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Soybean (Glycine max) is an important leguminous crop that is grown throughout
the United States and around the world. In 2016, soybean was valued at $41 billion
USD in the United States alone. Increasingly, soybean farmers are adopting alternative
management strategies to improve the sustainability and profitability of their crop.
Various benefits have been demonstrated for alternative management systems, but
their effects on soybean-associated microbial communities are not well-understood.
In order to better understand the impact of crop management systems on the
soybean-associated microbiome, we employed DNA amplicon sequencing of the
Internal Transcribed Spacer (ITS) region and 16S rRNA genes to analyze fungal and
prokaryotic communities associated with soil, roots, stems, and leaves. Soybean plants
were sampled from replicated fields under long-term conventional, no-till, and organic
management systems at three time points throughout the growing season. Results
indicated that sample origin was the main driver of beta diversity in soybean-associated
microbial communities, but management regime and plant growth stage were also
significant factors. Similarly, differences in alpha diversity are driven by compartment
and sample origin. Overall, the organic management system had lower fungal and
bacterial Shannon diversity. In prokaryotic communities, aboveground tissues were
dominated by Sphingomonas and Methylobacterium while belowground samples were
dominated by Bradyrhizobium and Sphingomonas. Aboveground fungal communities
were dominated by Davidiella across all management systems, while belowground
samples were dominated by Fusarium and Mortierella. Specific taxa including potential
plant beneficials such as Mortierella were indicator species of the conventional
and organic management systems. No-till management increased the abundance of
groups known to contain plant beneficial organisms such as Bradyrhizobium and
Glomeromycotina. Network analyses show different highly connected hub taxa were
present in each management system. Overall, this research demonstrates how specific
long-term cropping management systems alter microbial communities and how those
communities change throughout the growth of soybean.
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INTRODUCTION

Soybean (Glycine max L.) is the third most valuable plant crop
worldwide with important uses in feed, as an oilseed crop, and
as a nutritional source (Food and Agriculture Organization of
the United Nations, 2012). Alternative cropping strategies are
becoming increasingly common in row crop agriculture in order
to manage resource inputs and soil health (Claassen et al., 2018).
For example, the use of no-till and reduced tillage strategies have
increased in row crops since the early 2000’s in the United States
(Claassen et al., 2018). Reduced tillage strategies are especially
prevalent in soybean, representing 70% of planted acreage in
2012 (Claassen et al., 2018). In addition to time and fuel-cost
savings, no-till farming deposits organic carbon closer to the
surface of the soil, which acts as an organic mulch and may lead to
improved crop growth and health (Pan et al., 2009; Powlson et al.,
2014). In wet conditions, however, plant fungal pathogens can
sporulate on previous years’ vegetation so no-till management
regimes may increase disease pressures (Sharma-Poudyal et al.,
2017). In addition to harboring pathogens on plant material,
no-till management may allow diseases to persist by increasing
soil moisture and slowing soil warming as demonstrated with
plant-pathogenic oomycetes, such as Pythium and Phytopthora
(Licht and Al-Kaisi, 2005; Broders et al., 2007). Under drought
conditions, no-till corn and soybean crops have shown yield
improvements, which has been attributed to increased soil
moisture retention (Verhulst et al., 2011; Daigha et al., 2018).
These factors and others may contribute to reports of increased
grain yield for no-till managed soybean at several sites, including
historically at the Kellogg Biological Station (KBS) Long Term
Ecological Research (LTER) site (Pittelkow et al., 2015; Robertson
et al., 2015).

In addition to reduced-tillage strategies, organic farming is
another important alternative management strategy. In 2016, US
organic soybeans were valued at more than $78 million US dollars
(USDA, 2017). Acreage of organic field crops has increased
since the 1990s, yet the share of total soybeans considered to
be certified organic remained below 1% in 2015 (McBride and
Greene, 2015). Although farmers must weigh the considerations
mentioned above in determining management strategies, many
soybean crops are managed with conventional tillage regimes.
Tilling reduces plant material left in fields, which is a source of
fungal disease propagules that then can be transferred to live
plants; which has been demonstrated with Rhizoctonia oryzae
(Schroeder and Paulitz, 2006).

It is also important to consider the effect of management
systems on the plant and soil microbiome. Previous studies have
investigated the effect of tillage regimes in conventional and
organic wheat (Hartman et al., 2018) and corn (Wattenburger
et al., 2019). These studies found that the management system
influenced microbial community composition in roots and soils
(Li et al., 2012; Hartman et al., 2018). In contrast, a whole plant
microbiome study on root, stem, and leaf organs of wheat at
the KBS-LTER found that the impact of management system
was subtle (Gdanetz and Trail, 2017). Studies investigating the
impact of management regime on the soybean microbiome have
focused on specific bacterial taxa. One such study showed that

conventional management reduces the diversity of Rhizobium
populations associated with soybean (Hungria et al., 2006),
while another study demonstrated that the relative abundance of
Acidobacteria was reduced in soybean cultivated soils compared
to forest soils (Navarrete et al., 2013).

