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Quantifying Soil Water and 
Root Dynamics Using a Coupled 
Hydrogeophysical Inversion
Alexandria S. Kuhl,* Anthony D. Kendall, Remke L. Van Dam, 
and David W. Hyndman
Plot- to field-scale root distribution data are relatively rare and difficult to mea-
sure with traditional methods. Nevertheless, these data are needed to accurately 
model root water uptake (RWU) processes within agronomic, hydrologic, and 
terrestrial biosphere models. New tools are needed to effectively observe root 
distributions and model dynamic root growth processes. In the past decade, 
geophysical tools have increasingly been used to study the vadose zone, and 
hydrogeophysical inversions have shown promise to noninvasively characterize 
water dynamics. In such an approach, the hydrology is modeled and hydrological 
data are inverted with the geophysical data, constraining the geophysical inver-
sion results and decreasing uncertainty and the number of nonunique solutions. 
In this study, we developed and tested a coupled hydrogeophysical inversion 
approach that uses electrical resistivity data to estimate soil hydraulic, petrophys-
ical, and root dynamic parameters. This builds on prior research that used either 
a coupled hydrogeophysical inversion to estimate soil hydraulic parameters only, 
or a hydrological inversion to estimate root distribution or root water uptake 
parameters. Our results indicate that under the conditions tested, this approach 
accurately captures root water dynamics and soil hydraulic parameters. This 
opens up opportunities to noninvasively image a variety of root distributions and 
soil systems, better understand the dynamics of RWU processes, and improve 
estimates of transpiration for systems models.

Abbreviations: DD, data density; ER, electrical resistivity; PP, petrophysical parameters; 
MRD, maximum rooting depth, RP, root parameters; RWU, root water uptake; SC, site 
characterization; SHP, soil hydraulic parameters.

Transpiration is the most important pathway for the exchange of water from Earth to 
the atmosphere, accounting for up to 80% of terrestrial evapotranspiration (Jasechko et al., 
2013). Thus, disruptions to the plant community through climate and land-use changes 
will likely have serious implications for regional to global water balances. To predict and 
mitigate the effects of those changes, agronomic, hydrologic, and terrestrial biosphere 
models must accurately capture the exchange of water along transpiration pathways. Doing 
so requires understanding the underlying processes that drive such exchanges. The interde-
pendent and dynamic nature of the factors controlling transpiration, and our inability to 
observe the processes directly, makes transpiration challenging to appropriately represent 
in these models.

Transpiration is fundamentally controlled by root distributions and root water 
uptake (RWU) processes, yet due in part to a lack of dynamic root function data, these 
processes are often oversimplified in models (Warren et al., 2015). Such data are rarely 
available because it is challenging to observe roots in the field, especially changes with 
time (Cai et al., 2018). Direct approaches such as excavation and root windows are limited 
at the field scale and are very costly and labor intensive. These approaches are also not as 
feasible for deep roots associated with woody plants, such as trees (Maeght et al., 2013). 
Nondestructive methods are thus needed to understand plant functions as a response to 
changing conditions in a range of field settings. One viable approach is to use changes in 
root-zone soil moisture as a proxy for the presence of RWU processes.

Core Ideas

•	A novel coupled inversion algorithm 
estimated soil and root parameters.

•	Electrical resistivity data were used 
to identify root and soil hydraulic 
properties.

•	A unique root distribution was esti-
mated despite input error and data 
density.

•	This noninvasive technique can 
capture root dynamics in a variety of 
settings.
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Existing methods to measure or estimate changes in soil mois-
ture have limitations. Larger scale methods that rely on measuring 
atmospheric fluxes, such as eddy covariance, can get measurements 
at the stand level, but it is difficult to isolate transpiration from 
evaporation f luxes. Belowground, tools such as time domain 
reflectometry, neutron probes, and capacitance probes estimate 
soil moisture with high temporal resolution, but they are intru-
sive, and barring significant installation efforts, lack the necessary 
spatial resolution to capture heterogeneities in soil properties and 
root densities. Lysimeters can measure the drainage out of the pro-
file but are costly and labor intensive and cannot capture sublayer 
dynamics (Schelle et al., 2012).

Electrical resistivity (ER), a minimally invasive geophysi-
cal technique, measures the current-induced potential field 
underground. Electrical resistivity data, comprised of measured 
potentials at varying dipole lengths and distances, are strongly 
influenced by not only the porosity of the soil but also the satura-
tion and electrical conductance of the pore water. A petrophysical 
relationship equates these variables to the bulk resistivity calcu-
lated from the measured potentials (Archie, 1942). Thus, if the 
resistivity and pore water conductivity are known, soil moisture 
can be estimated via empirical relationships fit with petrophysical 
parameters (PP). Electrical resistivity surveys are particularly well 
suited to investigate hydrological problems because they provide a 
bulk measurement influenced by a volume of media surrounding 
the electrodes, the dimension of which can be varied with the elec-
trode array geometry. For example, an ER survey could be designed 
to have increased sensitivity to the upper 0.5 m where most RWU 
activity is concentrated. For contrast, traditional discrete methods 
of sampling soil moisture represent conditions at a single point 
and are susceptible to both over- and under-representation of 
volumetric soil moisture due to features such as textural layering 
and macropores. Further, the behavior of current flow makes it 
ideal to study the subsurface in multiple dimensions, unlike point 
measurements that require a large installation effort to capture 
lateral variability.

Previous research has used the relationship between ER and 
soil moisture to infer the presence of roots and RWU dynamics in 
multiple dimensions and at high spatial and temporal resolutions 
(e.g., Michot et al., 2003; Jayawickreme et al., 2008, 2010; Garré 
et al., 2011, 2013; Robinson et al., 2012; Beff et al., 2013; Ma et al., 
2014; Fan et al., 2015; Bass et al., 2017; Whalley et al., 2017). These 
studies applied a traditional ER inversion method to retrieve the soil 
moisture distribution, wherein a potential field model is optimized 
to fit the measured potentials from the ER survey and translated 
to a static soil moisture distribution via a petrophysical relation-
ship. However, such traditional ER data inversions may result in 
nonunique and unconstrained solutions and produce physically 
unrealistic soil moisture distributions (Mboh et al., 2012).

