
Abstract
While the US Midwest is expected to serve as a primary feedstock 
source for cellulosic biofuel production, the impacts of residue 
harvesting on soil organic carbon (SOC) may greatly limit 
sustainable production capacity. However, viable feedstock 
production could be realized through adoption of management 
practices and cropping systems that offset residue-harvest-
induced SOC losses. Sequestration of SOC can be enhanced 
by increasing the duration of crop soil cover through cover or 
double cropping or cultivation of dedicated perennials. However, 
assessing the efficacy of such options across sites and over 
long periods is experimentally challenging. Hence, we use the 
Environmental Productivity Integrated Climate (EPIC) model to 
provide such an assessment. Model-data integration was used 
to calibrate and evaluate model suitability, which exhibited 
reasonable effectiveness through R2 of 0.97 and 0.63 for SOC 
stock and yield, respectively. Long-term simulations indicate 
considerable capacity for offsetting SOC loss. Incorporating 
rye (Secale cereal L.) into continuous corn (Zea mays L.) and 
corn–soybean [Glycine max (L.) Merr.] systems offset the SOC 
losses induced by harvesting 21.2 and 38.3% of available stover, 
respectively. Similarly, converting 20.4% of corn–soybean land 
to miscanthus (Miscanthus ´giganteus J.M. Greef & Deuter ex 
Hodkinson & Renvoize) or 27.5% of land to switchgrass (Panicum 
virgatum L.) offset the SOC impacts of harvesting 60% of stover 
from the remaining corn–soybean lands. These responses 
indicate that adoption of such measures would sizably affect the 
life cycle consequences of residue-derived biofuels and expand 
estimates of  sustainable cellulosic feedstock production capacity 
from the US Midwest.
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Cellulosic biofuels have shown potential to serve 
as a productive and environmentally sustainable source 
of fuel, with the capacity to contribute broadly to eco-

system services such as greenhouse gas mitigation, increased soil 
carbon stocks, improved soil fertility, pollination services, and 
pest suppression (Robertson et al., 2017). However, site-specific 
responses are complex, and the magnitude and directionality of 
these responses can vary greatly through vegetation–soil–climate–
management interactions (Carroll and Somerville, 2009; van der 
Weijde et al., 2013; Robertson et al., 2017). Accordingly, the capac-
ity for sustainable biofuel production from feedstocks derived 
through harvesting of agricultural residues or cultivation of dedi-
cated perennials can vary widely by location, topography, manage-
ment, and plant genetics (Wilhelm et al., 2007; Wullschleger et al., 
2010; Gollany et al., 2011; Mbonimpa et al., 2016).

One pathway toward sustainable bioenergy systems is through 
soil carbon sequestration, which has been identified as a cost-
effective climate mitigation option from agricultural systems (Lal, 
2011), yet its positive influence on soil organic carbon (SOC) 
stocks is not an inevitability. Research has demonstrated the poten-
tial for residue-derived cellulosic biofuels to deplete soil carbon 
stocks (Blanco-Canqui and Lal, 2007; Lal and Pimentel, 2007; 
LeDuc et al., 2017). However, studies have also demonstrated the 
ability to increase SOC stocks through greater cropping frequency 
such as double cropping or cover cropping (Luo et al., 2010; Lal, 
2011; Moore et al., 2014; Olson et al., 2014; Austin et al., 2017). 
Such measures may offset some or all of the SOC impacts of 
residue harvesting. Reduced soil disturbance through the adop-
tion of no-till or reduced tillage management is often believed 
to slow respiration and enhance carbon sequestration (West and 
Post, 2002; Lal, 2004; Baker et al., 2007). However, studies have 
demonstrated that tillage reductions may fail to positively influ-
ence carbon sequestration, with the impacts altering the distribu-
tion of SOC toward greater concentrations near the soil surface 
but reducing concentrations at greater depths such that whole 
profile SOC stocks are generally unaltered (Baker et al., 2007; 
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Core Ideas