The stage of plant growth at sampling is another important
source of microbial community variation that has been observed
in agricultural systems including biofuel crops and soybean
(Sugiyama et al., 2014; Grady et al., 2019). For example, it
was demonstrated that in the soybean rhizosphere, the relative
abundance of Bacillus, Rhizobium, and Bradyrhizobium increased
throughout the growing season (Li et al., 2012). In addition to
composition shifts, a study on the wheat microbiome found that
alpha diversity of prokaryotic communities increased throughout
the growing season in both above and belowground plant
tissues, but this trend was less clear for fungal communities
(Gdanetz and Trail, 2017).

Here we characterize the fungal and prokaryotic communities,
associated with individual soybean plants grown as part of a
corn-soy-wheat rotation system under conventional, no-till, and
organic management systems for nearly 30 years, to determine
the impact of cropping management system on the soybean
microbiome throughout a growing season. This study is part
of a long term field experiment on the effect of agricultural
management on plant and soil microbiomes in the corn-soy-
wheat rotation at the KBS LTER, and follows previous research
on the wheat-associated microbiome (Gdanetz and Trail, 2017).
Although the present study is limited by representing a single
site and season, results presented here will be available for
future longitudinal microbiome studies from the same site
under the consistent management provided by the KBS LTER.
The organic management plots were planted with a non-
genetically modified soybean variety to make it certified organic,
while the no-till and conventional management plots were
planted with a roundup ready genetically modified variety.
Fungal and bacterial communities associated with soil, root,
stem, and leaf compartments were characterized at three time
points during the 2018 growing season. Management regime
and plant developmental stage were hypothesized to impact
the structure of the soybean microbiome. More specifically,
we expected to see distinct differences between no-till and
conventional/organic belowground microbial communities, due
to microenvironment changes associated with tilling (Giller et al.,
2015). In aboveground plant compartments, based on previous
work done on wheat at the KBS LTER, we expected that variation
in microbial communities would be primarily driven by growth
stage (Gdanetz and Trail, 2017). To the best of our knowledge,
this study represents the first characterization of the effect of
agricultural management regime on the soybean microbiome in
soil, roots, stems, and leaves across the growing season.

MATERIALS AND METHODS

Sample Site and Management Systems
All samples were collected from the Michigan State University
(MSU) W.K. KBS LTER crop rotation experiment in Hickory
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Corners, MI, United States. Soybean seeds were planted into
one-hectare plots that have been managed under conventional,
no-till, or organic management since 1989 (Robertson et al.,
2015). Six replicate plots of each management system were
distributed randomly at the LTER site in order to eliminate bias
based on location.

The no-till and conventional management plots received
fertilizer in the form of potash at a rate of 120 lbs/A (72
lbs/A K2O). In addition to fertilizer, plots within these two
management systems received Valor herbicide treatments prior
to emergence, at a rate of 3.5 oz/A (Valent Agriculture,
United States). Additionally, the two management regimes
received mid-season weed control with Roundup Powermax
amended with ammonium sulfate at rates of 1 qt/A and
3.4 lbs/A, respectively (Bayer, Germany). Genetically modified
soybean and corn have been grown at the LTER site since
2009 and 2011, respectively. The modified varieties provide
glyphosate resistance as well as resistance to European corn
borer and rootworm in corn (Robertson et al., 2015). During
wheat rotation years, 30 pounds of nitrogen fertilizer/acre is
applied to the conventional and no-till management systems
in March as well as 43 pounds/A of nitrogen fertilizer and
25 pounds/A of sulfur fertilizer in May. Additionally, during
wheat rotation years, conventional and no-till management plots
receive herbicide applications in the form of Roundup PowerMax
with ammonium sulfate in October and August (1 qt/A,3.4lbs/A)
as well as Sharpen (2 oz/A), and corn methylated soybean oil (0.8
qt/A) in August (BASF, Germany; Van Dielst Supply Company,
United States). During corn rotation years, nitrogen fertilizer
is applied at planting at a rate of 29 lbs/A and in June at
a rate of 122 lbs/A, and Lexar EZ herbicide is sprayed at a
rate 3.0 qt/A alongside Roundup Powermax (22 oz/A) in June
(Syngenta, United States). The certified organic management
system received no chemical inputs or manure but was rotary
hoed to control for weeds and has a red clover or annual rye cover
crop in the winter season for all crops. The conventional and
no-till management systems were planted with Pioneer P22T69R
Roundup Ready soybean seed (Pioneer Hi Bred International,
United States). The organically managed plots were planted with
non-genetically modified Viking O.2188AT12N soybean seed
(Albert Lea Seed, United States).