To improve the application of ER methods to hydrological 
problems, researchers have proposed coupling the geophysical 
model with a site-specific hydrological model (Hinnell et al., 2010; 
Minsley et al., 2011; Singha et al., 2015). One approach to coupled 

hydrogeophysical inversion involves (i) forward modeling tran-
sient water fluxes, (ii) converting the final modeled soil moisture 
distribution into an ER distribution using a petrophysical rela-
tionship, (iii) forward modeling the potential field to compare the 
modeled and measured potentials, and then (iv) updating coupled 
model parameters to minimize differences between the observed 
and modeled ER data (Mboh et al., 2012). In such an approach, 
changes to the soil hydraulic parameters affect the soil moisture 
distribution via the hydrologic model; this change in simulated soil 
moisture alters the modeled electrical potential field.

There are three categories of parameters that are typically 
unknown in near-surface hydrogeophysical problems: petro-
physical parameters (PP), soil hydraulic parameters (SHP), and 
root parameters (RP). The PP describe the relationship between 
simulated soil moisture and subsurface ER. The SHP affect the 
soil water dynamics via water retention and infiltration models. 
The RP control modeled root physiology, including the growth 
and distribution of the roots, along with the relationships among 
potential transpiration, soil moisture, and RWU.

Several studies have used a coupled hydrogeophysical inver-
sion approach to successfully estimate SHP and transient soil 
moisture in both synthetic (Hinnell et al., 2010) and field (Mboh 
et al., 2012; Moreno et al., 2015; Tran et al., 2016; Thomas et al., 
2017) scenarios. Mboh et al. (2012) used ER data from a short 
(several hour) inflow experiment to estimate SHP. They found 
the ER data-only inversion more robust than just using cumulative 
inflow data and slightly worse than combining both data types in 
the objective function. Despite this, ER data without supporting 
hydrological data have been demonstrated to be sensitive enough 
to soil moisture dynamics to reasonably estimate SHP. Using a 
grain-size analysis and the Rosetta database (Schaap et al., 2001) 
to initialize the SHP, Moreno et al. (2015) used nine geophysi-
cal surveys throughout a year-long period to fit select SHP in a 
two-layer soil. The RP in this particular study were fixed (held 
constant) at reference values.

Despite the interest in this area of research, few if any stud-
ies have attempted to use a coupled hydrogeophysical inversion 
approach to characterize RWU dynamics. Root water uptake 
models that include the root distribution and water stress functions 
for RWU reduction have, to our knowledge, been parameterized 
with root or hydrological data inversions only. Hupet et al. (2003) 
used neutron probe water content data to estimate model param-
eters, including SHP for a one-dimensional homogeneous soil, 
and rooting depth and root length density for a maize (Zea mays 
L.) crop with mixed success; the RP were less well constrained in 
medium-textured soils. Schelle et al. (2012) completed a similar 
study, using daily lysimeter and matric potential data to estimate 
SHP in two layers, as well as a root distribution parameter. Using 
neutron probe soil moisture data, Vrugt et al. (2001) calibrated 
multiple parameters of a new flexible two-dimensional root dis-
tribution model and some SHP, with excellent agreement between 
measured and modeled soil moisture in two dimensions. Recently, 
Cai et al. (2018) demonstrated the use of a similar method to 
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parameterize several different water stress functions for one-
dimensional RWU to fit field observations of daily water content, 
with good agreement between modeled and observed root length 
density distributions.

Prior studies have provided convincing evidence that, sepa-
rately, (i) RWU models can be parameterized using inverted water 
content data (e.g., Hupet et al., 2003), and (ii) ER data can serve 
as a proxy for water content data and can be used to estimate 
SHP (e.g., Hinnell et al., 2010). Therefore, we hypothesized that 
RWU models can be parameterized in a coupled hydrogeophysi-
cal inversion using ER data, which to date has not been directly 
investigated. To test this hypothesis, we developed a method that 
builds on these two established concepts by estimating SHP and 
RP using a coupled hydrogeophysical inversion of ER data. We also 
incorporated the estimation of PP in the relationship between soil 
moisture and resistivity. Given the challenges posed by the lack 
of transient root data from the field, we sought to validate this 
novel approach with a synthetic one-dimensional proof-of-concept 
study. In addition to validating the method, we sought to identify 
the limitations that sparse data and parameter measurements and 
sensitivity errors might impose on this approach.

Informing the ER data with the known hydrology of the site 
reduces the nonunique solutions to only those that match a physi-
cal reality. Additionally, when soil water fluxes are modeled, losses 
from evaporation can be distinguished from transpiration as well 
as hydraulic redistribution. This is a particular benefit over time-
differential ER methods, which can only provide total gains or 
losses in soil moisture. Furthermore, the embedded hydrological 
model can then be used to simulate soil moisture conditions prior 
to, between, and after ER survey events. Using ER methods in this 
fashion to calibrate a process-based model also allows the model to 
be used to forecast soil moisture fluxes under hypothetical future 
climate conditions.

As with standard ER inversions, however, the petrophysical 
relationship must be known, which remains a challenge to any geo-
physical approach used to estimate hydraulic properties (Laloy et 
al., 2011). In addition, the behavior of some SHP parameters is not 
independent of others, making it difficult to estimate a full spa-
tial distribution of values. Roots themselves can also affect the ER 
signal; however, this has primarily been shown for much larger tree 
roots, whose resistance is distinguishable from the surrounding 
material (Amato et al., 2008). While there are added complexities 
with real field settings related to lateral heterogeneity, this does not 
necessarily preclude the establishment of a representative hydro-
logical model.

In this study, we established a framework for a robust, mini-
mally invasive, and cost- and labor-efficient way to calibrate the 
many parameters of site-specific hydrological models. We present 
an overview of the model components used to build the algo-
rithm, test the sensitivity of the parameters, and perform a series 
of synthetic one-dimensional modeling experiments to validate 
the algorithm. To ensure that the synthetic study reflects real-
istic conditions, we used climate data and measured soil profile 

characteristics from a study site at the Kellogg Biological Station 
in southwestern Michigan, described in more detail below. The 
approach detailed here is universally applicable and provides a path 
to investigate heterogeneous root and soil systems in two and three 
dimensions with limited a priori information.

