nitric oxide (NO) is a byproduct of the nitrification pro-
cess and is also produced during the denitrification reac-
tion sequence (Robertson and Groffman 2015). Because 
the DayCent algorithm does not explicitly represent all of 
the biochemical steps that occur during nitrification and 
denitrification, NO is calculated based on modeled N2O 
production and a NO/N2O ratio function. The function is 
based on the assumption that higher gas diffusivity and 
increased O2 availability will lead to higher NO emissions. 
We used the following equations to simulate NO emission 
following the DayCent model (Parton et al. 2001):

where ENO_N2O is the NO flux converted from N2O (g 
N·m−2·d−1); Rno_n2o is the ratio of NO to N2O (unitless); dD0 
is the normalized soil diffusivity (unitless).

Data collection

We collected observational data from three GLBRC sites, 
namely continuous corn, switchgrass, and smooth brome 

(9)

fN2O_to_nit =
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×

(
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)

+adjwp,
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(21)M=dD0fc×(−1.25)+0.145

(22)co2correction = co2ppm× (1+aa×
(
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)
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(24)aa=
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,
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grass (reference site) from the Marshall Farm scale-up 
experimental fields (Fig. 1). These cropping systems were 
established in 2009 to study how production of different 
biofuel crops affects biodiversity and biogeochemistry in 
this region (Zenone et  al. 2011). In 2009, the corn and 
switchgrass sites were planted with soybean and were 
converted to corn and switchgrass in 2010, respectively. 
The smooth brome grass site (reference site) is unman-
aged and treated as a reference site. Variables selected to 
evaluate model performance include soil moisture, N2O 
fluxes, and crop yields. Soil moisture data were collected 
twice a year from 2009 to 2013 at the three sites. During 
each sampling period, ten replicates were collected at each 
site. Soil samples from the composite of the top 25  cm 
were collected and sent to laboratory for further analysis. 
Soil moisture was calculated as the difference between the 
fresh weight and the dry weight of soil samples (https://
data.sustainability.glbrc.org/protocols/24). At the selected 
sites, N2O measurements were conducted during 2009–
2014. Before 2013, gas samples were collected biweekly 
during growing seasons (April–November); after 2013, 
sampling frequency was increased to weekly in June. N2O 
was measured using in situ closed-cover flux chambers 
(https://data.sustainability.glbrc.org/protocols/113). Four 
replicates were installed at each site to minimize random 
errors during sampling. Corn and switchgrass were har-
vested in October or November, and yield data for the two 
crops during 2010–2014 were collected to evaluate SWAT 
simulations of crop yields at the corn and switchgrass 
sites. More details about the data collection and sample 
analysis can be obtained from GLBRC data catalog (https://
data.sustainability.glbrc.org/datatables).

Model setup, calibration, and performance 
evaluation

Although SWAT is a watershed-scale model, it allows 
for treating a hydrologic response unit as a land unit 

representing detailed characteristics of agroecosystems. 
Latitude/longitude and elevation of the selected sites 
were downloaded directly from the GLBRC website 
(http://lter.kbs.msu.edu/datatables/286). Daily climate 
data (precipitation, temperature, solar radiation, wind, 
and relative humidity) observed at the Kellogg 
Biological Station (KBS) were obtained from the KBS 
LTER database (http://lter.kbs.msu.edu/datatables) 
from 1993 to 2014. We used the Soil Survey Geographic 
Database (SSURGO) downloaded from the Geospatial 
Data Gateway (https://gdg.sc.egov.usda.gov/) to obtain 
soil properties, including soil layer depth, soil texture, 
soil bulk density, and soil organic carbon content for 
each site. Model simulations were conducted from 1993 
to 2014, with 1993–2008 as model initialization, while 
model performance evaluation was mainly focused on 
the period of 2010–2014, when observed data were 
available.

We first simulated N2O fluxes at the three sites with 
default parameters from the DayCent model. Then, 
we adjusted key model parameters regulating N2O 
production through nitrification and denitrification 
manually to minimize the discrepancies between mod-
el estimates and field observations. The optimized 
parameters with least bias in N2O simulations were 
used to generate calibrated model estimates for the test 
sites (Table 1).