Sampling and DNA Extraction Methods
In 2018, whole soybean plants were sampled at three time points
corresponding to the following growth stages: early vegetative
(V2 – two sets of unfolded trifoliate leaves), early reproductive
(R2 – full flower inflorescence/reproductive stage), and late
reproductive (R6 – full pod development) (Fehr et al., 1971).
Within each management system (organic, no-till, conventional),
three individual plants in each of four replicate plots were
sampled at each of these growth stages (n = 108 plants).
Throughout the growing season, samples from the organic
management system were delayed 2 weeks due to later planting of
the organic system. At each sampling point, independent samples
of soil, roots, stems, and leaves were collected. Soil was sampled
by removing whole plants from the soil and placing ∼2 g of soil
from the root zone into a coin envelope which was then dried

on silica beads upon return to the lab. Roots were sampled by
cutting the entire root system at the soil line and placing the roots
into a Whirl-Pak bag (Nasco, United States) containing a 0.1%
Tween 20 mixture to remove soil before lyophilizing. The stem
section between the first and second true leaves was collected in
a 15 ml Falcon tube (Corning, United States) containing 5 mL of
CSPL buffer from the Mag-Bind Plant DNA Plus Kit (Omega Bio-
tek, United States). Leaves were sampled by hole punching three 6
mm leaf discs from three leaves into eppendorf tubes (Eppendorf,
Germany) containing 500 µl of CSPL buffer. All samples were
placed on ice and transported back to the Michigan State campus
for storage at −80◦C.

DNA was extracted from ∼50 mg of soil/sample using the
PowerMag Soil DNA Isolation Kit (Qiagen, United States) on the
KingFisher Flex system (Thermo Fisher Scientific, United States).
DNA was extracted from ∼50 mg of each dried fine roots, stems,
and leaves using the Mag-Bind Plant DNA Plus Kit (Omega
Bio-tek, United States) on the KingFisher Flex system (Thermo
Fisher Scientific, United States). All extractions included negative
controls (extractions containing no sample).

MiSeq Library Preparation and
Sequencing
Illumina MiSeq amplicon libraries were constructed with the
ITS1F – ITS4 primer set to target the internal transcribed spacer
(ITS) region of Fungi and the 515F – 806R primer set to
target the V4 region of the 16S rDNA of Prokaryotes (White
et al., 1990; Gardes and Bruns, 1993; Caporaso et al., 2011).
Libraries were prepared following a three step PCR protocol
as described previously (Benucci et al., 2018, 2019; Chen K.H.
et al., 2018). The PCR cycles used are shown in Supplementary
Table S1. Unmodified primer pairs were used in the first step to
enrich in target taxa. In the second step, primers incorporating
frameshifts into the amplicons were used. In the third step,
10 nucleotide indexing barcodes and Illumina adapters were
incorporated following approaches used by Chen K.H. et al.
(2018) and Lundberg et al. (2013). PNA blocking clamps were
incorporated into PCR reactions for steps one and two at
a concentration of 0.75 µM to reduce the amplification of
chloroplast and mitochondria sequences in plant-associated 16S
libraries (PNA Bio Inc., United States). The PCR mixes used are
shown in Supplementary Table S2. PCR products were run on
an agarose gel to verify amplification. Next, PCR products were
normalized to an equal concentration of 1–2 ng/µl using the
SequalPrep Normalization Plate Kit (Thermo Fisher Scientific,
United States). Following normalization, eluted samples were
combined into one pool and concentrated with Amicon Ultra
0.5 mL 50K filters (EMD Millipore, Germany). Libraries were
then cleaned with Agencourt AMPure XP magnetic beads to
remove small fragments and primer dimers (Beckman Coulter,
United States). Libraries were sequenced at the MSU Genomics
Core with the Illumina Miseq V3 600 cycles kit. The produced
sequences for the samples analyzed in this study are stored at
the NCBI SRA archive under the following accession number:
PRJNA603147. Sequences for samples that were not analyzed
as part of this study, but were sequenced on the same Miseq
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runs and used for contaminant removal are available under the
following accession numbers: PRJNA603199, PRJNA603207.