•	 EPIC suitably assessed SOC under annual, cover, double, and 
perennial crops.
•	 Perennial cultivation offset the SOC losses of considerable resi-
due harvesting.
•	 Rye double crops offset sizable residue-induced SOC losses.
•	 Adoption could greatly expand Midwestern sustainable biofuel 
production capacity.
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Angers and Eriksen-Hamel, 2008; Luo et al., 2010; Powlson et al., 
2011, 2014). Conversely, cultivation of perennial species such as 
switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus 
´giganteus J.M. Greef & Deuter ex Hodkinson & Renvoize) have 
been generally shown to increase SOC stocks in addition to other 
environmental benefits (West and Post, 2002; Gelfand et al., 2013; 
Mbonimpa et al., 2016; LeDuc et al., 2017).

Numerous field experiments have assessed the response of 
SOC levels under different cropping systems and harvesting 
rates, including harvesting of residue from corn (Zea mays L.)-
based systems, from corn-based systems with the inclusion of 
cover crops or double crops, and from dedicated perennial crops 
(Blanco-Canqui and Lal, 2007; Olson et al., 2014; Poeplau and 
Don, 2014; Stewart et al., 2015; Austin et al., 2017). However, 
experiments assessing all of these scenarios are very limited, and 
most have not persisted for a sufficient duration to assess changes 
in SOC stocks. A need for modeling efforts has been identified 
for considering site- and system-specific responses (Qin et al., 
2016). Modeling can serve as a useful tool for translating funda-
mental experimental understanding into assessment scenarios or 
at scales unfeasible for experimental assessment.

One such model that is well suited for such system interac-
tions is the Environmental Policy Integrated Climate (EPIC; 
Williams et al., 1989; Zhang et al., 2010) terrestrial ecosystem 
model. The EPIC model considers detailed agroecosystem pro-
cesses including plant growth; cycling of water, carbon, nitro-
gen, and phosphorus; tillage; and wind and water erosion. The 
model has been widely used for simulating cropping system 
responses under many species including biofuel crops (Zhang 
et al., 2010; Bandaru et al., 2013; Gelfand et al., 2013; Jones et 
al., 2017; LeDuc et al., 2017). However, although it includes 
well-developed and tested methods for simulating SOC dynam-
ics (Izaurralde et al., 2006; Causarano et al., 2007; Wang et al., 
2012; Jones et al., 2017), these SOC simulations have not been 
tested thoroughly under many cover cropping, double cropping, 
and dedicated perennial systems. Here, we conduct a modeling 
study using experimental datasets to prepare the EPIC model for 
simulating long-term SOC responses across a range of cropping 
systems and management options, focusing on implications on 
the sustainability of residue-derived cellulosic biofuel feedstocks.

Materials and Methods
In an effort to assess the impact of residue harvesting under 

annual, cover, double, and perennial cropping on SOC stocks 
in the US Midwest, we focused on continuous corn and corn–
soybean [Glycine max (L.) Merr.] cropping systems, the inclu-
sion of rye (Secale cereale L.) cover crops and double crops into 
these traditional systems, and dedicated perennial systems 
of switchgrass and miscanthus. The traditional continuous 
corn and corn–soybean systems constitute the predominant 
cropping systems in the US Midwest and a massive existing 
potential feedstock supply (Langholtz et al., 2016), whereas 
switchgrass and miscanthus represent two of the more promis-
ing perennial biofuel crops (Robertson et al., 2017). We also 
focus on rye cover and double crops due to their promise for 
increasing SOC levels (Luo et al., 2010), as well as the suitabil-
ity and widespread use of rye as an overwintering crop (Singer, 
2008; Moore et al., 2014; Koch et al., 2015).