We evaluated model performance at multiple tempo-
ral scales. First, we examined model simulations of soil 
moisture over the selected sites for those days with field 
observations. Next, we compared model estimates with 
observed N2O fluxes at the monthly scale. Observed 
N2O fluxes from 2010 to 2014 were linearly interpolat-
ed to obtain daily fluxes, and then, we aggregated the 
gap-filled data to the monthly scale for model perfor-
mance evaluation. We also evaluated model-simulated 
multiple-year average crop yields for the harvested corn 
and switchgrass sites.

Fig.  1.  Location of three GLBRC scale-up experiment sites used for this study. Field observations from 2010 to 2014 were 
compiled for model performance evaluation.

https://data.sustainability.glbrc.org/protocols/24
https://data.sustainability.glbrc.org/protocols/24
https://data.sustainability.glbrc.org/protocols/113
https://data.sustainability.glbrc.org/datatables
https://data.sustainability.glbrc.org/datatables
http://lter.kbs.msu.edu/datatables/286
http://lter.kbs.msu.edu/datatables
https://gdg.sc.egov.usda.gov/
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Sensitivity analysis

We conducted a local parameter sensitivity analysis for 
five key parameters (Table 1). Here, we assumed that all 
the selected parameters are normally distributed. We 
increased and decreased, respectively, the calibrated 
optimum values of these parameters by 20% to assess the 
sensitivity of all five parameters. Results of such an anal-
ysis were expected to provide valuable information for 
future calibration and application of the algorithms.

We also evaluated how SWAT N2O estimates respond 
to changes in precipitation and temperature to under-
stand how possible climate scenarios would affect N2O 
emissions. We increased and decreased daily precipita-
tion by 20% to represent future wet and dry climate sce-
narios, respectively; we increased daily air temperature 
by 1° and 2°C to represent future warming scenarios.

Results

Model performance evaluation

Previous investigations demonstrated that soil moisture 
has significant impacts on N2O emissions. Reasonable 
simulation of soil moisture is an important prerequisite 
for reliably simulating N2O fluxes. For most days with 
available field observations, simulated soil moisture was 
close to the mean or within one standard deviation of 
observation (Fig. 2), indicating that SWAT-estimated soil 
moisture matches well observations. Discrepancies 
between model estimates and observations, particularly 
for days with intensive rainfall events, should be further 
reduced through more comprehensive parameter cali-
bration in the future.

With the default parameter values, SWAT simulat-
ed well the magnitude of average N2O emissions of the 
three cropping systems (Fig.  3). Specifically, the esti-
mated growing-season N2O emission rate during 2010–
2014 at the corn site was 1.08  ±  0.82  kg N·ha−1·month−1 
(mean  ±  standard deviation), which was very close to 
the observed magnitude of 1.10 ± 2.58 kg N·ha−1·month−1. 
At the switchgrass site, model-estimated and observed 
average N2O fluxes were 0.22  ±  0.10 and 0.16  ±  0.13  kg 
N·ha−1·month−1, respectively. At the unmanaged reference 

site that had much lower N2O emissions than the corn and 
switchgrass sites, modeled N2O emissions of 0.08 ± 0.05 kg 
N·ha−1·month−1 also corresponded well to the observed 
fluxes of 0.05 ± 0.04 kg N·ha−1·month−1. Overall, the default 
parameter settings could generally reflect the differences 
in the magnitude of N2O emissions across the three sites. 
The default parameterization also captured well tempo-
ral patterns in N2O fluxes at the two managed sites (corn 
and switchgrass sites), for which modeled and observed 
N2O fluxes were significantly (P < 0.1) correlated. At the 
reference site, the default simulation failed to reproduce 
seasonal patterns of N2O emissions at a significance level 
of 10% (P > 0.1).

