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Abstract
Sustainable intensification is an emerging model for agriculture designed to reconcile accelerating
global demand for agricultural products with long-term environmental stewardship. Defined here as
increasing agricultural production while maintaining or improving environmental quality,
sustainable intensification hinges upon decision-making by agricultural producers, consumers, and
policy-makers. The Long-Term Agroecosystem Research (LTAR) network was established to inform
these decisions. Here we introduce the LTAR Common Experiment, through which scientists and
partnering producers in US croplands, rangelands, and pasturelands are conducting 21 independent
but coordinated experiments. Each local effort compares the outcomes of a predominant,
conventional production system in the region (‘business as usual’) with a system hypothesized to
advance sustainable intensification (‘aspirational’). Following the logic of a conceptual model of
interactions between agriculture, economics, society, and the environment, we identified
commonalities among the 21 experiments in terms of (a) concerns about business-as-usual
production, (b) ‘aspirational outcomes’ motivating research into alternatives, (c) strategies for
achieving the outcomes, (d) practices that support the strategies, and (e) relationships between
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practice outreach and adoption. Network-wide, concerns about business as usual include the costs of
inputs, opportunities lost to uniform management approaches, and vulnerability to accelerating
environmental changes. Motivated by environmental, economic, and societal outcomes, scientists
and partnering producers are investigating 15 practices in aspirational treatments to sustainably
intensify agriculture, from crop diversification to ecological restoration. Collectively, the aspirational
treatments reveal four general strategies for sustainable intensification: (1) reducing reliance on
inputs through ecological intensification, (2) diversifying management to match land and economic
potential, (3) building adaptive capacity to accelerating environmental changes, and (4) managing
agricultural landscapes for multiple ecosystem services. Key to understanding the potential of these
practices and strategies are informational, economic, and social factors—and trade-offs among
them—that limit their adoption. LTAR is evaluating several actions for overcoming these barriers,
including finding financial mechanisms to make aspirational production systems more profitable,
resolving uncertainties about trade-offs, and building collaborative capacity among agricultural
producers, stakeholders, and scientists from a broad range of disciplines.

Introduction

The world’s population is expected to increase by
roughly two billion during the next thirty years,
and humanity is now facing the monumental chal-
lenge of reducing hunger among the poor, meeting
the dietary demands of a growing middle class, and
sustaining environmental quality, all in the con-
text of an increasingly variable climate (Godfray
et al 2010, Foley et al 2011, Alexandratos and Bruinsma
2012). Sustainable intensification—increasing produc-
tion while minimizing or reversing the adverse impacts
of agriculture—has emerged as a primary framework
to meet this challenge (Godfray and Garnett 2014,
Petersen and Snapp 2015, Rockström et al 2016).

In the United States, achieving sustainable intensi-
fication is hampered by climate change, entrenched
norms and market structures, and the need for
new information, technologies, and infrastructure
(Reganold et al 2011, Tilman et al 2011, Petersen
and Snapp 2015). The US Long-Term Agroecosys-
tem Research (LTAR) network was established in
2014 to address these obstacles (Robertson et al
2008, Walbridge and Shafer 2011, Kleinman et al
in preparation). LTAR’s 18 sites have researched var-
ious aspects of sustainable intensification for decades
to over a century and represent a diversity of regional
agroecosystems nationwide (figure 1). These sites are
now embarking on a ‘common experiment’ encom-
passing 21 independent but coordinated experiments
linked by common objectives and measurements (table
1). Each local effort compares the outcomes of a
local, predominant conventional production system
(‘business as usual’) with the outcomes of an alter-
native production system hypothesized to advance
sustainable intensification in locally appropriate ways
(‘aspirational’).

The LTAR Common Experiment offers an
unprecedented opportunity to gain local, regional, and
national insights into critical issues underlying the

sustainable intensification of US agriculture, includ-
ing the nature of problems to be solved as well as
approaches and key barriers to solving them. As region-
specific, networked experimentation has recently been
identified as a priority for sustainable intensification
at a global level (Rockström et al 2016, Reynolds
et al 2017), experiences from the LTAR Common
Experiment can provide valuable lessons for efforts
worldwide. To introduce LTAR’s approach, we identify
common themes that span the Common Experiment,
including concerns about business-as-usual produc-
tion, the strategies for sustainable intensification under
investigation, the practices that support the strate-
gies, and the factors that limit producers’ adoption
of those practices. We also explore options for over-
coming barriers to adoption, focusing on areas where
the current research portfolio could be expanded.

Methods

The LTAR Common Experiment comprises 21 exper-
iments in agricultural lands across the United States
(figure 1, table 1). Currently measurements are tai-
lored to compare the effects of business-as-usual and
aspirational management at the plot, field (pasture),
and farm (ranch) scales, alongside efforts to develop
open-access databases (https://ltar.nal.usda.gov) and
modeling to link measurements to inferences at the
scales of watersheds, regions, industries, and the nation
(Walbridge 2013).

We used two web-based digital survey question-
naires, visual and tabular summaries of questionnaire
data, and group discussion about the summaries to
synthesize the multiple dimensions of the Common
Experiment into a common framework (figure 2).

Our synthesis was structured according to a
conceptual model that identifies the interactions of
an agricultural production system suitable for a region
(e.g. the business-as-usual or aspirational production
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Figure 1. The Long-Term Agroecosystem Research network’s Common Experiment is being conducted in croplands, rangelands,
pasturelands, and grazed croplands across the United States. Gray polygons represent estimated regional inference spaces for the 18
LTAR sites based on Major Land Resource Areas (USDA-NRCS 2006), and black icons represent the products under investigation
in the regions. Twenty-one experiments are being conducted by the 18 sites, as three sites are each conducting two experiments in
two different agricultural land uses. Black icons by Shutterstock.com artists HuHu, iconizer, K N, NadzeyaShanchuk, Hein Nouwens,
Oleg7799, VKA, and VoodooDot.