To inform and evaluate the EPIC modeling efforts, nine 
previously published experiments from the US Midwest were 
identified that monitored crop growth and SOC stocks under 
residue harvesting from corn-based cropping systems, corn-
based systems with inclusion of cover crops or double crops, or 
the dedicated perennials switchgrass or miscanthus (Table 1). 
Experiments were selected within the US Midwest due to the 
region’s importance to US agricultural production and poten-
tial for biofuel production. Although this tailors the analysis 
for assessments in the US Midwest and similar regions, the lim-
ited geographic range of experiments at locations with generally 
plentiful precipitation indicates that system responses may not 
reflect behavior in disparate regions. Collected data were split 
into two subsets, with roughly two-thirds of treatments used for 
model calibration and one-third of treatments used for model 
evaluation. To ensure balanced allocation of treatments between 
calibration and evaluation datasets, treatments from each unique 
site–crop combination were randomly assigned to a calibration 
or evaluation subset such that no more than two-thirds of the 
treatments within that site–crop combination were assigned to 
the calibration dataset. In cases where a single treatment with 
a particular crop type was available at a particular site, if that 
crop type was also only available as a single treatment at mul-
tiple sites, treatments were randomly allocated to calibration or 
evaluation subsets such that no more than two-thirds of treat-
ments were allocated to the calibration subset. This resulted in 
30 unique site-treatments and 291 unique measurements of yield 
for calibration, and 17 unique site-treatments and 170 unique 
measurements of yield for evaluation. Similarly, it resulted in 25 
unique site-treatments and 644 unique measurements of SOC 
for calibration, and 16 unique site-treatments and 436 unique 
measurements of SOC for evaluation.

The files required for EPIC simulations were created to rep-
resent the site and treatment-specific conditions within each 
experiment. Soil characteristics were estimated using the Soil 
Survey Geographic (SSURGO; Soil Survey Staff, 2017) data-
base, with treatment-specific soil measurements used to supple-
ment characteristics as available. Some detailed soil information 
was available at each of the five core experimental sites where 
SOC was measured, including texture, bulk density, pH, and 
cation exchange capacity. Soil carbon levels were initialized to 
align with the first available SOC measurements, and as such, 
these initial data points were eliminated from model perfor-
mance estimates to ensure fair and independent assessment. The 
initial SOC pools were split between passive, slow, and biomass 
pools on the basis of the years the site had been under cultiva-
tion according to Izaurralde et al. (2012), with organic nitrogen 
stocks initialized assuming a 10:1 carbon-to-nitrogen ratio. To 
improve the initialization of other soil variables such as mineral 
nitrogen and water to appropriate levels, a 10-yr spin-up period 
was simulated under common regional cropping practices. Daily 
weather data including precipitation, maximum and minimum 
temperature, wind speed, and relative humidity were derived 
from onsite or nearby weather stations when available, and 
from the reanalysis North American Land Data Assimilation 
System 2 (NLDAS-2; NASA, 2017) when missing or unavail-
able. Management information was derived from experimental 
records and reporting as available and from regionally appropri-
ate practices when unavailable. As necessary, average planting 



Journal of Environmental Quality	

and harvesting dates for corn and soybean were estimated using 
state-level dates derived from USDA National Agricultural 
Statistics Service crop progress surveys (USDA-NASS, 2017). 
Default rye planting and termination dates assumed planting to 
occur 2 d after harvesting of the summer crop and termination 
to occur 14 d prior to planting of the subsequent summer crop 
according to Feyereisen et al. (2013). Default fertilizer rates were 
estimated based on USDA Economic Research Service state-
level crop-specific rates (USDA-ERS, 2013).

Prior to conducting the model calibration, a sensitivity analy-
sis was performed to identify the most influential parameters. 
First, an initial group of parameters were chosen with potential 
for considerable impact on SOC cycling. Uniform distributions 
were assumed for all parameters with ranges determined from 
literature values (Zhang et al., 2011; Wang et al., 2012), model 
documentation, and expert knowledge (Table 2). Using these 
parameter distributions, Morris’ elementary screening method 

(Morris, 1991; Campolongo et al., 2007) was implemented to 
estimate relative parameter importance. The method efficiently 
provides a general assessment of global parameter sensitiv-
ity, on which selection of parameters of high importance and 
elimination of parameters of low importance can be made for 
subsequent calibration. The selected group of parameters was 
calibrated using the Differential Evolution Adaptive Metropolis 
(DREAM) algorithm (Vrugt et al., 2008). To assess model fit, 
the Nash–Sutcliffe coefficient of efficiency (NSE; Nash and 
Sutcliffe, 1970) was calculated for the SOC stock and the crop 
yield. The average of these two NSE values was used as the objec-
tive function for the DREAM procedure. To more completely 
characterize model performance, the R2, RMSE, and percent bias 
(bias) metrics were calculated. The calibration procedure was 
conducted using roughly two-thirds of the treatments, whereas 
the evaluation was conducted using at least one-third of the 
remaining treatments.