Calibration of key parameters substantially improved 
the model performance (Figs. 4 and 5), in particular for 
further reducing biases in estimated magnitude of N2O 
fluxes at the reference and switchgrass sites. Specifically, 
parameter adjustment further decreased the bias at the 
switchgrass site to 15.1%. For the reference site, discrepan-
cies between observations (0.05 ± 0.04 kg N·ha−1·month−1) 
and simulations (0.04  ±  0.02  kg N·ha−1·month−1) were 
reduced to 23% (Fig. 5), as compared to a 54% bias in the 
default simulation.

Apart from matching the magnitude, parameter 
adjustment achieved better representations of the sea-
sonal patterns in N2O emissions than default simulations. 
Correlations between simulated and observed monthly 
N2O fluxes were improved and significant at the month-
ly scale across all sites (P  <  0.05). N2O emissions were 
much higher during growing season, particularly from 
May to August, than during non-growing season. At the 
corn and switchgrass sites, both modeled and observed 
N2O fluxes increased rapidly from April to May and 
reached peak values in May and June. Then, N2O emis-
sions decreased substantially from July to November. At 
the reference site, model simulations corresponded well 
with observations regarding the decreasing trend of N2O 
fluxes from June to November.

Across the three sites with different levels of man-
agement intensity, we attained a significant correlation 
between simulated N2O fluxes and field observations 
(Fig.  6). The model simulations explained 22.53% of 
the variability in N2O emissions across three sites, con-
firming the feasibility of employing the new algorithms 

Table 1.  Key SWAT parameters controlling N2O emissions in nitrification and denitrification.

Parameters Unit Default values Calibrated values Range from previous studies References

adjfc Unitless 0.015 0.012–0.018 0.0–1.0 Bell et al. (2012)
Parton et al. (2001)

adjwp Unitless 0.002 0.0019–0.0022 0.0–1.0 Parton et al. (2001)
wfps_adj day−1 1 1.1–1.3 0.75–1.3 Del Grosso (Pers. Comm.)
min_nit Unitless 0.1 0.1 0.05–0.1 Parton et al. (2001)
fnit_max Unitless 0.15 0.13–0.17 0.0–1.0 Parton et al. (2001)

Notes: adjfc is maximum fraction of N2O to nitrified N at the field capacity; adjwp is minimum fraction of N2O to nitrified nitrogen at the wilting point; wfps_adj 
is adjustment on inflection point for water-filled pore space effect on denitrification curve (unitless); min_nit is minimum nitrate concentration required in 
a soil layer for trace gas calculation (ppm N); fnit_max is maximum fraction of ammonia that is nitrified during nitrification (unitless). Range of wfps_adj was 
obtained through personal communication with Dr. Del Grosso.
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to evaluate influences of agricultural activities on N2O 
emissions across diverse agricultural ecosystems. Note 
that when the month with extremely high N2O emissions 
was excluded in the model-data comparison, the mod-
el would explain 49.7% of the variability in N2O fluxes 
(Fig. 6).

SWAT simulated well crop yields at the corn and 
switchgrass sites. Specifically, at the corn site, our esti-
mate of crop yields during 2010–2014 was 7.96  ±  1.85 
Mg/ha, which was comparable to the observations of 
7.51  ±  3.25 Mg/ha. Model-estimated switchgrass yields 
of 7.89 ± 1.36 Mg/ha agreed well with the observations of 
7.50 ± 2.56 kg/ha during 2011–2014.

Sensitivity analysis

We selected five parameters that are closely related to 
N2O emissions to examine the responses of simulated 

N2O fluxes to a 20% change (increase or decrease) of each 
parameter at the three sites (Table 2). N2O emissions pos-
itively correlated with maximum fraction of N2O to nitri-
fied N at the field capacity (adjfc) and minimum fraction 
of N2O to nitrified nitrogen at the wilting point (adjwp), 
but had negative correlations with adjustment on inflec-
tion point for water-filled pore space effect on denitrifica-
tion curve (wfps_adj). Specifically, with a 20% reduction 
of adjfc, N2O emissions were reduced by 9.41%, 12.19%, 
and 12.68% for corn, switchgrass, and reference sites, 
respectively; in contrast, a 20% increase in adjfc increased 
N2O fluxes by 9.21% at the corn site, 12.14% at the switch-
grass site, and 12.69% at the reference site. In response to 
changes (±20%) in adjwp, simulated N2O emissions varied 
from a reduction of 0.19% to an increase of 0.17% at the 
corn site. Similarly, responses at the switchgrass site to 
this parameter ranged from 0% to 0.38%. At the reference 
site, N2O emissions were reduced by 0.72% with a 20% 
decrease in adjwp, but increased by 0.72% in response to a 
20% increase in this parameter. Adjustments (±20%) of 
minimum nitrate content (min_nit) in soil for denitrifica-
tion had insignificant influence on N2O emissions at the 
two managed sites (changes are less than 0.1%), but 
induced more sensitive responses (−0.72% to 0.2% chang-
es) at the reference site.