 6Materials and Methods
We developed a coupled hydrogeophysical inversion algo-

rithm that (i) simulates the movement of water throughout the 
soil profile, (ii) converts snapshots of the transient soil moisture 
distribution to soil resistivity using a petrophysical relationship, 
(iii) simulates the potential field and ER data using a forward resis-
tivity model, and (iv) optimizes the parameters of the models by 
minimizing the difference between the modeled and measured 
ER data. This approach can estimate the SHP, RP, and PP that 
are often challenging to directly measure either in situ or with 
laboratory bench experiments.

Our algorithm simulates the hydrogeophysical processes 
using four publicly available codes (Fig. 1): the System Approach 
to Land Use Sustainability (SALUS) model (Basso et al., 2006) for 
potential evaporation and transpiration; HYDRUS (Šimůnek et 
al., 2005) for root growth (Hartmann et al., 2018), RWU (Feddes 
et al., 2001), hydraulic redistribution, variably saturated hydrology 
(Richards, 1931), snow hydrology, and heat transport (Chung and 
Horton, 1987); FWD2_5D (Pidlisecky and Knight, 2008) for the 
electrical potential forward calculations; and the global optimiza-
tion Shuffled Complex Evolution Algorithm, SCE-UA (Duan et 
al., 1992) for parameter estimation. Each of these four models and 
algorithms are described in more detail below.

To demonstrate and validate this inversion algorithm, our 
experiment involved three steps in which we (i) forward ran the 
algorithm with a set of reference parameters to generate a reference 
hydrological model and synthetic “measured” ER data, (ii) tested 
the objective function sensitivity to SHP, PP, RP, and (iii) tested the 
inversion algorithm under six scenarios that tested the influence of 
variations in data density and parameter uncertainty. We evaluated 
each of the six inversion results relative to the synthetic reference 
parameters, soil moisture, root distribution, and RWU data.

Reference Model
We developed a realistic plot-scale one-dimensional vertical 

model of maize in a three-layer soil, assuming uniform soil and 
root properties laterally (Fig. 2). We based this model on a test 
plot at the Kellogg Biological Station Great Lakes Bioenergy 
Research Center site in southwestern Michigan (described previ-
ously by Zenone et al., 2013). Actual data from this site for climate 
conditions, sediment grain size distributions, soil moisture, soil 
temperature, and petrophysical relationships were used for this 
synthetic model. This plot was also instrumented with electrodes 
for ER surveys to be used in future studies.

Hydrological modeling was conducted in HYDRUS, which 
solves Richards’ equation for unsaturated flow. Some HYDRUS 
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inputs, including potential evaporation and potential transpira-
tion, were estimated using the SALUS crop model (Basso et al., 
2006) and imported to HYDRUS. The SALUS model is a daily 
water and nutrient balance dynamic vegetation model that uses 
daily climate data to calculate potential evapotranspiration using 
the Priestley–Taylor equation. It also models the leaf area index 
to differentiate evaporation from transpiration (Ritchie, 1998). 
Daily values of potential evapotranspiration were disaggregated 
proportional to the hourly modeled sun position obtained from 
the MATLAB File Exchange and validated using NOAA’s Solar 
Calculator. HYDRUS was selected over SALUS for modeling 
RWU along with water and energy fluxes because while SALUS 

computes daily temperature and water balance within the root 
zone, HYDRUS has a finer vertical discretization and incorpo-
rates a more sophisticated hydrology algorithm. Daily soil moisture 
output from SALUS was also deemed insufficient due to the sen-
sitivity of ER to diurnal changes in soil moisture (Robinson et 
al., 2012).

For the purposes of the study, we assumed no error in the 
climate data inputs, soil temperature, leaf area index, potential 
evapotranspiration calculation, or soil layer boundaries. We 
assumed that hydraulically significant soil layering could be 
accurately identified from in situ textural classification, and that 
for this plot-scale study, these layer boundaries are horizontal. 
However, the model could be adapted to estimate layer boundar-
ies by allowing layer depths to vary. Weather stations are widely 
available at high spatial resolutions, making it easier to model tem-
perature dynamics and potential evapotranspiration. Crop models 
that focus on modeling yield such as SALUS are also well suited 
to modeling the leaf area index.

We chose to describe the root distribution in HYDRUS with 
the Vrugt model (Vrugt et al., 2001) because of its flexibility. The 
parameters of the reference Vrugt model were estimated to fit the 
normalized root distribution output from SALUS at the end of the 
growing season using an unconstrained nonlinear optimization 
(Fig. 3). The Vrugt model is

pz1
beta exp zv   

MRD MRD
x x

æ ö-- ÷ç= - ÷ç ÷çè ø
  [1]

where x is depth, MRD is the “maximum” rooting depth at which 
the root density becomes zero, and pz and zv are fitting param-
eters that alter the rate of exponential decay and set the depth 
of the MRD, respectively. A smooth exponential root distribu-
tion can be obtained by setting zv to zero. The calibrated root 
distribution (pz = 5 and MRD = 1.0 m, Fig. 3) is similar to the 
root density distributions observed for maize (Tardieu, 1988; 

Fig. 1. Schematic of the four-step coupled hydrogeophysical inversion algorithm that estimates petrophysical parameters (PP), soil hydraulic parameters 
(SHP), and root parameters (RP) to minimize the root mean square error (RMSE) between measured and modeled electrical potentials. Boxes contain 
the components of the algorithm, while labeled arrows describe the flow of output from one component to the other. Model codes used include the 
System Approach to Land Use Sustainability crop model (SALUS), a one-dimensional hydrological model (HYDRUS), an electrical resistivity forward 
model (FWD2_5D), and a Shuffled Complex Evolution optimization model developed at the University of Arizona (SCE-UA).

Fig. 2. Schematic diagram of the model profile with soil layers and 
plant roots overlain by a local weather station (with air temperature, 
wind speed, solar radiation, and precipitation), three buried tempera-
ture sensors, and 30 electrodes.
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Jackson et al., 1996). Because the decay of the exponential root 
distribution is largely dependent on the pz/MRD ratio (Eq. [1]), 
we estimated only pz in the optimization. An analysis of dif-
ferent pz and MRD values found that multiple combinations 
could closely replicate the observed root distribution. Assuming 
that the MRD value would not be known in reality, and it is the 
pz/MRD ratio that primarily influences the shape of the curve, 
MRD was fixed at 1.5 m for the tested scenarios. Although we 
chose the Vrugt root distribution model, any of the four root dis-
tribution models available in the HYDRUS root growth module 
could be parameterized with this coupled inversion algorithm. 
In addition, the models could be within the search space of the 
optimization, allowing even greater f lexibility.