Table 1. Description of experiments used for data-model integration. Rotations include corn (C), soybean (S), switchgrass (SW), and miscanthus (M) 
crops. Tillage includes no-till (NT), chisel plow (CP), moldboard plow (MP), and disk tillage (DT).

Site† Reference State Measures 
SOC‡ Rotations Cover or 

double crops
Stover removal 

rates Tillage Soil subgroup

%
Simpson Olson et al. (2014) IL Yes C–S Yes 0 NT, CP, MP Typic Fragiudalf
NEMERREM Stewart et al. (2015) NE Yes C, SW No 0, 50 NT Pachic Argiudoll
IAAM7071 Del Grosso et al. (2013) IA Yes C Yes 0, 50, 100 NT Typic Hapludolls
KBS Oates et al. (2016) MI Yes C, C–S, SW, M Yes 50 NT Typic Hapludalfs
Arlington Oates et al. (2016) WI Yes C, C–S, SW, M Yes 65 NT Typic Argiudolls
Lamberton Strock et al. (2004) MN No C-S Yes 0 DT Aquic Hapludolls
Ames Singer et al. (2007) IA No C-S Yes 0 NT Cumulic Hapludolls
Champagne Miguez and Bollero (2006) IL No C Yes 0 NT Typic Endoaquoll
Boone Kaspar et al. (2007) IA No C-S Yes 0 NT Typic Hapludolls

† IAAM7071, Ames, IA, Field 7071; KBS, Kellogg Biological Station.

‡ SOC, soil organic carbon.

Table 2. Parameters considered in the sensitivity and calibration procedures, calibrated values, default values, and value limits. Note that calibrated 
values are not reported for parameters excluded from the calibration procedure.

Parameter Calibrated Min. Max. Default Definition
PARM1 1.19 1.00 2.00 2.00 Crop canopy resistance factor
PARM2 1.18 1.10 1.50 1.50 Root growth soil strength constraint factor
PARM24 0.14 0.10 0.50 0.30 Maximum biological mixing depth
PARM25 0.20 0.10 0.50 0.30 Biological mixing efficiency
PARM47 6.40 ´ 10−4 4.10 ´ 10−4 6.80 ´ 10−4 5.48 ´ 10−4 Slow humus transformation rate
PARM48 1.06 ´ 10−5 8.20 ´ 10−5 1.50 ´ 10−5 1.20 ´ 10−5 Passive humus transformation rate
PARM51 0.65 0.50 1.00 0.90 Microbial activity coefficient
PARM52 – 5.0 15.0 10.0 Tillage effect on residue decay rate
PARM53 – 0.50 1.00 0.90 Microbial activity with depth coefficient
OPV1.CANA 0.55 0.50 1.50 1.00 Canola relative heat units to maturity
OPV1.MISC 0.73 0.50 1.50 1.00 Miscanthus relative heat units to maturity
OPV1.RYE 0.52 0.50 1.50 1.00 Rye relative heat units to maturity
OPV1.CORN – 0.50 1.50 1.00 Corn relative heat units to maturity
OPV1.SOYB 1.50 0.50 1.50 1.00 Soybean relative heat units to maturity
OPV1.SWCH 0.91 0.50 1.50 1.00 Switchgrass relative heat units to maturity
RWPC1.MISC 0.46 0.45 0.90 0.45 Miscanthus root weight fraction at emergence
RWPC1.SWCH 0.74 0.45 0.90 0.45 Switchgrass root weight fraction at emergence
RWPC2.MISC 0.11 0.10 0.45 0.20 Miscanthus root weight fraction at maturity
RWPC2.SWCH 0.16 0.10 0.45 0.20 Switchgrass root weight fraction at maturity
WA.MISC 61.6 35.0 75.0 39.0 Miscanthus radiation use efficiency
WA.SWCH 48.8 30.0 50.0 31.0 Switchgrass radiation use efficiency
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To assess the long-term SOC impacts of various biofuel 
production systems, the calibrated EPIC model was applied to 
simulate the impact of cropping system (corn, corn–soybean, 
switchgrass, and miscanthus) under no-till management, incor-
poration of rye double crops into corn-based systems (with and 
without double crop), and stover harvest rate (0–60%) on whole-
profile SOC stocks at the five core experimental sites. The soil 
profile was initialized in the same manner as for the calibration 
and evaluation; however, initial levels of measured characteristics 
were set to the average of the treatments at each particular site. 
Simulations were conducted for 30 yr using historical weather, 
and model treatments were assessed in terms of final SOC stock, 
as well as change in final SOC stock relative to corn–soybean 
rotations without double cropping or residue removal, which 
was considered the reference treatment most representative of 
agricultural lands in the US Midwest. The SOC response of dif-
ferent corn-based systems to rate of residue removal was assessed 
using linear regression, with particular interest in estimating the 
amount of residue-removal-induced SOC loss that could be 
offset by incorporation of double cropping into corn and corn–
soybean rotations.