Simulated N2O emissions were sensitive to chang-
es in wfps_adj as well. At the corn site, a 20% increase 
in wfps_adj reduced N2O emission estimates by 40.48%, 
whereas a 20% decrease in this parameter increased 
model-estimated N2O fluxes by 86.79%. At the switch-
grass site, model estimates varied from −33.65% to 
+18.14% with ±20% changes of this parameter. At the ref-
erence site, a 20% increase in wfps_adj decreased modeled 
N2O emissions by 3.9%, whereas a 20% reduction sub-
stantially increased N2O emissions by 195.1%. Responses 
of N2O emissions to the maximum fraction of ammonia 
that is nitrified during nitrification (fnit_max) varied across 
the selected sites. At the corn and reference sites, a 20% 
increase in fnit_max boosted increases in N2O emissions by 
2.35% and 0.53%, respectively, whereas a 20% reduction 
resulted in decreases of 3.62% and 0.77%, respectively. 
At the switchgrass site, the response of N2O emissions 
was less sensitive to ±20% changes in fnit_max, ranging from 
−0.19% to 0.18%.

Climatic influences

Changing climate conditions affected N2O emissions 
(Table  3). Our sensitivity analysis suggested that N2O 
emissions had positive responses to changes in precipita-
tion. With a 20% increase in precipitation, N2O emissions 
would increase by 1.39%, 1.50%, and 1.44% at the corn, 
switchgrass, and reference sites, respectively, whereas 
under the drier scenario (a 20% reduction in precipita-
tion), N2O fluxes would be reduced by 3.66%, 3.12%, and 
1.52%, respectively. Higher temperatures would generally 
increase N2O emissions. With a 1°C increase in air 

Fig.  2.  Comparison of simulated and observed soil water 
content across the three sites. Soil moisture data were collected 
twice a year from 2009 to 2013 at the three sites. For days with 
available data, average soil moisture and its standard deviation 
were obtained from ten replicates at each site.
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temperature, N2O emissions would be enhanced by 1.94–
3.69% across the three sites. A 2°C increase would further 
increase N2O emissions by 14.4% and 5.74% at the corn 
and reference sites, respectively, but the switchgrass 
would only increase by 0.59%.

Discussion

Enhanced SWAT for simulating N2O emissions

As a potent GHG, increasing emissions of N2O from ter-
restrial ecosystems to the atmosphere has raised con-
cerns about its potential impacts on the climate system 
(Butterbach-Bahl et  al. 2013). Significant efforts have 
been devoted to investigating N2O fluxes from cropland 
since agricultural land has been identified as a key con-
tributor of the anthropogenic N2O emissions (Del Grosso 
et al. 2009). Numerical simulation of N2O fluxes is critical 

for predicting N2O emissions under different manage-
ment scenarios, and provides valuable information for 
the mitigation practices (Del Grosso et al. 2009). By inte-
grating the DayCent N2O emission algorithms with 
SWAT’s existing crop growth, hydrology, and biogeo-
chemical cycling algorithms, we created a new modeling 
tool that allows us to include N2O emissions as an impor-
tant dimension in watershed-scale assessment of sustain-
ability of agricultural ecosystems.

