Long-term evapotranspiration rates for rainfed corn vs. perennial bioenergy crops in a mesic landscape

Abraha, Michael, Michigan State University, ⁽ⁱ⁾ https://orcid.org/0000-0001-8952-9477 Chen, Jiquan, Michigan State University, ⁽ⁱ⁾ https://orcid.org/0000-0003-0761-9458 Hamilton, Stephen K., Michigan State University Robertson, G. Philip, Michigan State University abraha@msu.edu, jqchen@msu.edu, hamilton@msu.edu, robert30@msu.edu Publication date: October 29, 2019 Publisher: Dryad https://doi.org/10.5061/dryad.7m0cfxpq1

Citation

Abraha, Michael; Chen, Jiquan; Hamilton, Stephen K.; Robertson, G. Philip (2019), Long-term evapotranspiration rates for rainfed corn vs. perennial bioenergy crops in a mesic landscape, v2, Dataset, <u>https://doi.org/10.5061/dryad.7m0cfxpq1</u>

Abstract

Hydrologic implications of the conversion of agricultural or conservation lands for annual vs. perennial bioenergy crop production are scarce. We converted three 22 year-old Conservation Reserve Program (CRP) grasslands and three 50+ year-old conventionally tilled corn-soybean rotation agricultural (AGR) lands to no-till corn, switchgrass (*Panicum virgatum* L.) or restored prairie. A seventh site was maintained in the preexisting CRP grassland dominated by smooth brome grass (*Bromus inermis* L.). We measured evapotranspiration (ET) using the eddy covariance method on all fields for over more than nine years (2009-2018). The ET data are presented for annual, growing season, and non-growing seasons. The difference in ET between corn and perennial crops is also presented for all seasons. In addition, aboveground net primary productivity (ANPP) during peak growing season is presented.

Methods

Water vapor concentrations (LI-7500 IRGA, LI-COR Biosciences, Lincoln, NE, USA) and wind velocity (CSAT3 three-dimensional sonic anemometer, Campbell Scientific Inc. Logan, UT, USA) were sampled at 10 Hz frequency using open-path eddy covariance (EC) method in southwest Michigan at seven

agricultural fields over 10 years (2009–2018). The data were analyzed using EdiRe software (University of Edinburgh, v 1.5.0.32, 2012) to compute half-hourly evapotranspiration (ET) from all fields. Missing or poor quality data were replaced using a standardized gap-filling algorithm. The study was conducted at the Kellogg Biological Station (KBS) Great Lakes Bioenergy Research Center (GLBRC) Scale-up fields.

Funding

Department of Energy, Office of Science, Office of Biological and Environmental Research, Award: DE-SC0018409 and DE-FC02-07ER64494

National Science Foundation Long-term Ecological Research Program, Award: DEB 1637653 and 1832042

References

This dataset is supplement to <u>https://doi.org/10.5061/dryad.17g36j4</u>

This dataset is supplement to https://doi.org/10.5061/dryad.sc41rn3

This dataset is supplement to <u>https://doi.org/10.5061/dryad.224rg77</u>

Files

2 files for this dataset

Abraha_2019_HP_ETrates.xlsx	32.49 kB	application/vnd.openxmlformats- officedocument.spreadsheetml.sheet
Readme_Abraha_201HR_ETrates.docx	23.73 kB	application/vnd.openxmlformats- officedocument.wordprocessingml.document

License

This work is licensed under a <u>CC0 1.0 Universal (CC0 1.0) Public Domain Dedication</u> license.

This releases your work to the public domain for any use.