Bioinformatics Analysis
First, sequences were analyzed for initial quality using FastQC1.
Following quality analysis, reads were demultiplexed by barcode
and assigned to samples using QIIME 1.9.1 (Caporaso et al.,
2010). Due to lower quality of the reverse reads, only forward
reads were analyzed further. Next, primers, adapters, and the
conserved regions (SSU, 5.8S, LSU) of amplicons were stripped
from forward sequences using Cutadapt v2.6 and USEARCH
v10 (Martin, 2011; Edgar and Flyvbjerg, 2015; Edgar, 2016b).
Afterward, library statistics were analyzed using USEARCH for
length and quality distributions and reads below 205 bp and
above a maximum error of 1% were discarded. Additionally,
sequences were de-replicated and singletons were removed
prior to clustering Operational Taxonomic Units (OTUs) at
a 97% threshold using the UPARSE algorithm of USEARCH
(Edgar, 2013, 2016b; Edgar and Flyvbjerg, 2015). Following OTU
clustering, taxonomy was assigned to fungal OTUs using the
UNITE database V10.10.2017 (Kõljalg et al., 2005) and 16S OTUs
using the Silva 16S V123 database (Quast et al., 2013) with the
SINTAX tool (Edgar, 2016a).

Statistical Analyses
OTU tables, taxonomy tables, mapping files, and OTU sequences
were loaded into the R (Version 3.5.2) statistical environment
(R Core Team, 2018) and used to create a phyloseq object for
further analysis in the phyloseq package (McMurdie and Holmes,
2013). Before analyzing sequence data, OTUs determined to
be contaminants in negative controls were removed with the
decontam package (Davis et al., 2018). Samples which produced
less than 1000 reads, as well as five soil samples that did not
dry properly and were overtaken by mold, were discarded.
Alpha diversity (within sample diversity) was estimated for
each sample before data was normalized and filtered following
recommendations in McMurdie and Holmes (2014). Alpha
diversity was estimated using richness (Simpson, 1949) and
Shannon diversity (Hill, 1973) within the BiodiversityR and
vegan packages (Kindt and Coe, 2005; Oksanen et al., 2019).
OTU richness and Shannon diversity were visualized for each
plant compartment with boxplots in ggplot2 (Wickham, 2016).
Differences in alpha diversity means due to management system,
growth stage, and plant compartment were tested for statistical
significance using Kruskal Wallis tests in the stats package (R
Core Team, 2018). In the case of a significant result (P < 0.05),
Pairwise Wilcox tests with a false discovery rate (FDR) P-value
correction were utilized to determine significance groups by
growth stage and management regime (R Core Team, 2018).
Significance groups for growth stage and management system
are denoted on alpha diversity boxplots by letters above boxes
where significant differences (P < 0.05) were present between
means of the same growth stage or the same management system.
Following alpha diversity analyses, OTUs with less than five
reads in a single sample were placed to zero to account for tag

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

switching and OTUs with less than 10 reads across all samples
were removed to account for PCR errors (Lindahl et al., 2013;
Oliver et al., 2015). Rarefaction curves were created to assess
the sampling of prokaryotic and fungal communities using the
“rarecurve” function in the vegan package (Oksanen et al., 2019).
Barplots for fungal communities were created in ggplot2 to
show genera having >4% relative abundance (Wickham, 2016);
prokaryotic barplots were created to show genera (classes for soil)
having >2% relative abundance. Indicator species analysis was
performed with the indicspecies package to identify taxa which
were significantly associated with either one single management
system and not the other two or significantly associated with
two of three management systems (De Cáceres and Legendre,
2009). Following identification of indicator OTUs, p-values were
FDR adjusted, and only taxa with adjusted p < 0.05 were
considered to be indicators. The top 30 most abundant identified
indicator taxa were used to create heatmaps displaying the
relative abundance distributions by management regime and
growth stage of identified taxa in the ComplexHeatmap package
in R (Gu et al., 2016).

Next, data were normalized by cumulative sum scaling in
the metagenomeseq package (Paulson et al., 2013). Following
normalization, beta diversity was analyzed in the phyloseq and
vegan packages by creating Principal Coordinates Analysis
(PCoA) plots with the “ordinate” and “plot_ordination”
functions. Community patterns identified in PCoA plots
were tested for statistical significance using PERMANOVA as
implemented by the “adonis” function in vegan. Homogeneity
of variance between modeled groups was analyzed with the
“betadisper” function in vegan. To further assess microbial
community differences between management systems, random
forest models were created to test the accuracy of assigning above
and belowground samples to their management system origin
using the “randomforest” function in the randomForest package
in R (Liaw and Wiener, 2002). Random forest models were
optimized by testing different mtry values (number of OTUs
randomly sampled from the community to build models). Mtry
values of ±10 of the standard value (square root of the number
of OTUs in the community) were tested. If the out of bag error
did not improve any tested mtry values, the standard value was
used. Figures were created from the results of random forest
models, displaying the following: the out of bag error plotted
against the number of trees, MDS plots created from random
forest sample proximities converted to Bray-Curtis distances,
and the top 30 OTUs important in assigning samples to their
management system. Importance of each individual OTU for
distinguishing between management systems was assessed by
calculating the mean decrease in model accuracy when that OTU
is removed from the community. Significance of random forest
models was tested with 999 permutations (random forest models
were repeated 999 times) using the “rf.significance” function in
the rfUtilities package in R (Murphy et al., 2010).