Model evaluation shows that the new module provid-
ed reasonable estimates of N2O fluxes across sites with 
divergent management intensities, as well as reproduced 
the seasonal patterns of N2O emissions. Accuracy of 
model prediction in this study is close to the previous 
modeling efforts based on the DayCent model and the 
DeNitrification–DeComposition (DNDC) model (Parton 
et al. 2001, Abdalla et al. 2010, Rafique et al. 2013, Grant 
et  al. 2015), indicating feasibility of applying the new 

Fig.  3.  Model estimates of N2O emissions compared with default SWAT simulations at the three sites. In this comparison, 
observed N2O fluxes were linearly interpolated and aggregated to obtain monthly fluxes.
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tool, along with the existing capability of SWAT, to con-
duct comprehensive assessments of farming impacts on 
the environment.

Difference in N2O emissions between managed 
and unmanaged sites

Our simulations indicate that the corn and switchgrass 
sites had much higher N2O emissions than the unman-
aged reference site. The difference further confirms the 
dominant impacts of nitrogen inputs on N2O emission. 
Annual average N2O emissions from the corn site reached 
8.48 kg N·ha−1·yr−1 during 2009–2014. This emission rate 
fell within previous observations (approximately 3.29–
8.76 kg N·ha−1·yr−1) in the U.S. corn belt (Iqbal et al. 2015), 
with the emission factor (fraction of N2O emission to fer-
tilizer use) at the corn site (5.3%) being at the upper end 

Fig. 4.  Comparison of calibrated N2O estimates with observations at the three sites. Model calibration was conducted manually 
to optimize parameter values and minimize discrepancies between simulation and observation.

Fig. 5.  Comparison of simulated and observed N2O fluxes 
across the selected sites. Here, long-term average N2O fluxes 
during 2010–2014 at each site were calculated for the 
comparison.
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of the range (0.17%–21%) from previous studies (Novoa 
and Tejeda 2006, Signor et al. 2013). The high emission 
factor at the corn site may result from the high precipita-
tion in this region (Dobbie et al. 2003).

Investigations of nitrogen cycling in switchgrass culti-
vation have increased since this species has been identified 
as a promising cellulosic bioenergy crop (Vogel et al. 2002, 
Demissie et al. 2012). Previous studies found significant 
variability in N2O emissions from switchgrass sites with 
different fertilizer use rates, soil types, and climate condi-
tions (Wang et al. 2015). Our estimate of 1.96 kg N·ha−1·yr−1 
at the switchgrass site is consistent with a synthesis (rang-
ing from 1.37 to 2.07 kg N·ha−1·yr−1) across multiple field 
sites (Oates et  al. 2016). We derived a lower emission 
factor at the switchgrass site (3.3%) than at the corn site 
(5.3%), which may be explained by the high nitrogen-use 
efficiency at the switchgrass site (Monti et al. 2012).

For the unmanaged reference site, N2O emissions 
reached 0.35 kg N·ha−1·yr−1, which is lower than the aver-
age of synthesis data (1.75 kg N·ha−1·yr−1) over more than 
200 grass land sites (Kim et  al. 2013a), indicating that 
the reference site may have relatively tighter nitrogen 
cycling. Although the managed sites had much higher 
emissions than the unmanaged site, their seasonal emis-
sion patterns were consistent, with much higher emis-
sion rates in summer (May–July) than other seasons, 
reflecting the fundamental influences of temperature on 
the seasonality of N2O emissions (Butterbach-Bahl et al. 
2013, Liu et al. 2013).

N2O emissions in response to climatic changes

Responses of simulated N2O emissions to changes in 
precipitation and temperature provide valuable insights 
into projecting N2O emissions under a changing climate. 
All three sites demonstrated positive responses in N2O 
emissions to changes in precipitation. Increased soil 

moisture after rainfall induces elevated emissions main-
ly through stimulating microbial activities or enhancing 
the anaerobic conditions (Signor et  al. 2013, Gelfand 
et al. 2016). Historical data indicate that growing-season 
precipitation has been increasing since the 1980s in most 
areas of the Midwest United States (Dai et al. 2016). As a 
result, this changing rainfall pattern may further stimu-
late N2O emissions in summer in this region. In contrast, 
other studies reported that plant growth following ele-
vated rainfalls may deplete the soil inorganic nitrogen 
pool and thus reduce N2O emissions (Xu-Ri et al. 2012). 
Different response rates of N2O emissions to changes in 
precipitation at sites with different plant species and 
management activities, as demonstrated in our analy-
ses, call for further investigations on confounding pro-
cesses determining N2O emissions to better predict how 
future precipitation changes can affect N2O fluxes.