Results and Discussion
The sensitivity analysis indicated fairly uniform sensitivity 

of SOC level and yield to the parameters and parameter ranges 
considered (Fig. 1). The ranking factors ranged from 4.74 to 
5.35, whereas higher order effects ranged from 2.75 to 5.60. The 
range of higher order effects narrows considerably to 4.65 to 5.60 
when PARM48 is ignored, with PARM48 standing out as having 
direct influence independent of other parameter effects. Since 
the Morris method provides rough estimates of parameter sensi-
tivity, it is recommended for use as a filtering method. Due to the 
lack of large separation in model sensitivities, parameters were fil-
tered conservatively. Hence only the OPV1.CORN, PARM52, 
and PARM53 parameters were excluded from calibration.

The model calibration procedure resulted in a best set of 
parameters using the calibration dataset (Table 2). Using this set 
of parameters, the simulations were evaluated by comparing sim-
ulations against the validation dataset. Model performance indi-
cated good prediction of SOC (R2 = 0.97, NSE = 0.96, RMSE = 
3.51 Mg C ha−1, bias = −5.6%; Fig. 2) and adequate prediction of 
yield (R2 = 0.63, NSE = 0.60, RMSE = 2.87 Mg, bias = −10.6%; 
Fig. 3). The NSE values were similar to the R2 values for both 
SOC and yield simulations, indicating fairly unbiased estimates, 
although each demonstrated a tendency for underprediction. 
Such model fits compare favorably with other modeling studies 
in terms of SOC (Izaurralde et al., 2006; Cheng et al., 2014; Li 

Fig. 1. Parameter sensitivities in terms of 
main effect (m*) and interactive effect (s). 
See Table 2 for parameter definitions.

Fig. 2. Simulated versus measured soil organic carbon (SOC) values 
from the validation dataset.
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et al., 2015; Jones et al., 2017) and yield (Izaurralde et al., 2006; 
Cheng et al., 2014; Li et al., 2015; Jones et al., 2017).

Applying the calibrated model for the treatment scenarios to 
assess the long-term responses of SOC to rotation, rye double 
cropping, and rate of residue harvest indicated substantial dif-
ferences in SOC stocks among treatments. The average SOC 
responses across the five sites (Fig. 4) demonstrate noticeably 
greater SOC levels under perennial compared with annual crop-
ping. Miscanthus and switchgrass systems resulted in average 
final SOC stocks of 144 and 138 Mg C ha−1, respectively, com-
pared with 132 Mg C ha−1 under continuous corn with double 
cropping and zero residue removal, which was the best perform-
ing annual system. Double cropping increased SOC stocks, 
with average final stocks of 128 and 125 Mg C ha−1 for double-
cropped and non-double-cropped annual systems, respectively. 
Double cropping was more effective for corn–soybean rota-
tions than for continuous corn, with double crops increasing 
SOC levels 2.3 vs. 1.8% relative to non-double-cropped systems 
for corn–soybean and continuous corn systems, respectively. 
Harvesting of corn stover from annual systems reduced SOC 
levels, with 60% residue rates resulting in 4.7% less SOC than 
with 0% removal. Harvesting of corn stover had greater impacts 
on continuous corn systems than corn–soybean systems, with 

Fig. 3. Simulated vs. measured yield values from the evaluation dataset.