Bipartite co-occurrence networks containing both bacteria
and Fungi were created and analyzed using the SpiecEasi and
Igraph packages in R (Csardi and Nepusz, 2006; Kurtz et al.,
2015). Networks were constructed with OTUs that were present
in 80% of samples or more. Network stability and sparsity were
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assessed using SpiecEasi. Hub taxa were identified as those above
the 90th percentile (1.3 standard deviations from the mean)
of network OTUs for the measures of degree and betweenness
centrality as outlined in Agler et al. (2016). Additionally, taxa
were only considered to be hubs if they were above the 90th
percentile of hub scores (eigenvector centrality) for either Fungi
or Bacteria in that specific network. The betweenness centrality
measure was log transformed before determining hubs to account
for a non-normal distribution. Following network creation in
Spieceasi and hub identification, networks were visualized with
the attribute circular layout in the Cytoscape program (Shannon
et al., 2003). Random networks with the same number of nodes
as experimental networks were generated with the Barbasi-
Albert model of the “sample_pa” function in the igraph package
of R. The degree distributions of 100 random networks were
compared to those of experimental networks with a two sample
Kolmogorov-Smirnov using the “ks.test” function in the stats
package of R. All R code and files for producing figures and
tables including metadata and OTU tables, as well as example
code for building networks and random forest models is available
at: https://github.com/longleyr/Management-of-Soybean-Code-
and-Files.

RESULTS

Next Generation Sequencing Results
The final soil fungal library contained 95 samples and 2,562,324
reads for an average depth of 26,972 reads per sample after
filtering, removal of contaminants, and removal of samples with
less than 1000 reads. Applying the same quality filtering by
plant compartment, the root fungal library was composed of
100 samples containing 2,706,574 reads with an average depth
of 27,618 reads per sample, the stem fungal library contained
618,697 reads in 93 samples with an average depth of 7,031

reads per sample, and the library for the leaves had 4,572,077
reads in 107 samples for an average read depth of 43,133
reads per sample. Applying these quality filtering criteria to
prokaryotic communities the 16S marker produced 6,040,145
reads with an average depth of 59,217 reads in 102 soil samples,
6,378,213 16S reads with an average depth of 60,172 reads from
106 root samples, 1,435,193 reads with an average depth of
14,497 reads per sample from 99 stem samples, and 1,313,368
reads with an average depth 13,402 reads per sample in 99
leaf samples. Rarefaction curves showing the number of OTUs
generated against sequencing depth for each sample are shown in
Supplementary Figure S1.

Fungal Community Composition
In the soil, Ascomycota were dominant, independent of
management system, and accounted for between 75.0 and
81.0% of total reads. In comparison, Mucoromycota and
Basidiomycota abundances ranged between 7.0 and 12.9% in the
three management systems (conventional, no-till, and organic).
Of note, Fusarium was the most abundant fungal genus in the
soil across all management systems with a relative abundance
range of 15.9–23.7% (Figure 1A). All management regimes also
contained a high abundance of Mortierella in soils with a range
of 12.5–14.3%. Ascomycota dominated the fungal community of
the roots under all three management systems, accounting for
between 82.2 and 85.0% of reads, Glomeromycotina (8.3–13.5%)
was the next most abundant lineage. Basidiomycota was present
at relative abundances of between 3.7 and 8.1% in the three
management systems. As found in the soil, the most abundant
genus under all three management systems was Fusarium, which
represented between 22.1 and 37.7% of all reads (Figure 1B).
Fusarium was followed in relative abundance by Macrophomina
in the conventional management system (13.2%), Bionectria in
the no-till management system (13.8%) and Corynespora in the
organic management system (11.7%).