The Feddes model (Feddes et al., 2001) was used in HYDRUS 
to simulate the reduction of potential transpiration during periods 
of water stress, which occur when the soil moisture is outside of a 
prescribed range. Water stress in the Feddes model is determined 
by four pressure head thresholds: h1, h2, h3, and h4. In the ideal 
pressure head range, between h2 and h3, water is extracted at the 
potential transpiration rate. When the pressure head is beyond the 
ideal range, (above h2 or below h3), the potential transpiration is 
proportional to the increase or decrease in pressure head. Beyond 
the pressure head limits for water extraction, h1 and h4, the reduc-
tion coefficient is 0, resulting in zero RWU. The parameter h2 can 
be dependent on the texture of the soil, while h3 can have an upper 
and lower threshold (denoted with a subscript H or L, respectively). 
Reference values of RP for maize, h1, h2 (soil-layer dependent), h3H, 
h3L, and h4 (Supplemental Table S2) were taken from Wesseling 
et al. (1991).

Grain size analysis from samples at the site provided sand, silt, 
and clay contents and bulk density at 0.1-m intervals. From this 
analysis, three distinct layers and the boundary locations between 

them were identified at 0.4 and 0.8 m. The soils are described 
as well-drained Alfisols with a silt loam layer over loamy sand, 
underlain by coarse sand (Fig. 2). The soil is classified as a Typic 
Hapludalf. The van Genuchten–Mualem model (van Genuchten, 
1980) was implemented in HYDRUS to model soil water retention 
and infiltration:
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where q r and q s are the residual and saturated water content, 
respectively, l is a tortuosity factor (held at 0.5 for this experiment), 
n and a are fitting parameters, Se is the effective water content, 
and Ksat and K are the saturated and variably saturated hydraulic 
conductivities, respectively, for each soil layer. These parameters, qr, 
qs, n, a , and Ksat, which are unique for each soil texture, comprise 
the SHP estimated in the inversion. Reference van Genuchten–
Mualem parameters were extracted from the Rosetta database 
(Schaap et al., 2001) (Supplemental Table S2) corresponding to 
the sand, silt, and clay contents in each layer and were input to the 
HYDRUS model.

The one-dimensional HYDRUS model was run hourly for 
12 mo starting in November 2009 and spatially discretized at 
0.02-m intervals to a depth of 1 m, then increasing geometrically 
by a factor of 1.25 to a depth of 6 m, for a total of 73 vertical nodes. 
The lower and upper boundaries of the model were controlled by 
free drainage and atmospheric conditions, respectively. Hourly pre-
cipitation and air temperature inputs to HYDRUS were obtained 
from an adjacent Michigan EnviroWeather Network station at 
the Long-term Ecological Research site (Fig. 4). Each HYDRUS 
simulation, for the reference, sensitivity, and test scenarios, was 
initialized with the same soil moisture distribution, which reflects 
realistic field conditions for the model start date.

Once the hydrological modeling was complete, static geo-
physical models were created at the desired sampling frequency 
(survey dates are shown on Fig. 4). The geophysical modeling 
consists of three steps (Fig. 1): (i) converting simulated soil mois-
ture to ER at a standard temperature (25°C), (ii) correcting for 
distributed subsurface temperatures on the survey date (Fig. 4), 
and (iii) forward-simulating the potential field for a synthetic ER 
survey. These steps were repeated for each survey date comprising 
the ER dataset.

Laboratory resistivity experiments were run to calculate an 
empirical relationship between soil moisture and ER measure-
ments. Sample material was placed in a 22.2- by 4- by 3.2-cm soil 

Fig. 3. The Vrugt equation (Eq. [1]) solved for depths up to 1.0 m 
with the perturbed initial parameters (orange dashed line) vs. those 
parameterized to fit the output from the SALUS model (yellow stars). 
Note that the dependent variable is on the x axis.
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box with metal plates for current transmission at the far ends. The 
resistance was measured using two electrodes near the center of the 
box while gradually increasing the water content in the sample (see 
details of this laboratory approach in Jayawickreme et al., 2010). 
This was repeated for nine soil samples, collected from each of the 
three soil layers at three adjacent plots. The power-law petrophysi-
cal relationship was fit to the observations for each nth soil layer 
(Supplemental Fig. S1):

nk
x n xa -r = q   [6]

where rx is the resistivity at depth x, qx is the water content at 
depth x, and an and kn are soil-specific empirical PP.

For this study, we made the simplifying assumption that 
there was no additional grain surface conductivity term in the 
petrophysical relationship for any soil layer. Given the frequency 
of precipitation events that flush out salts accumulated through 
evapotranspiration, we also assumed that the pore-water con-
ductivity did not undergo changes with time (Jayawickreme et 
al., 2010). However, this coupled inversion could be modified to 
incorporate solute transport within the hydrological model, allow-
ing the petrophysical relationship to be transient.

Subsurface resistivity is temperature dependent, thus it is 
important to account for the belowground temperature gradient. 
The site was also instrumented with high-temporal-resolution 
(every 2 h) temperature sensors (Thermochron iButton DS1922L) 
at three depths (0.26, 0.66, and 1.20 m). We generated realistic 
soil temperatures for the synthetic study using a heat transport 
model for soil temperatures at all nodes. Heat transport param-
eters (Supplemental Table S4) for the Chung and Horton soil 

temperature model (Chung and Horton, 1987) in HYDRUS were 
calibrated using soil and air temperature data from February to 
May 2010. The parameters were iteratively estimated for Layers 1, 
2, and 3, consecutively, with the HYDRUS model (non-growing 
season only) in inversion mode. The ER modeled at the standard 
25°C was corrected to the ER at the modeled temperature T for 
each node x using the linear model from Hayley et al. (2007):