Fig. 4. The soil organic carbon (SOC) stock 
responses of scenarios on average and at 
each of five core study sites. Note that “DC” 
indicates inclusion of rye double crop. See 
Table 1 for descriptions of the study sites. 
Soy, soybean; Misc, miscanthus; Switch, 
switchgrass.
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60% stover harvest rates resulting in 5.2% lower SOC levels than 
with 0% stover harvesting for continuous corn systems, com-
pared with a 3.3% difference for corn–soybean systems. In addi-
tion to the SOC impacts, residue harvesting negatively affected 
grain yields. Linear fitting of the yield responses indicated that 
average corn grain yields were reduced 6.2 kg DM ha−1 for each 
percentage of residue removed, with average yields of 7.72 kg 
DM ha−1 under 0% residue removal dropping to 7.35 kg DM 
ha−1 at 60% residue removal. In terms of the average impacts on 
final SOC levels, conversion of 20.4% of corn–soybean land to 
miscanthus or 27.5% of corn–soybean land to switchgrass offset 
the SOC impacts of harvesting 60% of stover from the remain-
ing corn–soybean lands.

To consider the variability of treatment responses across sites, 
treatment impacts were also assessed in terms of SOC change 
relative to the corn–soybean rotation without double cropping 
or stover harvesting to normalize SOC stock differences across 
sites driven by soil type. These responses are demonstrated in Fig. 
5, with a subset of residue harvesting rates (0, 30, 60, and 90%) 
presented to facilitate visual interpretation of responses. Despite 
demonstrating greater variability than the annual systems, the 
perennial systems consistently resulted in greater SOC gains, 
with the exception of the Simpson site in Illinois, where SOC 
responses were similar for switchgrass systems and continuous 
corn systems without double cropping or residue harvesting. 
Although each perennial system demonstrated considerable 
variability, the miscanthus system resulted in greater SOC levels 
than the switchgrass system at all sites. Although continuous 
corn tended to result in greater SOC gains than corn–soybean 
systems, the responses were site specific, with similar or greater 
gains under corn–soybean at the IAAM7071 and Simpson 
sites. The differences in SOC levels between continuous corn 
and corn–soybean systems attenuated with increased residue 
harvesting and double cropping as the carbon contributions of 
the additional biomass production under corn compared with 
soybean was offset by its harvest and dilution from double crop 
residue contributions. Comparing the SOC impacts of residue 
removal and double cropping, it is notable that SOC levels are 

generally higher with double cropping and an additional 30% 
residue harvesting than without double cropping under corn–
soybean systems, which demonstrates that double cropping off-
sets the SOC losses associated with the harvesting of >30% of 
available corn stover. Under continuous corn systems, the SOC 
benefits of double cropping were not sufficient to offset harvest-
ing of 30% of stover.