Figure 2. A synthesis framework containing five major elements of the Common Experiment (five boxes) with common themes shared
among the 21 experiments within each element (lists in boxes).
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Table 1. Summary of the 21 experiments in the LTAR Common Experiment. ‘MAP zone’ refers to general zone of mean annual precipitation in the United States, and ‘Location’ refers to US state and geographic coordinates of a primary
research site.

Land 
use Experiment Location

MAP 
zone 
(mm)

Local concerns about 
business-as-usual production Business-as-usual treatment Aspirational treatment Practices under investigation

Cr
op

lan
d

Central 
Mississippi 
River Basin 

MO 
39.27°N, 
92.121°W

900-
1500

Agrochemical inefficiencies, 
erosion, water quality, limited 
resilience to climate extremes 

Corn/soybean rotation with annual 
aggressive tillage, uniform rates of 
seed and agrochemicals, no cover 
crops

Extended corn/soybean/wheat 
rotation with annual cover crops and 
no-till, site-specific management of 
seed, fertilizer, and pesticides. 4R 
nutrient stewardship.

Cover crops
Precision technologies 
Tillage management

Cook 
Agronomy 
Farm 

WA
46.781°N, 
117.082°W < 600

Agrochemical inefficiencies, 
erosion, water quality, nutrient 
losses from soils, suboptimal C 
storage

3-year winter wheat/spring 
wheat/chickpea rotation with 
reduced tillage and uniform 
application of macronutrients

Same rotation with no-tillage and 
precision application of 
macronutrients

Precision technologies 
Tillage management

Eastern Corn 
Belt 

OH
40.031°N, 
82.973°W

900-
1500

Water quality, limited resilience 
to climate extremes. Land use 
affecting Lake Erie and the Ohio 
River Valley

Corn-soybean with rotational tillage 
(tillage prior to corn), nutrient and 
pesticide application at agronomic 
rates, and a tile drainage system 
that flows freely year-round

Introduction of wheat into 
corn/soybean rotation, cover crops,  
precision nutrient management, no-
till, and drainage water management 

Drainage management
Precision technologies 
Tillage management

Kellogg 
Biological 
Station 

MI 
42.405°N, 
85.401°W

900-
1500

Suboptimal crop production with 
seasonal drought. Erosion, 
water quality, N emissions, 
suboptimal C storage and 
biodiversity.

Corn/soybean rotation, 
conservation tillage with chisel 
plow, nutrient and pest 
management with commercial crop 
adviser rates, and GMO seeds and 
seed treatments

Corn/soybean/wheat rotation with 
winter cover crops. Permanent no-till 
or narrow-row shallow strip tillage. 
On-the-go-variable rate nutrient and 
pest management.

Cover crops
Precision technologies
Tillage management

Lower 
Chesapeake 
Bay 

MD 
39.039°N, 
76.918°W

900-
1500

Suboptimal crop production with 
seasonal drought. Erosion, 
water quality, wetland 
conservation, urban 
interface. Land use affecting 
Chesapeake Bay.

Corn/soybean rotation used for 
crop fields with surface-applied 
manures, winter cover crop where 
subsidized. Rotational no-till. 
Conventional herbicide and N 
application. Nutrient management 
plan required.

Increase irrigated acreage and 
convert marginal land into 
conservation off-set programs. 
Innovative corn/soybean/wheat 
rotations with high biomass cover 
crops, no-till, and precision 
agriculture (pest, nutrients, and 
water).

Cover crops
Precision technologies
Tillage management

Lower 
Mississippi 
River Basin 

MS 
34.366°N, 
89.519°W

900-
1500

Water competition; insect, weed, 
pathogen pressures; erosion; 
suboptimal C storage; water 
quality; fish health

Wheat/soybean/cotton rotation with 
no cover crops, conventional 
tillage, uniform nutrient application, 
proactive herbicide and insecticide, 
no edge of field buffer, and 
conventional irrigation

Soybean/cotton/wheat-soybean 
rotation with cover crops post-harvest 
or as intercrop, reduced tillage, 
precision nutrient application, IPM, 
edge of field buffers, and innovative 
irrigation 

Cover crops
Crop diversification
Irrigation management

Platte 
River/High 
Plains Aquifer 
(a) 

NE
40.829°N, 
96.667°W

600-
899

Crop and forage production are 
limited by variable rainfall. 
Heterogeneous soils complicate 
nutrient and water availability to 
crops.

Maize/soybean rotation under 
rainfed or sprinkler irrigation. Fields 
managed uniformly.

Intensification through crop 
diversification and cover crops. 
Precision irrigation and fertilization to 
manage spatial variation.

Crop diversification
Irrigation management
Precision technologies
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Table 1. Continued.

Experiment Location

MAP 
zone 
(mm)

Local concerns about 
business-as-usual production Business-as-usual treatment Aspirational treatment Practices under investigation

Texas Gulf (a) 

TX
31.52°N, 
96.9°W

600-
899

Increasing production costs; 
limited resilience to climate 
extremes; water quality 

Corn or hay/small grain rotation; no 
cover crops; conventional or 
conservation tillage; traditional 
rates of inorganic N, P

Corn or hay/small grain rotation with 
multispecies cover crop, reduced or 
no-till, poultry litter application, and 
inorganic N and P application based 
on Haney test

Cover crops
Manure management
Tillage management

Upper 
Mississippi 
River Basin 

IA 
42.172°N, 
93.275°W

600-
899

Glyphosate-resistant weeds, soil 
compaction, erosion. Tile 
drainage affects runoff and Gulf 
of Mexico water quality 

Corn/soybean rotation with tile 
drainage. No cover crops, chisel 
plow tillage, annual N application 
for corn, and glyphosate and 
insecticide as needed

Rotation of corn/winter camelina 
cover crop with soybeans 
overseeded. Minimized tillage and 
fertilizer application. Trifluralin and 
insecticide as needed. Camelina oil 
seed for biofuel.