Model-simulated N2O fluxes generally increased 
under higher temperatures across the three sites. Positive 
responses of N2O emissions to higher temperatures 
may be caused by more active microbial activities and 
increased soil organic matter decomposition (Reth et al. 
2005, Signor et al. 2013). Substantial increases at the corn 
site under the warmer climate scenarios suggested that 
elevated air temperatures may further enhance N2O emis-
sions to the atmosphere. Although unmanaged ecosys-
tems contribute much less N2O emissions than cultivated 
cropland, enhanced N2O emissions from the unmanaged 
site under warming temperatures suggested that the role 
of unmanaged ecosystems in emitting N2O should not be 
ignored under a warming climate (Xu-Ri et al. 2012).

Uncertainties and future work

Although the new modeling tool provided reasonable 
estimates of N2O emissions over the three sites, the 

Fig. 6.  Scatter plot of simulated and observed monthly N2O 
fluxes across the three sites. The orange triangle represents 
extremely high N2O emissions observed in June 2011 (note that 
if the month with extremely high N2O emissions was excluded 
in the model-data comparison, the model would explain 49.7% 
of the variability in N2O fluxes).

Table  2.  Sensitivity of N2O emissions to changes in key 
parameters.

Parameters

Changes in 
parameter 

(%)

Changes in N2O emissions

Corn  
site (%)

Switchgrass 
site (%)

Reference 
site (%)

adjfc −20 −9.41 −12.19 −12.68
+20 +9.21 +12.14 +12.69

adjwp −20 −0.19 −0.38 −0.72
+20 +0.17 − +0.72

min_nit −20 − − −0.72
+20 − − +0.02

wfps_adj −20 +86.79 +18.14 +195.10
+20 −40.48 −33.65 −3.9

fnit_max −20 −3.62 +0.18 −0.77
+20 +2.35 −0.19 +0.53

Notes: adjfc is maximum fraction of N2O to nitrified N at the field capacity; 
adjwp is minimum fraction of N2O to nitrified nitrogen at the wilting point; 
min_nit is minimum nitrate concentration required in a soil layer for trace 
gas calculation; wfps_adj is adjustment on inflection point for water-filled 
pore space effect on denitrification curve (unitless); fnit_max is maximum frac-
tion of ammonia that is nitrified during nitrification (unitless); “−” indicates 
changes less than 0.01%.
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unexplained variability in the observed N2O fluxes sug-
gests that further improvement is needed to better repre-
sent processes regulating N2O emissions. For example, 
current model simulation is highly sensitive to parame-
ters such as the adjustment on inflection point for water-
filled pore space effect on denitrification curve (wfps_adj), 
which represents soil properties affecting soil diffusivity 
other than soil water, soil texture, and soil bulk density. 
Process-based algorithms or spatially explicit datasets 
are needed to better model underlying mechanisms rep-
resented by this parameter to enhance N2O simulation in 
the future.

Notably, both nitrification of soil ammonia and deni-
trification of soil nitrate contribute to N2O production 
(Bateman and Baggs 2005). However, field observations 
at the three sites did not differentiate the relative con-
tributions of each process to total N2O emission. As a 
result, N2O fluxes produced by nitrification and deni-
trification were lumped together to calibrate and evalu-
ate simulated total N2O fluxes from soil columns. As a 
result, future model improvement should focus on the 
model simulation of the individual processes in N2O 
production, the soil inorganic nitrogen stocks, etc., to 
further strengthen the model’s capability in modeling 
N2O fluxes.

In addition, our analysis indicated that extremely high 
N2O fluxes observed after fertilizer use dramatically 
affected model performances. Therefore, more frequent 
observations, in particular following fertilizer use, are 
needed to improve model performance by incorporating 
observational information through calibration.