( )25
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Once the temperature-corrected ER distribution is calculated, 
a synthetic ER survey can be modeled. The electrode array used to 
generate the synthetic data mirrors the installation at the Kellogg 
Biological Station site and is comprised of 30 surface electrodes 
spaced 0.3 m apart. This array length was chosen to focus on the 
upper 2 m of the profile. Due to the assumptions about lateral 
homogeneity in the model, the 13 unique electrode geometries 
in dipole–dipole configuration were modeled with the FW2_5D 
code (Pidlisecky and Knight, 2008), creating a one-dimensional 
profile of effective measurement depths. The electrical potential 
field forward modeling code, FW2_5D, allows the input ER dis-
tribution to vary in the x and z directions, assuming homogeneity 
in the y direction. Because our hydrological model varied only in 
the z direction, we extrapolated our calculated one-dimensional 
ER laterally. The FW2_5D model was discretized such that errors 
for our electrode array were 0.7% on average from the analytical 
solution for a homogenous Earth, yet still efficient. The x dimen-
sion grid spacing was 0.15 m (half the distance between electrodes) 
across the span of the center of the model, increasing by a factor of 
two in each direction from the center for a total model length of 
24 m. The vertical discretization was the same as that described 
for the HYDRUS model above.

To complete the coupled hydrogeophysical inversion, we use 
the synthetic ER data from each survey to estimate the SHP, PP, 
and RP through optimization. The robust SCE-UA global opti-
mization algorithm minimizes an objective function F:

( )2
meas mod 

V V
n

å -
F=   [8]

between the modeled (Vmod) and “measured” (Vmeas) synthetic ER 
data by evolving the coupled model parameters. Because the soil 
moisture profile output from the hydrological model is updated 
with each optimization iteration, the soil ER distribution also 
changes according to the petrophysical model. This in turn alters 
the modeled potential field and therefore the modeled ER data. 
This optimization continues until the resulting modeled ER data 
match the measured ER data within the optimization specified 
closure criteria. The SCE-UA blends several traditional optimiza-
tion approaches to efficiently find the global minimum. It starts by 
randomly sampling a large population from the parameter space. 
This population is then divided among a number of complexes, 

Fig. 4. Measured maximum daily air temperature (orange) and daily 
precipitation (blue), with SALUS-modeled leaf area index (purple) 
throughout the model year. The electrical resistivity (ER) survey dates 
comprising the synthetic datasets for the data density scenarios (DD1, 
DD2, and DD3) are marked in the bottom right. All site characteriza-
tion scenarios as well as the sensitivity analysis share the same survey 
dates with DD1.
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which each evolve independently toward a minimum. After a given 
number of evolutions, the complexes shuffle, divide, and begin 
evolving again. This is repeated until convergence is reached. The 
size of the population and the number of complexes can be scaled 
with the complexity of the problem.

Synthetic Experiments
To test the ability of the coupled hydrogeophysical inversion 

algorithm to estimate SHP, PP, and RP from ER data, we created 
synthetic ER datasets using a single forward run of the reference 
model. The reference inputs and parameters used to make the 
synthetic data were then assumed to be the “true” values in sub-
sequent analyses. To increase the difficulty of the optimization, 
randomly distributed noise (±0.5%) was added to all synthetic ER 
data. This relatively low amount of error was chosen so that the 
impact of the tested data density and parameter error would be 
clearer. It also reflects the low amount of error (median 0.12%) 
that was observed between reciprocal measurements for this array 
in preliminary data analysis from the field site. We next tested the 
sensitivity of a biweekly (every 2 wk) ER survey dataset to each 
parameter. Finally, we conducted a series of inversion experiments 
to retrieve the reference SHP, PP, and RP via iterative optimization 
starting from some perturbed initial estimate of those parameters.

Parameter Sensitivity
To determine which parameters to estimate, which to fix, and 

how to perturb parameters for each inversion scenario, we con-
ducted a sensitivity analysis using forward runs of the algorithm. 
Univariate “one-dimensional” sensitivity was tested for each of the 
SHP, RP, and PP. Recognizing that some co-dependency exists 
between parameters, particularly with a (Huisman et al., 2010, 
Moreno et al., 2015), we expected the global optimization algo-
rithm to overcome this in minimizing the objective function. For 
this analysis, the algorithm was run sequentially 20 times for each 
parameter, with values distributed evenly across a predetermined 
parameter space, while the rest of the parameters were held fixed 
at their reference values. The ER data selected to test the sensitiv-
ity was a biweekly dataset extracted from the reference model run 
at a 14-d interval from late April 2010 through September 2010 
for a total of 12 surveys, comprising 13 measurements each (156 
measurements). We quantified the sensitivity of each tested value 
by computing the root mean square error (RMSE) between the 
reference synthetic ER data and the perturbed ER data modeled 
at the same biweekly frequency.

The upper and lower limits for each parameter space 
(Supplemental Table S2) were chosen based on either (i) physical 
limits for parameters with narrow realistic ranges such as with 
n, a , qr, and qs (Schaap et al., 2001) or (ii) fixed ranges from the 
reference for parameters with greater variability. For example, 
upper and lower bounds for Ksat were set plus or minus two 
orders of magnitude around the reference value, given the large 
uncertainty of that parameter. The petrophysical parameter limits 
were set ±10% the value used in the reference run based on the 

variability observed in the field data (Supplemental Fig. S1). Limits 
on the Feddes RP were set to ±30% of the reference value to see 
if sensitivity to those parameters existed at levels beyond what has 
been previously tested (perturbation of 1% in Hupet et al., 2003). 
Bounds for pz were chosen to allow the “effective” MRD to vary 
from 0.5 to 1.5 m.

Sensitivity Analysis Results
The results from the sensitivity analysis show that as param-

eters deviated from their reference values, the RMSE between the 
reference ER data and the perturbed ER data increased nearly lin-
early (Fig. 5). The SHP from the first soil layer were significantly 
more sensitive than those from deeper layers, with the exception 
of a , which had only slightly increased sensitivity in the first layer. 
As in prior research (Mboh et al., 2012), we found very little sensi-
tivity to the Feddes RP relative to the SHP with the exception of 
h4. This was not surprising because h4 controls the point at which 
RWU ceases under very dry conditions. However, we observed 
that the RP pz had roughly the same sensitivity as the PP (note 
that pz had a much larger parameter space).