Cover crops
Crop diversification

Pa
stu

re
lan

d/G
ra

ze
d C

ro
pla

nd
 

Gulf Atlantic 
Coastal Plain 

GA
31.457°N, 
83.703°W

900-
1500

Water competition; insect weed, 
pathogen pressures; toxic dust 
emissions; water quality, 
suboptimal utilization of whole 
farm landscape

Cotton/cotton/peanut rotation with 
rye/rye/rye cover crop; 
conventional tillage, nutrient, pest, 
and weed management; linear 
move irrigation. On-farm cow-calf 
production on marginal land and/or 
crop residue with calves sold at 
weaning. 

Cotton/grass/peanut rotation with 
rye+winter pea and rye cover crops 
rotated with a winter carinata cash 
crop. Cow-calf production integrated 
into all portions of the farm landscape 
during twelve months of the year. 
Biofuels.

Cover crops
Crop diversification
Graze annual crops 

Northern
Plains 

ND
46.825°N, 
100.888°W < 600

Insect, weed, pathogen 
pressures; limited resilience to 
climate extremes; suboptimal C 
storage; nutrient losses from 
soils

Spring wheat/corn/soybean rotation 
with no-till or minimum-till, no cover 
crop, uniform nutrient application, 
residue removal. 

Dynamic and adaptive annual crop 
rotation with no-till, cover crops, and 
precision/variable nutrient and 
pesticide application. Post-harvest 
livestock grazing of crop residue 
and/or cover crops.

Adaptive management planning
Cover crops
Tillage management

Platte River/ 
High Plains 
Aquifer (b) 

NE
40.829°N, 
96.667°W

600-
899

Beef cattle production systems 
limited by amount of pasture 
when rainfall is low. Greenhouse 
gas emissions

Yearling steers with season-long 
grazing in dedicated pastures

Livestock grazing crop residue and 
cover crops. Calving date changes. 
Reduced time in feedlot.

Grass-fed beef production
Graze annual crops
Livestock-landscape matching

Southern 
Plains (a)

OK
34.885°N, 
98.023°W

600-
899

Insect, weed, pathogen 
pressures; erosion; suboptimal 
soil C storage, low primary 
productivity

Beef cattle stockers on continuous 
“grazeout” wheat with conventional 
tillage for weed control

4-year rotation of grain-only wheat / 
dual-purpose wheat / grazeout wheat 
/ canola, with stocker grazing on 2 of 
4 years of rotation. No till. IPM.

Crop diversification
Integrated pest management
Tillage management

Texas Gulf (b) 

TX
31.52°N, 
96.9°W

600-
899

Suboptimal forage production, 
water quality, soil quality 

Beef cattle on grazing oats pasture 
cultivated with tillage and inorganic 
fertilizers. Hay in winter. Separate 
herds with best pasture grazing.

Beef cattle on overseeded, multi-
species pasture. Cattle intentionally 
rotated through pasture and 
cultivated paddocks.

Cover crops
Graze annual crops 
Rotational grazing

Upper 
Chesapeake 
Bay 

PA
40.861°N, 
77.763°W

900-
1500

High input intensity (fertilizer, 
pesticides, energy), erosion, 
water quality, air pollution,
enterprise solvency and 
profitability

Dairy cattle on pasture with alfalfa 
and silage corn. Imported 
fertilizers, pesticides, and fuels. 
Conventional pest management. 
Ineffective application of manure 
from on-farm CAFO. Minimal-
management grazing. 

Dairy cattle on diversified forage 
rotation with perennial grasses 
(biofuels). Precision nutrient 
management. Whole-farm integration. 
IPM. Energy independence. 
Conservation tillage.

Cover crops
Graze annual crops
Manure management
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Table 1. Continued.

Land 
use Experiment Location

MAP 
zone 
(mm)

Local concerns about 
business-as-usual production Business-as-usual treatment Aspirational treatment Practices under investigation

Ra
ng

ela
nd

Archbold 
Biological 
Station / 
University of 
Florida 

FL
27.183°N, 
81.351°W

900-
1500

Suboptimal forage production 
and utilization, biodiversity, and 
carbon storage. Land use 
affecting Everglades.

Cattle production with long rotation 
grazing and low-rate N fertilization 
on improved pastures during wet 
season. Long rotation grazing and 
Rx burns during dry season on 
semi-native and native range.

Cattle production with intensive 
rotation and fertilization on improved 
pastures during wet season. Low 
intensity rotation on semi-native and 
native range during dry season, with 
patch burning or Rx burning during 
wet—dry transition season.

Prescribed burning
Rotational grazing

Central Plains 
Experimental 
Range 

CO
40.842°N, 
104.716°W < 600

Suboptimal forage production 
and utilization, biodiversity.  
Drought.

Stocker production on shortgrass 
steppe with May-Oct grazing 
(during the late spring and 
summer) at moderate stocking 
rates.

Stocker production on shortgrass 
steppe with collaborative adaptive 
rangeland management, including 
pulse grazing, flexible stocking rate, 
and patch burning options 

Adaptive management planning
Prescribed burning
Rotational grazing

Great Basin 

ID 
43.21°N, 
116.75°W < 600

Cheatgrass invasion of 
sagebrush/ bunchgrass 
rangeland; altered grass-fire 
cycle

Inflexible grazing use policies on 
public lands. Traditional cheatgrass 
treatments.

Management of public lands is 
adaptive to fire-cheatgrass cycle. 
Novel sagebrush-steppe restoration.

Adaptive management planning
Rangeland restoration

Jornada 
Experimental 
Range 

NM
32.029°N, 
106.59°W < 600

Shrub dominance, perennial 
grass loss; drought, increasing 
aridity. Localized overgrazing 
can accelerate grass and soil 
losses. Options for local
agriculture  are diminishing. 

Cow-calf production
with British breeds (Angus
crossbreds) and grain finishing in
western OK and TX. 

More options for agricultural 
production on rangelands, including 
cow-calf production with heritage 
Raramuri Criollo cattle with grass-
finishing, cross-breeding, and roping
cattle options. Brush management
and range seeding.  

Grass-fed beef production
Livestock-landscape matching
Rangeland restoration

Southern 
Plains (b) 

OK
34.885°N, 
98.023°W

600-
899

Suboptimal forage production 
and utilization on native tall 
grass prairie 

Conventional cow-calf production. 
Treatment on native tall grass 
prairie with continuous grazing.