Although manual calibration of the parameters direct-
ly controlling N2O production improved model perfor-
mances, more comprehensive parameter optimization is 
needed to further enhance model simulations. Parameter 
sensitivity analysis in this study identified impacts of 
individual parameters on model estimates of N2O emis-
sions. However, interactions among these parameters 
may jointly affect model responses (Kim et al. 2013b). As 
a result, further analysis targeting the interplay among 
multiple parameters should be conducted in the future. 
In addition, calibration of parameters that indirectly reg-
ulate N2O production, such as carbon-to-nitrogen ratio 
for structural litter, leaching coefficient of soil nitrogen, 

and water limitation coefficient on nitrification, togeth-
er with the parameters identified in this study, would 
improve model representation of seasonal variability of 
N2O emissions (Rafique et al. 2013).

Conclusions

As a watershed-scale model, SWAT has been widely 
used to evaluate impacts of agricultural activities on the 
quality of the aquatic ecosystems (Gassman et al. 2007). 
However, N2O emissions were not included in previous 
SWAT modeling efforts, limiting its use for assessing and 
identifying best agriculture management practices under 
climate change. Here, we integrated DayCent’s N2O 
emission module with the existing crop growth, hydrol-
ogy, and biogeochemical processes in SWAT, and 
achieved a new tool (SWAT-N2O) that reasonably cap-
tured the magnitude and seasonality of N2O emissions 
from three diverse agricultural systems with different 
management intensities. Modeled N2O emission respons-
es to climate change scenarios demonstrate that N2O 
emissions may increase under a warmer and wetter cli-
mate. Overall, the model development and application 
efforts enhanced SWAT to represent N2O emissions as a 
dimension in assessing sustainability of agricultural eco-
systems and to explore climate-smart agricultural solu-
tions under a changing climate.
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1. Calculation of diffusivity 3 

𝑑𝐷0𝑓𝑐 =   
𝑡𝑝8

107
 + 𝑡𝑝7 × 𝑡𝑝6 4 

𝑡𝑝8 =   
tp1 × tp3 × tp4 × (tp5 − tp6)

1.0E − 6 +  (tp1 × tp3 × tp4)  +  tp5 −  tp6
× 107  

tp1 = (1 −
𝑝𝑓𝑐

100
)2 

𝑝𝑓𝑐 =
𝑤𝑓𝑝𝑠

𝐴
 × 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 

tp2 =
𝐴 −

𝑝𝑓𝑐
100 × 𝐴

𝐴 + 1 − 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦
 

tp3 = tp20.5×𝑡𝑝2+1.16 

tp4 =  1 − (𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 − 𝐴)0.5×(𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦−𝐴)+1.16 5 

tp5 =  𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 − 𝐴 − 𝑡ℎ𝑒𝑡𝑎_𝑃 6 

𝑡ℎ𝑒𝑡𝑎_𝑃 =  
𝑝𝑓𝑐

100
× 𝐴 − 𝐴 

tp6 =  tp50.5×𝑡𝑝5+1.16 7 

tp7 =  (1 − swp)2 8 

swp = 
𝑡ℎ𝑒𝑡𝑎_𝑃

 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦−𝐴
 9 

 10 

where 𝑑𝐷0𝑓𝑐 is normalized soil diffusivity (unitless); 𝑡𝑝1 − 𝑡𝑝8 are intermediate variables used 11 

to calculate diffusivity (unitless);  𝑝𝑓𝑐 is soil water content expressed as a percent of field 12 

capacity (%); 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 is fraction of soil bed volume occupied by pore space (unitless); 𝑡ℎ𝑒𝑡𝑎_𝑃 13 

is volume of water per unit bed volume contained in inter-aggregate pore space (unitless); 𝐴 is 14 



fraction of soil bed volume occupied by field capacity (unitless); 𝑆𝑤𝑝 is fractional liquid 15 

saturation of total pore volume (unitless); 𝑠𝑤𝑐𝑓𝑟𝑎𝑐 is volumetric soil water content (unitless). 16 

 17 

 18 