A threshold RMSE value (Eq. [8]) of 0.1 was chosen to isolate 
the highest sensitivity parameters from the rest, which included 

Fig. 5. Sensitivity analysis results for (a) root parameters (RP), includ-
ing the Vrugt equation (Eq. [1]) root distribution parameter, pz, and 
the Feddes model parameter h4; (b) petrophysical parameters (PP), 
including Archie’s equation (Eq. [6]) fitting parameters, ai and ki; 
and (c) soil hydraulic parameters (SHP), including van Genuchten–
Mualem equation (Eq. [2]) fitting parameters ni and ai, saturated 
hydraulic conductivity Ksat,i, saturated volumetric water content qs,i, 
and residual volumetric water content qr,i for layers  = 1 to 3. The two 
sensitivity thresholds at 0.03 and 0.1 are shown as horizontal gray and 
black dashed lines, respectively. Note that the y scale for root mean 
square error (RMSE) varies by parameter. The range of tested values 
corresponds to the upper and lower limits used in the parameter esti-
mation, which varies by parameter. Most RP had no sensitivity in the 
tested range and are not shown.
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all the SHP and PP from the first soil layer. The eight high-sen-
sitivity parameters that fell into this category included the SHP 
n1, a1, Ksat,1, qr,1, and qs1, the PP a1 and k1 (numerical subscripts 
denote soil layers 1, 2, and 3, where applicable), and the RP pz. A 
secondary threshold of 0.03 was chosen to include the remaining 
parameters that had lower sensitivity. This category also included 
eight parameters: for SHP, n2,3, a2,3, Ksat,2,3, q s,2, and the RP 
h4. The remaining RP (all Feddes except h4, not shown), the SHP 
qr,2,3 and qs,3, and the PP a2,3 and k2,3 were determined to have 
essentially no sensitivity because perturbing them had no discern-
ible effect on the simulated ER values.

Inversion Scenarios
To test the ability of the inversion to estimate the SHP, PP, 

and RP under different conditions, we evaluated a suite of six syn-
thetic data inversion scenarios. These experiments were designed to 
test the robustness of the parameter estimation to decreasing data 
quality and quantity. We compared model output and parameter 
estimates for inversions using three data density (DD) types, plus 
three levels of site characterization (SC) with the same data density.

To test the dependence of the optimization on data density, 
we created three scenarios mimicking three frequencies of field sur-
veys (Fig. 4). The first scenario, DD1, tested a relatively long-term 
(6-mo) ER dataset, with moderate survey frequency (biweekly). 
The dataset for DD1 was used for the parameter sensitivity analy-
sis discussed above and all three SC scenarios (described below); 
it has 12 surveys with 13 measurements each, for a total of 156 
measurements from April to September.

A second scenario, DD2, tested a short-term (1-mo) high-
frequency (every 3 d) ER dataset to simulate the effect of using 
data exclusively from the peak growing season but spanning less 
diverse seasonal weather conditions. This dataset covers a large 
precipitation–infiltration event, along with the subsequent 
transpiration-dominated drying period. The data were extracted 
from the reference run at a 3-d interval for the period from July 
to August 2010, for a total of 12 surveys, again comprised of 13 
measurements each (156 measurements total).

A third scenario, DD3, tested the effectiveness of a lower fre-
quency (monthly) ER dataset during the same 6-mo period as the 
dataset in DD1. The data for this scenario were extracted from the 
reference run at a 4-wk interval, for a total of six surveys with 13 
measurements each (78 total measurements). This dataset is half 
the size of the other two DD scenarios. In all three DD scenarios, 
the eight highest sensitivity parameters were estimated, while the 
remaining low- and no-sensitivity parameters were fixed at their 
reference values.

To test the robustness of the model to various levels of 
site characterization, we again estimated the high-sensitivity 
parameters but introduced varying levels of error into the other 
parameters. These three scenarios included SC1, where the low- 
and no-sensitivity parameters were assumed well known and were 
fixed with minimal error (1.5–40%) relative to reference values; 
SC2, where these parameters were moderately well known and 

fixed with higher error (2.8–81%); and SC3, where the low-sen-
sitivity parameters were assumed completely unknown and were 
included in the parameter estimation along with the high-sensitiv-
ity parameters. In this scenario, the no-sensitivity parameters were 
fixed at their reference values. All three SC scenarios used the same 
synthetic dataset with biweekly ER surveys as that in DD1. In each 
of the six scenarios, the same starting values were used for the high-
sensitivity parameters being estimated. With the exception of qr, 
qs, and the PP parameters a and k, which were started at ±5%, all 
other parameters were started ±30% away from the reference value.

To determine how much fixed error to add to the low-sen-
sitivity SHP for SC1 and SC2, we considered the uncertainty in 
estimating each parameter of the retention function with stan-
dard field methods. This was analyzed by Baroni et al. (2010), who 
provided a table of standard deviations for each parameter of a 
three-layer soil. We used the standard deviation from soil Layer 3 
in their analysis, which was most similar to the sandy soils at our 
site. For the PP in our model, we calculated the standard deviation 
across the three replicate experiments that were conducted at the 
study site for parameters a and k in each soil layer.

Both the low- and no-sensitivity parameters were fixed at a 
value half a standard deviation (for SC1) or a full standard devia-
tion (for SC2) from the reference value. The large variation in 
uncertainty across parameters meant that some were fixed closer to 
the reference values than others. For example, in SC2, parameters 
with less uncertainty, such as n, were fixed 3% away from the refer-
ence values, while high-uncertainty parameters like a were fixed 
72% away. The fixed values used for these scenarios are shown in 
Supplemental Table S2.

Scenario SC3 tested the feasibility of estimating both the 
high- and low-sensitivity parameters (a total of 16). This last sce-
nario was designed to replicate the most likely field scenario, where 
without conducting a relatively intensive laboratory bench experi-
ment, no a priori information would be available for the SHP. The 
goal was to determine if the inversion algorithm was robust to 
local minima from the large number of unknowns. If so, the most 
critical parameters affecting root water dynamics and water fluxes 
would still be accurately estimated.