FIGURE 1 | Stacked bar plots showing fungal genera in each management system at each growth stage (V2 – two sets of unfolded trifoliate leaves, R2 – full flower
reproductive stage, and R6 – full pod development) with relative abundance ≥4%, (A) present in soil samples throughout the soybean growing season, (B) present
in soybean root samples, (C) present in soybean stem samples, and (D) present in soybean leaf samples.
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In stems, Ascomycota and Basidiomycota accounted for
nearly 100% of reads in all management regimes with
Ascomycota accounting for about 90.0% of the reads. Davidiella
was the most abundant genus in the stems, with over 20.0% of
the reads in all three management systems followed by Diaporthe
in conventionally managed plots and Fusarium and Alternaria
in no-till and organic management systems (Figure 1C).
As was found in the stems, Ascomycota and Basidiomycota
accounted for nearly 100% of the reads in the leaves of each
management system; with ascomycetes accounting for ∼75.0%
of the reads. Alternaria was abundant in aboveground tissues
of all management regimes and was the most abundant genus
in the conventional and no-till management systems, with
relative abundances of 14.9 and 15.5%, respectively. Davidiella
was omnipresent in aboveground tissues, peaking in relative
abundance at 20.0% in the organic management system. This was
also true of Phoma, which had higher relative abundance in the
organic management regime (Figure 1D).

Prokaryotic Community Composition
The prokaryotic community of the soil was relatively consistent
across management systems in terms of dominant Phyla.
The most abundant phylum in every management system
was Actinobacteria, consistently represented by ∼30%
relative abundance. The next most dominant phylum in
each management system was Proteobacteria having relative
abundances between 20.0 and 24.0%. In the soil, the most
abundant classes were consistent between managements, but
differed in their relative abundances (Figure 2A). The most
abundant genus in every management system was an unclassified
member of the Chloroflexi phylum with a range of relative
abundances between 5.5 and 7.4%. Sphingomonas was the second
most abundant genus (4.8%) in conventional managed soils.
In contrast, an unclassified Gaiellales genus (6.7%) was the

second most abundant in the no-till, while an unidentified
genus of acidobacteria was the second most abundant in the
organically managed soils. Soybean roots were dominated by
the same bacteria phyla as the soils, but Proteobacteria were
more abundant in roots (57.3–71.7%) compared to 20.0–24.1%
in soil. Actinobacteria were the second most abundant bacteria
in soybean roots (17.1–21.1%) across management systems.
The most abundant genus was Bradyrhizobium with relative
abundances of 22.9, 40.2, and 33.0% in the conventional, no-till,
and organic management regimes, respectively. Following
Bradyrhizobium, Streptomyces was the next highest in relative
abundance ranging between 6.4 and 7.1% (Figure 2B).

The stem prokaryotic community was also dominated by
Proteobacteria, with relative abundances ranging from 60.0 to
77.0%. Actinobacteria were the second most abundant bacteria
in no-till (20.8%) and organic (12.7%) management systems. In
terms of genera, the stems of soybean in all three management
systems were dominated by Methylobacterium (24.3–32.0%)
and Sphingomonas (14.9–25.2%) (Figure 2C). The prokaryotic
community of soybean leaves was quite like that of the stems.
Proteobacteria dominated the community ranging from 78.2%
in the conventional management system to 92.6% in the organic
management system. The dominant genera in leaves were similar
to the stems except that Sphingomonas had higher relative
abundance in the leaves, ranging from 31.5 to 44.7%. The relative
abundance of Methylobacterium in the leaves was between 28.1
and 36.1% (Figure 2D).

Alpha Diversity of Fungal Communities
Differences in fungal alpha diversity due to management system,
plant growth stage, or sample origin were assessed. Fungal alpha
diversity was highest in the soil and lowest in the stems with
roots and leaves falling between the two (Figure 3). Soil had
significantly higher species richness compared to roots, leaves,

FIGURE 2 | Stacked bar plots showing prokaryotic classes or genera in each management system at each growth stage (V2 – two sets of unfolded trifoliate leaves,
R2 – full flower reproductive stage, and R6 – full pod development) with relative abundance ≥2%, (A) present in soil samples in soybean fields throughout the
growing season, (B) present in soybean root samples, (C) present in soybean stem samples, and (D) present in soybean leaf samples.
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FIGURE 3 | Alpha diversity boxplots showing OTU richness and Shannon diversity metrics for fungal communities, (A) present in soil samples, (B) present in
soybean root samples, (C) present in soybean stem samples, and (D) present in soybean leaf samples. Colors represent the plant growth stage during sampling
(V2 – two sets of unfolded trifoliate leaves, R2 – full flower reproductive stage, and R6 – full pod development). Significance groups are represented by letters above
the boxes. The letter before the forward slash (/) represents significance groups within a single growth stage by management system. Letters following the forward
slash (/) represent significance groups within a single management system by growth stage. Significance groups were calculated using Kruskal Wallis tests followed
by Pairwise Wilcox tests with a FDR P-value correction.