To better estimate the SOC benefits of double cropping 
in terms of offsetting stover-harvest-associated losses, SOC 
responses of the four annual rotations were fit to linear regression 
models. The results of these fittings demonstrate higher SOC 
levels under continuous corn systems and under double crop-
ping, with steeper SOC losses as a function of residue harvest 
under continuous corn (Fig. 6, Table 3). The increase in SOC 
from double cropping for continuous corn and corn–soybean 
systems are comparable with zero residue harvest at 2.53 and 
2.47 Mg C ha−1, respectively. However, the benefits of double 
cropping under residue removal are greater under corn–soybean 
systems, with the slope reduced 14.5% vs. being increased 7.2% 
under continuous corn. Relative to a 0% stover harvest baseline, 
this indicates that double cropping offsets the SOC losses associ-
ated with the removal of 38.3% of available corn stover under 
corn–soybean rotations. Similarly, double cropping offsets the 
SOC losses associated with the removal of 21.2% of stover from 
continuous corn systems, whereas converting from corn–soy-
bean to continuous corn systems offsets the SOC losses associ-
ated with the removal of 34.3% of residue. Finally, converting 
from a corn–soybean system to a continuous corn system with 
double cropping offsets the SOC impacts of harvesting 53.1% of 
available residue. Although these SOC impacts of double crop-
ping are sizeable, they may in fact be conservative, as Austin et al. 
(2017) estimated that rye cover cropping could offset as much 
as 80% of corn stover removed from continuous corn systems. 
Their study showed that roughly 45% of SOC contributions 
from the rye crop were derived from shoots. Hence, with rye 
residues being harvested, the comparable potential amount of 
corn stover replaced by a rye double crop would be roughly 44%.

Fig. 5. The soil organic carbon (SOC) change 
relative to baseline corn–soybean (soy) rota-
tion with no residue harvest and no double 
crop. Error bars represent ± 1 SE. Note that 
“DC” indicates inclusion of rye double crop. 
Misc, miscanthus; Switch, switchgrass.
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Overall, these results indicate that viable options exist for 
sustainable production of cellulosic biofuels in the US Midwest. 
Numerous studies have demonstrated the capacity for environ-
mental benefits from dedicated perennial bioenergy crops such 
as switchgrass and miscanthus (Gelfand et al., 2013; Poeplau 
and Don, 2014; Qin et al., 2016). The results here affirm such 
findings while further contextualizing the responses to a diver-
sity of cropping system and management options. Further, these 
efforts fill an identified need (Qin et al., 2016) for modeling 
efforts to integrate experimental knowledge of SOC responses 
to cropping system and management into ecosystem models and 
apply these tools for assessing long-term responses under a range 
of treatments. This is particularly impactful for EPIC modeling 
applications, as the model has been widely used for simulating 
the sustainability of biofuel cropping systems but has not been 
thoroughly tested for simulating SOC responses under cover, 
double, switchgrass, and miscanthus cropping. Ultimately, this 
assessment indicates that the SOC benefits of double cropping 
demonstrated here could have considerable implications on 
the viability of the use of corn residues as cellulosic feedstocks. 
Liska et al. (2014) called into question the ability of corn-stover-
derived biofuels from the US Midwest to meet US standards for 
cellulosic biofuels, mainly due to large SOC losses induced by 
stover removal. A subsequent analysis by Jones et al. (2017) esti-
mated that while such feedstocks could meet a small portion of 
US targets under current cropping management, small mitiga-
tion of SOC losses would allow large expansion of suitable pro-
duction. Although the results here are based on a small subset 
of sites within the US Midwest, if these responses are regionally 

representative, inclusion of double crops or cover crops into 
corn-based systems would result in a magnitude of SOC miti-
gation that would allow such an expansion of viable cellulosic 
feedstock sources without alteration to existing crop rotations.

Conclusions
Evaluation of EPIC simulations against site-level experimental 

measurements indicated that the model performed suitably for 
assessing SOC responses under corn-based annual rotations with 
and without cover crops or double crops and at a range of residue 
removal rates, as well as under the dedicated perennials switchgrass 
and miscanthus. Long-term simulations indicated that the positive 
impacts of dedicated perennial cultivation on SOC stocks relative 
to traditional annual systems could offset the SOC losses induced 
by residue harvesting on a considerable area of land. Additionally, 
these simulations demonstrated the capacity for offsetting a siz-
able amount of residue-induced SOC losses through incorpora-
tion of rye double crops into corn-based rotations. Such measures 
are expected to have sizeable impacts on the carbon sequestration 
consequences of residue-derived biofuels. Incorporation of such 
measures into regional modeling and life cycle analyses is expected 
to considerably expand estimates of the capacity for sustainable 
cellulosic feedstock production from the US Midwest.
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