For the SCE-UA algorithm, we selected a number of com-
plexes almost equal to the number of unknowns. For all scenarios 
except SC3, seven complexes were used. Optimization continued 
until five consecutive shuffles (?200 iterations each) did not 
improve the objective function by 0.1%. The convergence crite-
rion was generally met after ?4000 iterations. The number of 
complexes in the SCE-UA algorithm was doubled to 14 for the 
SC3 scenario due to the larger number of free parameters. In that 
case, the stopping criteria of 10,000 iterations was reached before 
convergence; however, three consecutive shuffles had not improved 
the objective function at that point. Final estimated parameter 
values and model outputs were from the iteration with the lowest 
objective function value.

Our study was particularly interested in root water dynamics 
and therefore we chose to quantify the success of our approach 
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with four outputs from HYDRUS that capture the root fraction 
with depth, the cumulative RWU, the soil-water retention func-
tion (Eq. [2]), and transient soil moisture. Each inversion scenario 
was validated by calculating the RMSE between the synthetic 
model and the hydrologic model with estimated parameters.

 6Results and Discussion
The capability of the hydrogeophysical inversion algorithm is 

graphically illustrated in Fig. 6. For this figure, scenario SC3 was 
chosen to best demonstrate the robustness of the algorithm when 
all 16 parameters were estimated. The impact of the initial condi-
tions on the root water and soil moisture dynamics can be observed 
in comparison to the reference model in Fig. 6. The hydrologi-
cal model with the starting values has a deeper root distribution, 
more RWU, and a steeper water retention curve. Regardless of 
the significant error in the starting values, the inversion algorithm 
estimated the root dynamics and the soil moisture curve well, even 
prior to the start of the ER surveys.

Regardless of the scenario, there was excellent agreement 
between the reference and optimized model output (Fig. 7; Table 
1). Even in cases where the fixed error in other SHP and RP was 
large, the inversion found a unique solution for the root distribu-
tion within 10% of the reference distribution. We also observed 
that the cumulative RWU was estimated within 0.01 m for all 
scenarios with the exception of SC2, which was off by 0.015 m 
(Fig. 7). The transient soil moisture distribution was also closely 

matched, despite some nonuniqueness in the SHP. We observed 
no residuals greater than 0.05 cm3 cm−3 water content, even in 
the worst performing scenario, SC2 (Fig. 7). The soil-water reten-
tion function, which is calculated with the estimated SHP (except 
Ksat, which is not used to calculate soil-water retention), was also 
estimated within 0.02 cm3 cm−3 of the reference model for each 
scenario. In Scenario SC3, the SHP perturbed by 30% to start were 
estimated within 5% of their reference value with the exception of 
a . In Layers 2 and 3, a did not have a strong sensitivity, improving 
only to 28%, while in Layer 1 it was improved to 15% from the ref-
erence value. The value of Ksat in all layers, however, was estimated 
very well (within 2% of the reference). The parameter estimation 
results from Scenario SC3 are reported in Supplemental Table S1. 
The optimization was most sensitive to the soil moisture distribu-
tion, and although some parameters were not estimated exactly, the 
soil water retention function (Fig. 7) and hydraulic conductivity, 
Ksat, were well matched.

We calculated uncertainty in each estimated parameter by 
calculating the ±1 standard deviation in the parameters from the 
iterations with 80% or more improvement in the objective func-
tion (Vrugt et al., 2003). Table 2 shows the parameter uncertainty 
for the eight high-sensitivity parameters from Scenario SC3. Most 
were estimated within ±1 standard deviation of the reference value. 
The uncertainty in parameter estimates for the other five scenarios, 
and the low-sensitivity parameters from SC3, can be found in the 
supplemental material (Supplemental Table S1). The low-sensi-
tivity parameters estimated in SC3 were all estimated within ±1 

Fig. 6. HYDRUS output for (a) root fraction, 
(b) root water uptake (RWU) during the grow-
ing season, (c) the van Genuchten–Mualem 
model retention curve, and (d) soil moisture (q) 
at 0.2 m with electrical resistivity survey dates 
for site characterization Scenario 3 (SC3) in 
green. The estimated values from SC3 are plot-
ted vs. initial values and reference values. The 
results from the other five scenarios were very 
similar to SC3 and are not shown here. Note 
that the HYDRUS outputs were not used in 
the parameter estimation process, rather they 
were used only to validate the approach.
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standard deviation of the reference value except a2 and a3. The 
uncertainty in the 16 estimated parameters from Scenario SC3 is 
shown graphically in Supplemental Fig. S2 and S3. Each scenario 
converged to generally the same result, despite varying the number 
of estimated parameters and imposed error.

In the DD tests, the model was robust to the quantity and 
timing of the data used in the objective function. The high-tem-
poral-frequency data (DD2) covered only one large infiltration and 
subsequent drying event but was still able to estimate the SHP 
quite well and provided the best estimate of the RWU. This is 
likely due to the fact that RWU was dominant during the period 
covered by the data. However, a month-long dataset too early in 
the growing season may not capture later RWU since there would 
be no sensitivity to the mature root distribution.

We found that even with half as much data (DD3), results 
were still good, indicating that the approach would likely be suc-
cessful even if data collection opportunities were limited by travel, 
time, or equipment constraints. While six datasets is very sparse 
compared with the daily or hourly water content data typically 
used in hydrological inversions such as Moreno et al. (2015), we 
found it sufficient for this purpose. The first scenario (DD1), with 
moderately spaced data across the entire growing season, otherwise 

yielded the best fit of the root distribution and soil moisture, indi-
cating that a longer term dataset at frequent intervals is preferable 
to a shorter or sparser one.

In the SC tests, we introduced parameter error to the inver-
sion. As expected, even low error was detrimental to the estimation 
of the high sensitivity parameters, particularly for pz and a , with 
SC1 being among the worst across all three metrics (Table 1). 
Higher fixed error in SC2 led to the highest RMSE in two metrics 
and the second highest in the third and limited reduction in the 
objective function. Despite this, the root distribution, RWU, and 
soil moisture matched the reference model quite well, although 
with generally higher residuals than the DD scenarios (Fig. 7). The 
soil moisture dynamics of the first layer were not highly dependent 
on the dynamics of the layers below and were thus still able to be 
well estimated by the inversion.