and stems (579 taxa per sample, 237 taxa per sample, 252 taxa
per sample, and 140 taxa per sample, respectively). Richness
differences between roots and leaves were not significant, but
they both had significantly greater richness than stems. The
soil also had significantly higher Shannon diversity than roots,
stems, and leaves but differences between plant compartments
were non-significant. In the soil, the only significant difference
in richness between management systems was between the
conventional/organic and no-till management systems at the V2
growth stage (Figure 3A). Significant differences were detected
by growth stage under the no-till management system, with
significantly higher fungal richness in the final growth stage
but a decrease in Shannon diversity. In the root microbiome,
there were significant differences in Shannon diversity at
the early vegetative (V2) growth stage with the organic
management regime having significantly lower Shannon diversity
mean values (Figure 3B). All management systems showed
a decrease in fungal richness and Shannon diversity at the
early reproductive (R2) stage, which increased again at the late
reproductive (R6) stage.

In soybean stems, the conventional and no-till management
systems consistently had higher richness than the organic
management system, but the difference was only significant at
the early vegetative (V2) growth stage (Figure 3C). This trend
was not consistently reflected in Shannon diversity. All three
management systems showed increasing richness throughout
the season in the stems, but the trend was only significant for
the organic management regime. Alpha diversity trends in the

leaves of soybean in each management system were similar to
those of their stems, with significantly greater richness in the
conventional and no-till management systems throughout the
experiment (Figure 3D). Fungal richness increased throughout
the experiment in organic treatments, but in the other
management systems richness and Shannon diversity decreased
at the early reproductive (R2) growth stage.

Alpha Diversity of Prokaryotic
Communities
In prokaryotic communities, OTU richness was highest in the
soil and decreased moving from that of the roots toward
distal aerial compartments (Figure 4). Soil alpha diversity was
significantly greater than the roots, stems, and leaves (5780 OTUs
per sample, 1761 OTUs per sample, 597 OTUs per sample,
and 358 per sample, respectively). Additionally, the roots had
significantly greater alpha diversity compared to stems and leaves,
but differences between stems and leaves were not significant.
This pattern of statistical significance also held true for Shannon
diversity, with a range from 2.7 in the leaves to 6.9 in the
soil. In terms of Shannon diversity, differences between roots
and stems were not significant (3.88 and 3.80, respectively). In
the soil, at any single growth stage, there were no significant
differences between management systems except at the final stage
where the conventional management system had significantly
lower richness and Shannon diversity compared to the other
management systems (Figure 4A). Conventional and organic
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FIGURE 4 | Alpha diversity boxplots showing OTU richness and Shannon diversity metrics for prokaryotic communities, (A) present in soil samples, (B) present in
soybean root samples, (C) present in soybean stem samples, and (D) present in soybean leaf samples. Colors represent the plant growth stage during sampling
(V2 – two sets of unfolded trifoliate leaves, R2 – full flower reproductive stage, and R6 – full pod development). Significance groups are represented by letters above
the boxes. The letter before the forward slash (/) represents significance groups within a single growth stage by management system. Letters following the forward
slash (/) represent significance groups within a single management system by growth stage. Significance groups were calculated using Kruskal Wallis tests followed
by Pairwise Wilcox tests with a FDR P-value correction.

management regimes showed significantly lower richness in the
reproductive stages compared to the vegetative (V2) stage. In the
roots, the richness was significantly lower in the conventional
management system at the first sampling point, but differences
were not significant at later stages (Figure 4B). The no-till and
organic management systems showed significant decreases in
richness at the R2 growth stage, but this pattern was not reflected
in Shannon diversity.

In the stems, the no-till management system had significantly
lower richness in the first growth stage compared to the
final stage, and Shannon diversity was significantly lower
in the organic management system throughout the season
compared to other management systems (Figure 4C). Richness
increased between the first and last sampling point for all three
management systems, but this change was only significant for no-
till and organic management regimes. In the leaves, the organic
management system had lower richness and Shannon diversity
at the early vegetative (V2) growth stage, but this difference was
not significant. All three management systems had a significant
decrease in richness and Shannon diversity in the leaves at the
early reproductive (R2) growth stage (Figure 4D).