Cow-calf production with livestock 
size matched to environment and 
rotational grazing. Treatment on 
native tall grass prairie. 

Adaptive management planning
Livestock-landscape matching
Rotational grazing

Walnut Gulch 
Experimental 
Watershed 

AZ
31.711°N, 
110.064°W < 600

Long term expansion of velvet 
mesquite and associated loss of 
NPP, perennial grasses, and 
biodiversity with accelerated 
erosion   

Velvet mesquite allowed to 
increase to its natural limits

Velvet mesquite treated with aerially-
applied herbicides Rangeland restoration
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Stakeholder participation

Figure 3. Conceptual model of interactions among agriculture, environment, economy, and society (cf. Fox et al 2009, Lescourret
et al 2015, DeClerck et al 2016, Moraine et al 2017) used to frame our questionnaires and synthesize the multiple dimensions of the
LTAR Common Experiment into a common framework (figure 2). The model centers on agricultural producers and their decision-
making about selecting a production system (i.e. suite of management strategies and practices) suitable for a given agricultural region.
Feedback loops mediated by profitability, environmental effects, societal factors, and policies can reinforce the status quo or prompt
producers to adopt an alternative production system. External shocks (drivers and perturbations that are unaffected by feedbacks)
can tip the entire system into alternative states (Walker and Meyers 2004). For decision-making, producers integrate knowledge of
profit potential, government policies, and social interactions along with science-based information from universities, extension, and
producer organizations (Rodriguez et al 2008, Lubell et al 2014). The nature, quality, and availability of scientific information are, in
turn, influenced through participatory science with producers and other stakeholders (Neef and Neubert 2011). With their integrated
insights, producers select the parts of the agricultural land mosaic under their management to be used for production or for other
functions, such as wildlife habitat or watershed management. These site-level management decisions affect environmental conditions at
the farm/ranch and landscape levels, which feed back to the production system (and ultimately profitability) via, for example, long-term
changes in soil quality or pollinator biodiversity (Swain et al 2013, Brown and Havstad 2016, Rockström et al 2016). Environmental
conditions produced by agricultural decisions also affect human health (e.g. dust emissions) and the production of non-commodity
ecosystem services (e.g. waste treatment, scenic beauty). The environment influences the economy through opportunities for eco-and
agro-tourism (Nickerson et al 2001) and natural capital, stocks of natural resources that yield ecosystem goods and services now and
into the future (Costanza and Daly 1992). The production system affects the economy through the balance of supply and demand of
agricultural commodities. In turn, the economy, including its transportation, agricultural infrastructures, and pricing for agricultural
inputs, affects the chances that producers will turn a profit (Chandra and Thompson 2000). The health of the local economy also affects
the local rural community, because lack of opportunities can lead to poverty, impermanence, and eventual outmigration (Ratcliffe
et al 2016, Parry and Skaggs 2014, Cohen et al 2015). Perceptions of peers in the community and trends in consumer choice behavior
can affect producers’ management planning as well as their economic bottom lines. Societies influence government policies at all levels
through the political process. Although the power of rural communities to shape policy varies (Lichter and Brown 2011), agricultural
and environmental policies directly affect producers via price supports, regulations, and compensation for non-commodity ecosystem
services (Reganold et al 2011).

system) with the environment, economy, society,
government policy, and science support (figure 3).
The model focuses on how these interactions affect
producers’ decisions to adopt (or maintain) business-
as-usual or aspirational production systems.

Survey design and data collection
We designed a survey to develop a network-wide
perspective on the Common Experiment using the
conceptual model (figure 3) as an organizing frame-
work. Given the relatively small size of the network, a
comprehensive census approach (i.e. surveying all net-
work sites) was possible (Salant and Dillman 1994).
The survey included two questionnaires administered
by the two lead authors on behalf of the network.
Scientists from all 18 LTAR sites reviewed their pub-
lished studies (https://data.nal.usda.gov/publications/
ltar) and site-based knowledge to develop one response

per experiment for each of the questionnaires. Pri-
mary respondents from each site are also authors of
this article.

Through the ‘Coordination Questionnaire’ (sup-
plement 1 available at stacks.iop.org/ERL/13/034031/
mmedia), administered November 2015—October
2016, scientists described their study designs, their
concerns about the business-as-usual production sys-
tems they are evaluating, and hypotheses about how
their aspirational systems can address those concerns.
Questions about concerns and hypotheses were open-
ended but structured by ecosystem service categories
(de Groot et al 2010) to elicit responses in terms
of relationships between the focal production sys-
tem and other components of the conceptual model
(figure 3): provisioning services corresponded with
the economy, regulating and supporting services with
the environment, and cultural services with society.
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Twenty-two concerns about business as usual
were coded from the qualitative responses to the
Coordination Questionnaire, and presence (1) or
absence (0) of each concern for each experiment
was tabulated (supplement 2). In October 2016, we
generated an ordination of the experiments based
on the tabulated data. Surprisingly, experiments dis-
similar in land use and geography clustered in
ordination space (supplement 3), revealing that con-
cerns about business-as-usual production transcended
land use and geography. We used the classification
of business-as-usual concerns to design a second
questionnaire focused on aspirational outcomes that
directly address those concerns. With the second
questionnaire, we sought to gain precision on the
aspirational outcomes described qualitatively through
the Coordination Questionnaire, and to identify
potential barriers to those outcomes. Accordingly,
the ‘Aspirations Questionnaire’ (supplement 3) used
closed-ended responses to provide clear links between
business-as-usual concerns, aspirations, and barriers.
Because they proved uninformative, ecosystem ser-
vice categories used in the Coordination Questionnaire
were omitted from the second questionnaire and syn-
thesis.