While increasing the number of parameters in the SCE algo-
rithm for SC3 slowed the convergence time by a factor of four, 
we observed that the algorithm did a much better job estimating 
the high-sensitivity parameters than in the scenarios with fewer 
free parameters but with fixed parameter error (SC1 and SC2). As 
observed by Hupet et al. (2003), despite the low sensitivity of the 
SHP in Layers 2 and 3, fixing these properties at incorrect values 
considerably impeded the algorithm from reducing the objective 

Fig. 7. Residuals of root fraction, root water 
uptake (RWU), van Genuchten–Mualem 
model retention curve, and soil moisture 
(q) at 0.2 m for (a–d) data density and 
(e–h) site characterization (SC) scenarios. 
The low residuals for all scenarios show 
that there was agreement with the reference 
values; SC1 and SC2 generally had higher 
residuals. Note the y axis range differences.
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function (Table 1). In contrast, allowing those parameters to be 
estimated in concert with the high-sensitivity parameters resulted 
in a better fit of the root and soil moisture dynamics (Fig. 6; Table 
1). The optimization algorithm was robust to the large number of 
unknowns in this scenario.

We note that SC3 also improved the soil moisture estimates 
in Layer 1 from DD2 and DD3 and the root distribution esti-
mate from DD2 (Table 1). This indicates that the timing of the 
data played a role, as we observed that every other week data with 
estimated low-sensitivity parameters (SC3) performed better 
than sparser data with perfect low-sensitivity parameters (DD2 
and DD3). This is likely because this dataset captured the great-
est variety of soil moisture regimes. This scenario was also able to 
estimate parameters in all three types of soil present at the Kellogg 
Biological Station field site, indicating that this approach is not as 
limited by texture or depth as was expected.

Contrary to Hupet et al. (2003), we did not observe a limi-
tation in parameter estimation capacity for the medium-fine 
textured first soil layer. We imposed a small amount of error in 
the ER data but assumed that model features such as layer bound-
aries and basic climate inputs would be easy to obtain at the field 
scale and thus were held fixed at the reference values for this study. 
Hinnell et al. (2010) concluded that results with low residuals, as 
presented here, are likely only obtainable with a physically rep-
resentative hydrological model, and future work should explore 
those limitations. Our results show that even with large parameter 
bounds and conservative starting values for the SHP, the soil mois-
ture and root dynamics could be estimated accurately.

 6Conclusions
In this study, we developed and validated the use of a novel 

hydrogeophysical inversion algorithm to estimate SHP, PP, and 
RP simultaneously for a multilayered soil. Our results indicate 
that this is a promising approach. Through the accurate estima-
tion of parameters that control root and soil moisture dynamics 

within the coupled hydrogeophysical model, the synthetic tran-
sient root and soil moisture distributions across a variety of data 
densities and site characterization scenarios were retrieved. This 
suggests that transient soil moisture processes depend on a unique 
root distribution, which is critical because it is very difficult to 
independently measure the effective root distribution in a field 
setting. While prior research has studied the use of direct soil 
moisture data to inversely estimate root parameters, we found 
that data from a simple ER electrode array collected during part 
of the growing season was capable of the same, even when errors 
were present in the petrophysical relationship and data were more 
limited. Relative to approaches that use water content data for the 
hydrological inversion, the ER data was temporally sparse, yet this 
did not prove to be a limitation. The high spatial coverage achiev-
able with this noninvasive approach appears to be as useful for 
capturing root water dynamics. The approach was very successful 
in the most realistic scenario (SC3), with poor a priori site char-
acterization of the three soil layers and many unknown parameter 
values. This methodology provides a minimally invasive and cost-
effective approach to better understand root water dynamics in 
a variety of settings. This is a promising result for the study of 
perennial and/or deep root systems that are particularly difficult 
to characterize with traditional methods.

While a realistic field setting can be expected to contain 
varied topography, soil heterogeneities, and larger root systems, 
ER data are well suited to capture such variability. The capa-
bilities of modern computing and robust parameter estimation 
algorithms make it possible to model increasingly complex 

Table 1. Root mean squared error (RMSE, multiplied by a factor of 100 
for display purposes) between the reference and optimized estimates 
of the root distribution, daily soil moisture in Layer 1 (at 0.2 m), and 
cumulative root water uptake (RWU). Superscripts are used to rank 
each scenario within that metric (1 being the best fit).

 Scenario
Root 
distribution

Soil 
moisture RWU

Data density scenarios

DD1–2 wk data 0.03141 0.6421 0.4242

DD2–3 d data 0.05544 1.163 0.2261

DD3–4 wk data 0.03362 1.445 0.5053

Site characterization scenarios

SC1–low error in low-sensitivity parameters 0.1776 1.344 0.7145

SC2–high error in low-sensitivity parameters 0.1165 1.606 1.606

SC3–estimate low-sensitivity parameters 0.04893 0.8442 0.5444

Table 2. Uncertainty in the eight high-sensitivity parameters estimated 
in site characterization Scenario SC3: the petrophysical parameters 
(PP) from Layer 1, Archie’s equation (Eq. [6]) fitting parameters a1 and 
k1; the root parameter (RP), Vrugt equation (Eq. [1]) parameter pz; and 
the soil hydraulic parameters (SHP) from Layer 1, van Genuchten–
Mualem equation (Eq. [2]) fitting parameters n1 and a1, saturated 
hydraulic conductivity Ksat,1, saturated volumetric water content qs,1, 
and residual volumetric water content qr,1. We calculated the standard 
deviation (s) in parameters from the iterations with >80% improve-
ment in objective function. Most high-sensitivity parameters were 
estimated within ±1s of the reference value.

Parameter Reference SC3 estimate Mean s

PP

 a1 16.21 16.29 16.26 0.34

 k1 1.01 0.99 0.98 0.020

RP

 pz 8.14 8.66 8.34 1.29

SHP

 n1 1.32 1.37 1.38 0.06

 a1
2.70 2.29 2.25 0.37

 log(Ksat,1) -5.79 -5.87 -5.80 0.37

 qs,1
0.39 0.40 0.40 0.021

 qr,1
0.066 0.071 0.070 0.004
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systems. Future work will expand to two and three dimensions 
to take full advantage of ER’s ability to image spatial and tem-
poral changes at the field scale. With the successful validation of 
the method that identified a unique transient root distribution, 
we plan to repeat the inversion with ER data from the Kellogg 
Biological Station Great Lakes Bioenergy Research Center field 
site for a variety of biofuel crops.
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