The Aspirations Questionnaire was administered
January—February 2017. In a multiple-choice ques-
tion, respondents selected from among 23 ‘aspirational
outcomes’ coded from qualitative responses to the
Coordination Questionnaire (supplement 4). The
outcomes were specific objectives of aspirational pro-
duction approaches which, if met, would help achieve
the primary goal of sustainable intensification. Then,
through a multi-part question, scientists listed the three
main practices in their aspirational treatments, and for
each practice rated its level of existing outreach by
Cooperative Extension and other groups (1 = none
to minimal; 5 = extensive), rated its current level of
adoption by producers (same scale), and provided a
short response explaining discrepancies between the
two ratings. Respondents were encouraged to frame
discrepancies in terms of relationships between the
production system and other components in the con-
ceptual model (figure 3). This question elicited 61
unique practice entries, two to three per experiment
(supplement 5). Adoption was rated less than, or equal
to, outreach for 58 of the 61 practice entries. Short
responses were given for 47 of the 58 entries: 31 cases
in which adoption was rated lower than outreach, and
16 cases in which the two ratings were equal. Due to
the instructions given in the questionnaire and the
nature of the responses, we considered all 47 short
responses to be explanations for why practice adoption
lags behind outreach. Nineteen reasons for the lag were
coded from the 47 explanations, and presence (1) or
absence (0) of each reason was tabulated for the 47
practice entries (supplement 5). Next, fifteen practices
were coded from the 61 practice entries. Each practice
code was assigned one rating for outreach and one for

adoption by averaging ratings across practice entries
with the code (supplement 5 and 6). Presence (1) or
absence (0) of the 19 reasons that adoption lags behind
outreach were tabulated for each practice code.

Coding and tabulation of qualitative survey data
were performed using basic descriptive and thematic
coding methods per Saldaña (2016).

Synthesis process
In February—August 2017, co-authors analyzed iter-
ative versions of tabular and graphical summaries
of survey results via in-person and virtual meetings.
Graphics were created using data available in sup-
plementary materials, with the ggplot package in R
version 3.2.5 (Wickham 2009, R Core Development
Team 2015).

We identified common concerns about business-
as-usual production by categorizing the 22 concerns
used in the ordination into broader themes (supple-
ment 2).The23aspirational outcomeswere categorized
into themes (supplement 4) corresponding with the
conceptual model (figure 3) and primary goals for
LTAR and sustainable agriculture (National Research
Council 2010, Kleinman et al in review).

The 15 practice codes (hereafter, ‘practices’), were
categorized into practice types (supplement 5) per
USDA-NRCS conservationpractice standards (USDA-
NRCS 2017) and LTAR site publications. Practices
applied mainly to lands used for crops and/or forages
were categorized as ‘cropland management’ practices.
Practices applied mostly to lands grazed by live-
stock were categorized as ‘grazingland management’
practices. Practices applied less directly to land and
more directly to management of the overall microe-
conomics of the farm or ranch operation were
categorizedas ‘enterprisemanagement’ practices (sensu
Lowrance et al 1986).

We identified general strategies for sustainable
intensification that emerged from the 21 aspirational
treatments by assimilating the intentions of the 15
practices, the aspirational outcomes motivating LTAR
research, and general literature cited in this paper.

To identify common reasons that adoption lags
behind outreach, we categorized the reasons present
for six or more practices into broader themes. We also
analyzed how ratings and reasons varied with practice
type (supplement 5).

Results

Our synthesis revealed that scientists across the LTAR
network share common concerns about business-as-
usual production, which resolved into three broad
themes (figure 2). In response to those concerns, sci-
entists are motivated by aspirational outcomes in the
environment, economy, and society (figure 2), with
societal outcomes currently emphasized less overall
(figure 4).
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Figure 4. Scientists selected from among 23 ‘aspirational outcomes’ in a multiple-choice question in the Aspirations Questionnaire.
Bars represent frequency of selections across all experiments (supplement 4). Outcomes were categorized into themes corresponding
with figure 3 and goals documented for LTAR and sustainable agriculture.

Four general strategies for sustainable intensifica-
tion emerged across the aspirational treatments (figure
2). Most of the 15 practices are multifunctional in that
they contribute to each strategy.

The 15 practices that support the strategies split
evenly into three practice types (figure 2), but the types
did not sort perfectly with the Common Experiment’s
three agricultural land uses. For instance, tillage man-
agement, a ‘cropland management’ practice, is under
investigation in both pasturelands/grazed croplands
and croplands (table 1).

Overall, the scientists perceived adoption lagging
behind outreach for all practices except adaptive man-
agement planning, and adoption generally increasing
with outreach (figure 5).

Reasons that adoption lags behind outreach which
were present for six or more practices resolved into
broad themes of costs, information deficits, and social
norms (figure 2; figure 6).

Cropland management practices were generally
rated highly for outreach (figure 5), and additional
costs were regularly invoked to describe why adop-
tion trails outreach (figure 6). Enterprise management
practices were rated variably for outreach and adoption
(figure 5). Again, reasons related to costs were used to
explain discrepancies between the two ratings (figure
6). Three of the five grazingland management practices
were rated relatively low for outreach and adoption
(figure 5), with social norms and information deficits
invoked to explain the ratings (figure 6). Although
not captured graphically, trade-offs among economic,
social, and environmental outcomes of practice imple-
mentation were also frequently mentioned during the

synthesis process as important influences on practice
adoption (also see Rodriguez et al 2008, Lubell et al
2011).

Discussion

Network-wide concerns about business-as-usual
production
1. Costs of inputs
The economic and environmental costs of the fertiliz-
ers, fossil fuels, and infrastructure in business-as-usual
agricultural production are well documented for the
United States and other countries (e.g. Matson et al
1997, Tilman et al 2002). These costs are primary
concerns for scientists across the network.

Through the survey, scientists in croplands and
pasturelands conveyed concerns about soil erosion
and water quality resulting from agronomic inputs,
especially as management in LTAR regions affects sev-
eral water bodies of national significance including
the Florida Everglades, Chesapeake Bay, Lake Erie,
the Mississippi River, and the Columbia River Basin
(figure 1, table 1). Significant economic costs were
also noted. Since 2012, for instance, for five com-
modities under wide investigation in the Common
Experiment—corn, soybeans, wheat, cotton, and
peanuts—fertilizerpurchases represented18%–42%of
operating costs (USDA-ERS 2017).

LTAR’s rangeland scientists expressed concerns
about suboptimal forage production, suboptimal for-
age utilization by beef cattle, or both (table 1).
Supplemental feeding represents, on average, 20% of
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Figure 5. Rating for adoption plotted against rating for outreach (1 = none to minimal; 5 = extensive) for 15 practices in the aspirational
treatments. Values represent the average of ratings submitted via the Aspirations Questionnaire (see methods, supplement 5). Summary
statistics by practice and practice type are available in supplement 6.

Figure 6. Reasons that adoption lags behind outreach for practices in the aspirational treatments. Reasons shown here were present
for at least six of the 15 practices coded via the Aspirations Questionnaire (see methods, supplement 5). Broader themes identified
through the synthesis process (figure 2) are noted in the brackets. Black boxes demonstrate patterns revealed by evaluating the reasons
by practice type.

the total operating costs for cow-calf operations in the
rangelands of the western United States (USDA-ERS
2017). Increased feed input costs due to suboptimal
forage production or consumption can present signif-
icant economic hardships for ranchers (Holechek and
Herbel 1986).

2.Costsof specialization, concentration,anduniform
land management
Scientists network-wide expressed concerns about how
business as usual seeks to overcome the inherent bio-
physical and socioeconomic variability of agricultural
lands, instead of capitalizing on that variability to
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produce diverse suites of agricultural products and
other ecosystem services.

During the past century, US farming systems
have become increasingly specialized such that the
number of commodities produced per operation has
declined, and concentrated such that fewer farms are
producing the nation’s overall supply (Dimitri et al
2005, Hendrickson et al 2008). LTAR’s cropland
and pastureland scientists expressed concern that the
decoupling of crop and livestock production has led
to broken nutrient cycles and missed opportunities for
portfolio diversification (Sharpley et al 2016, Liebig et
al 2017). Further, they acknowledged that the tendency
toward uniform agronomic management at the field
scale has come at a cost of flexible, location-specific
management, resulting in negative impacts to water
and air resources, soil health and even profit.

LTAR’s rangeland scientists appreciate that ranch-
ers have always needed to adjust their management to
cope with the intrinsic climatic variability of range-
lands; however, concern was expressed about trends
toward uniform styles of range and ranch man-
agement. Scientists from central Florida noted that
fixed burning schedules can lead to suboptimal for-
age production and reductions in biodiversity in their
region (Boughton et al 2013). In the Central Plains,
maintaining set stocking rates and pasture rest sched-
ules based on calendars—without adaptively changing
plans based on current forage conditions and weather
predictions—may reduce opportunities for match-
ing forage availability with animal demand (Derner
and Augustine 2016). Further, business as usual has
championed livestock breeds that provide a uniform
product for the beef supply chain, but those breeds
can fail to capitalize on variable pasture resources in
the American Southwest and Southern Plains, espe-
cially during drought (Anderson et al 2015, Scasta et al
2016). Across all rangeland systems, it was acknowl-
edged that a mismatch of livestock type or management
style with the inherent heterogeneity of the landscape
can result in undesirable effects on production, vegeta-
tion, soils, and biodiversity.
3. Vulnerability to accelerating environmental
changes
After decades of achievements in overcoming tem-
porally variable threats to production, producers in
LTAR regions and across the world are facing rapidly
accelerating changes in climate, pest, and disease pat-
terns (Lin 2011, Lipper et al 2014, Marshall et al
2014). Drought, flooding, and record high tempera-
tures have increased in frequency and intensity, and
reductions in global maize and wheat yields have
already been attributed to these climatic changes
(Lobell et al 2011). Simultaneously, pest, weed, and
pathogen resistance can exacerbate vulnerability to
mounting climatic variability. LTAR scientists across
the network expressed concern about the vulnerabil-
ity of business-as-usual production systems to these
accelerating environmental changes.

General strategies, supported by 15 practices, to
achieve aspirational outcomes
In response to their concerns about business-as-usual
production, LTAR scientists are working with farm-
ers, ranchers, and other agricultural stakeholders to
evaluate alternatives. Collectively, the 21 aspirational
treatments (table 1) reveal four general strategies
designed to achieve the network’s aspirations (figure 4)
to advance sustainable intensification. Practices under
investigation are multifunctional in that they support
multiple strategies.
1. Reducing reliance on inputs through ecological
intensification
All of LTAR’s aspirational treatments are exploring
ecological intensification: bolstering internal processes,
mechanisms, and functions that directly or indirectly
contribute to agricultural production to reduce reliance
onexternal inputs (RobertsonandSwinton2005,Bom-
marco et al 2013). Production can be ecologically
intensified by enhancing soil fertility, pollination, bio-
controls, genetic diversity, and nutrient cycling (Power
2010, Rockström et al 2016), and most of the 15
practices under investigation are designed to pro-
mote such processes and functions. Broad network
interest in ecological intensification is reflected in a
universal commitment to maintaining and enhanc-
ing soil quality and health (figure 4, Doran 2002,
Govers et al 2017).
2. Diversifying management to match land and eco-
nomic potential
Most network locations are working to increase agri-
cultural production and profitability (figure 4), and
diversifying management is a prevalent strategy for
achieving these outcomes sustainably. Tailoring man-
agement to match the spatial heterogeneity of soils and
temporal variability of rainfall is under wide investi-
gation, with crop diversification, livestock-landscape
matching, precision management, and adaptive man-
agement as examples of practices supporting the
approach (Herrick et al 2013, Derner and Augustine
2016). Further, several practices promote the integra-
tion of enterprises within and between regions for
synergistic exchanges of resources (e.g. graze annual
crops, manure management)—an approach increas-
ingly recognized for its potential to advance sustainable
intensification in the United States (Steiner and Fran-
zluebbers 2009, Fedoroff et al 2010, Liebig et al 2017).
3. Building adaptive capacity to accelerating environ-
mental changes
LTAR was conceived, in part, to help farmers and
ranchers adapt to increasing variability in climate and
related challenges associated with pests, diseases, and
invasive species (Walbridge and Shafer 2011), and this
emphasis was reflected in the survey. All 15 practices
serve to build adaptive capacity in some manner. With
an eye toward minimizing adverse impacts of agri-
culture on climate change, most experiments are also
comparing greenhouse gas dynamics of their business-
as-usual and aspirational treatments.

11



Environ. Res. Lett. 13 (2018) 034031

4. Managing agricultural landscapes for multiple
ecosystem services
The ability to sustainably intensify agriculture depends
largelyonthenon-commodity ecosystemservicesavail-
able for agricultural use now and into the future
(Power 2010, DeClerck et al 2016). Two general mod-
els have emerged for sustaining necessary ecosystem
services while increasing productivity in agricultural
landscapes (Fischer et al 2008, Phalan et al 2011).
One model, ‘land sparing,’ calls for designating some
parcels for more intensive agricultural use while setting
aside others as reserves for biodiversity maintenance
and other related services. The other, ‘land sharing,’
emphasizes managing landscapes for both conserva-
tion and production outcomes, allowing for expansion
of less intensive agricultural land uses depending on
the situation (sensu Godfray and Garnett 2014). As
the multifunctionality of agricultural lands is implicit
in the agroecosystem concept (Altieri 2002), most of
LTAR’s aspirational systems are best described as ‘land
sharing’ strategies: overall, the focus is less on regional
land use planning and more on addressing how prac-
tices and overall management can protect and enhance
ecosystem services on farms and ranches and the lands
that surround them.

Overcoming barriers to adoption—new directions
for sustainability research
Given the potential of the practices in the Common
Experiment to advance strategies for sustainable inten-
sification, it is important to ask why their adoption lags
behind outreach (figure 5). LTAR scientists explained
the lag as a function of costs, information deficits,
and social norms (sensu figure 3), with the relative
influence of these factors differing between practice
types (figure 6). Trade-offs among environmental, eco-
nomic, and social impacts of the practices were also
identified as key issues influencing practice adoption.
The development of strategies to overcome barriers
to adoption of new practices constitutes a primary
challenge for LTAR and other sustainability science
institutions.
1. Costs
LTAR scientists generally consider cropland manage-
ment practices to be widely promoted (figure 5) but
lagging in adoption due to added costs (figure 6).
Cover crops provide an instructive example. Inter-
mittent cover crops can increase nutrient retention
between cash crops, thereby lowering economic (and
environmental) costs of fertilizers (Doran and Smith
1991, Meisinger et al 1991, Snapp et al 2005). How-
ever, extra labor, seed, and equipment requirements
can increase costs by 2%–4% (Schnitkey et al 2016).
Therefore, savings in fertilizer may be negated by
added costs for management. Arguably, past research
identifying certain benefits of cover crops has war-
ranted extensive outreach about the practice; however,
new knowledge about how to reduce costs for cover
crop management is needed now.

Similarly, LTAR’s enterprise management prac-
tices are increasingly recognized for certain benefits for
sustainable intensification (Tilman et al 2002, Liebig
et al 2017), but barriers to their adoption include costs
related to regional processing and marketing (figure
6). Products from all of LTAR’s aspirational systems
can be considered ‘sustainable,’ ‘green, or ‘natural,’
but a mismatch between niche products and exist-
ing processing and marketing mechanisms can prevent
producers from achieving acceptable profits (Johnson
et al 2012). Producer cooperatives may help overcome
this barrier by filling processing gaps and advancing
marketing opportunities though economies of scale
(Gwin 2009). Depending on LTAR research results,
producers adopting aspirational production systems
may consider collectively marketing the potential of
their products to sustain a variety of ecosystem services.
In addition, many major food companies and non-
governmental organizations are working to develop
linkages with producers to improve agricultural sus-
tainability (e.g. Maia de Souza et al 2017, Thomson et al
2017). LTAR may facilitate coordination of marketing
cooperatives and corporate-NGO-producer partner-
ships, with added benefits of strengthening ties among
stakeholders and expanding networked experimental
research into the food system beyond farm and ranch
gates (Macfadyen et al 2015).

While our synthesis suggests that added costs
are primary considerations for producers consider-
ing adoption of cropland and enterprise management
practices, net income from all agricultural production
is generally low compared with other US professions
(Fayer 2014). Accordingly, added costs and financial
risks are key considerations for all producers (Tanaka
et al 2011). Monetary assistance and incentives can
help mitigate risks of adopting new practices (figure
3, Tanaka et al 2011, Boll et al 2015). Nonetheless,
as exemplified by producers canceling USDA Con-
servation Reserve Program contracts when the price
of corn increases (Kleinman et al in preparation),
assistance and incentives for conservation-oriented
practices are not yet consistently attractive or effective.
These mechanisms may be improved by quantifying
the monetary value of ecosystem services provided
by business-as-usual versus aspirational management
(Robertson and Swinton 2005, Brown and Havs-
tad 2016). Such an accounting may help to ensure
environmental, economic, and social equity among
regions of the United States as the nation transitions
to a new paradigm of sustainable intensification (Loos
et al 2014, Robinson et al 2015). Further, equity within
regions could be better understood through such an
accounting. Most agricultural production takes place
in rural areas, yet all Americans—urban and rural—
consume the multiple ecosystem services provided by
rural agricultural lands and the farmers and ranchers
that tend them(Huntsinger andOviedo2014).Decades
of out-migration have resulted in <20% of the US
population residing in rural areas (Ratcliffe et al 2016,
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Cohenet al2015).Asaconsequence, citieshave increas-
ingly become the centers of wealth while rural areas
have remained relatively impoverished (USDA-ERS
2015). In addition, compared with urban areas, rural
areas are at greater risk for economic losses due to
climate change (Hsiang et al 2017). In light of these
disparities, the flow of benefits from rural to urban
areas should be quantified, and ways to adequately
compensate rural producers for food production
and other ecosystem services should be considered
(sensu Gutman 2007).
2. Information deficits
Information deficits were frequently mentioned by
LTAR scientists explaining the low outreach and
adoption of grazingland management practices under
investigation (figures 5 and 6; supplement 5). These
observations might suggest that more basic research
about potential benefits of these practices is needed
before they can be widely recommended through out-
reach. For example, three experiments are evaluating
the use of beef cattle that are postulated to be well-
adapted to their local environments through smaller
body sizes, earlier calving dates, or heritage genet-
ics (table 1). While this approach is hypothesized to
lower supplemental feed costs in the Southwest (Estell
et al 2012) and reduce enteric methane production
in the pasturelands of the Great Plains (Neel et al
2016), profitability may be compromised because the
current beef cattle industry favors large and uniform
body size at predictable times of the year (Scasta et al
2016). Such predictions about trade-offs between envi-
ronmental quality and profitability are plausible, but
as they have not yet been confirmed, more basic
research is needed, including in the area of ecosystem
service provision.

As discussed above, policy mechanisms to incen-
tivizeadoptionof aspirationalmanagement approaches
may be improved through ecosystem service valuation,
but the accurate assessment of these values repre-
sents a critical information deficit. Spatially-explicit
models that estimate service provision under different
scenarios (e.g. Integrated Valuation of Ecosystem Ser-
vices and Tradeoffs, ‘InVEST’; Artificial Intelligence
for Ecosystem Services, ‘ARIES’) could be especially
useful for comparing the effects of management under
aspirational versus business-as-usual paradigms as land
uses and water availability change into the future.
Scenario modeling could improve understanding of
trade-offs among environmental, economic, and social
effects of management under the two management
scenarios (Nelson et al 2009)—knowledge identified
as critical during our synthesis process. Further, such
scenario modeling holds promise for extrapolating
Common Experiment measurements to broader scales
of agricultural organization. However, for such pre-
dictions to inform incentivization policies effectively,
it will be imperative to quantify the uncertainty aris-
ing from extrapolating measurements across spatial
and temporal scales and ecosystem service recipients

(Hein et al 2006). With its significant spatial coverage
and long-term trajectory, LTAR is in a unique posi-
tion to partner with the modeling community to tackle
these issues and even help to improve existing models.
Synergistically, such modeling could help to unify how
scientists across LTAR conceptualize ecosystem ser-
vice flows, which could result in improved aspirational
treatments as the Common Experiment evolves.

For any new information produced through
modeling or other research efforts, effectively com-
municating that information will be key to advancing
sustainable intensification. LTAR is poised to inte-
grate voices from multiple disciplines to craft effective
communication strategies for multiple sectors of agri-
cultural stakeholders.Forproducers, trustworthinessof
the source communicating information is paramount
(Lubell et al 2014), and accordingly, LTAR is build-
ing on the strong tradition of the USDA Agricultural
Research Service and other agricultural research orga-
nizations to conduct research in a participatory manner
to maintain transparency and credibility. Increasingly,
throughemergingcitizen science andopen science plat-
forms, producers and other stakeholders can engage
in research directly, thereby expanding the interactive
relationships between science support and producers
(figure 3, Newman et al 2012, Herrick et al 2013).
In addition, the USDA Climate Hubs are key part-
ners for disseminating research results, with trusted
connections with Cooperative Extension at land-grant
universities andaproventrack recordofproviding tools
to help agricultural operations adapt to environmen-
tal changes (Elias et al 2017). To communicate with
agricultural consumers at large, LTAR and other sus-
tainability science institutions might consider locally
appropriate, innovative technologies—such as soft-
ware applications or ‘apps’ (Pitt et al 2011) and
interactive displays inpublic spaces (Antle et al2011)—
that may improve overall agricultural literacy and
ultimately inform consumer choices, a primary influ-
ence on producer decision-making (figure 3).
3. Social norms
Importantly, even if research reveals that LTAR’s
aspirational systems are optimal for production, prof-
itability, and environmental quality, social norms could
prevent their widespread adoption (figure 3). For
instance, even if LTAR research demonstrates that
using new livestock types can increase profitability and
reduce impact to a given environment, longstanding
norms tied to producer experiences and traditional use
of particular breeds and sizes may prevail and ulti-
mately prevent widespread adoption of the new types
(Didier and Brunson 2004, Rodriguez et al 2008).
Extending the Common Experiment questionnaires
to producers could help illuminate how social norms
and other factors such as social networks influence
adoption of practices under investigation (Lubell et al
2013). Further, social networking technologies may
help improve understanding of the interaction between
public opinion and adoption of new practices and
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approaches (e.g. Barry 2014). Overall, understanding
the influence of social factors on practice adoption
and sustainable intensification will require increased,
two-way collaboration and coordination among pro-
ducers, agricultural stakeholders, and scientists from a
diversity of disciplines (Lubell et al 2013).

Conclusion

The common experiment of the LTAR network
seeks to produce new knowledge of agroecosystem
functions and to understand how aspirational produc-
tion systems may advance sustainable intensification
in different regions of the United States. Network
interactions can make research and discovery more
efficient—several common themes emerge among the
21 local experiments, and working groups focused
on these themes are likely to speed progress toward
generally-applicable strategies and solutions (Carpen-
ter et al 2009). Because the nature of sustainability
challenges and innovations will evolve over time,
and because our understanding of agroecosystems
will also evolve with new technologies, models, and
decision support tools, such efforts require long-
term research investments. Importantly, investment
toward adding new sites to the network will also
be needed to fill gaps in our knowledge of regional
agroecosystems.

One of the most important and least researched
challenges for LTAR and other sustainability sci-
ence networks is understanding how to overcome
barriers to adoption of new practices. Partnerships
among producers, policymakers, industry, and sci-
entists should be strengthened to ensure that the
merits of promising approaches are widely understood.
These partnerships should also help LTAR researchers
design approaches and communication strategies that
are matched to local contexts and that account
for the complex relationships between ecology,
economics, and society. US LTAR and other long-
term agroecosystem research networks will prove
invaluable in our collective understanding of these
complexities.
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