Beta Diversity of Fungal Communities
When considering all sampling sources together, the soybean-
associated fungal communities were most separated by sample
source (Figure 5A). When considering PCoA ordinations by
individual sample origin, distinct clusters by management system
are evident in the soil (Figure 5B). In the stems and the

leaves there is some separation by the management system
along both axes, but the management systems are not distinct
(Figures 5D,E). There is no clear pattern among root samples by
PCoA (Figure 5C). When samples are colored by growth stage,
there are distinct clusters by growth stage along the X axis in the
leaves. This axis accounts for 41% of the variation and primarily
separates the V2 growth stage on the left from the R2 and R6
growth stages (Supplementary Figure S2E). There was some
clustering by growth stage in the stems, but clusters were not
as distinct compared to the leaves (Supplementary Figure S2D).
There was no clear pattern of fungal communities by growth stage
in the soil or roots (Supplementary Figures S2B,C).

The PERMANOVA analysis of fungal communities showed
that regardless of sample origin there was a significant
(P < 0.05) effect of both management system and growth
stage (Supplementary Table S3A). However, since there was
also a significant (p < 0.05) effect of the interaction between
management regime and growth stage, datasets were split by
growth stage and management system to analyze the effects
separately (Table 1 and Supplementary Table S3). When split by
growth stage, the effect of management system, was significant
across all growth stages and all plant organs (Table 1A). This
effect accounted for between 13 and 52% of variation. However
at several growth stages in several sample origins, there was
a significant effect of dispersion, confounding PERMANOVA
results (Soil R2 – P-value: 0.0096, Soil R6 – P-value: 0.023, Roots
R2 – P-value: 0.0027, Leaves V2 – P-value: 0.0027). Although
there is a significant effect of dispersion for these groups, there
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FIGURE 5 | Principal coordinates analysis plots, based on Bray-Curtis dissimilarity, of fungal communities, (A) associated with soybean soil, root, stem, and leaf
samples, (B) associated with soil samples, (C) associated with root samples, (D) associated with stem samples, (E) associated with leaf samples and prokaryotic,
(F) associated with soil, root, stem, and leaf samples, (G) associated with soil samples, (H) associated with root samples, (I) associated with stem samples, and (J)
associated with leaf samples. The shape represents the management system, while color represents sample origin in (A,F). In all others the color represents the
management system.

TABLE 1 | Permutational multivariate analysis of variance (adonis) and multivariate homogeneity of group dispersion analysis (betadisper) results for fungal communities
associated with soybean soil, root, stem, and leaf samples showing, (A) the effect of agricultural management on individual growth stages (V2 – two sets of unfolded
trifoliate leaves, R2 – full flower reproductive stage, and R6 – full pod development), and (B) the effect of growth stage on individual agricultural management systems.

A – Growth stage PERMANOVA DISPERSION

F-value R2 P-value F-value P-value

Soil V2 5.23 0.24 1.00E-04 3.08 0.052

R2 4.001 0.24 1.00E-04 5.63 0.0096

R6 4.59 0.25 1.00E-04 3.63 0.0396

Roots V2 3.6 0.19 1.00E-04 0.669 0.519

R2 2.08 0.14 5.90E-03 4.39 0.023

R6 2.85 0.15 1.00E-04 0.145 0.866

Stems V2 4.89 0.26 1.00E-04 0.709 0.501

R2 4.2 0.24 1.00E-04 3.15 0.059

R6 9.98 0.44 1.00E-04 1.57 0.227

Leaves V2 17.6 0.52 1.00E-04 7.15 0.0027

R2 5.86 0.27 1.00E-04 1.34 0.276

R6 7.74 0.32 1.00E-04 3.27 0.051

B – Management PERMANOVA DISPERSION

F-value R2 P-value F-value P-value

Soil Conventional 1.62 0.09 8.00E-04 0.728 0.491

No-till 2.72 0.14 1.00E-04 0.903 0.416

Organic 1.65 0.11 0.0065 0.0401 0.961

Roots Conventional 2.83 0.16 1.00E-04 0.786 0.465

No-till 4.18 0.20 1.00E-04 3.49 0.042

Organic 2.29 0.14 1.60E-03 2.86 0.074

Stems Conventional 3.67 0.19 1.00E-04 1.39 0.264

No-till 5.21 0.26 1.00E-04 1.19 0.318

Organic 2.73 0.21 1.00E-04 1.77 0.196

Leaves Conventional 27.6 0.64 1.00E-04 3.66 0.037

No-till 29.1 0.63 1.00E-04 1.24 0.302

Organic 19.9 0.54 1.00E-04 3.23 0.052

Significant P-values (P < 0.05) are shown in bold.
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is clustering by management system in the PCoA ordination
space for the soil and the leaves, but clustering is less clear for
R2 roots (Supplementary Figures S3A,C,G). When split into
individual management systems, the effect of growth stage is
also significant throughout all management regimes and all plant
compartments (Table 1B). The no-till roots and the conventional
leaves have significant differences in group dispersion (P-values
0.042 and 0.037, respectively), but there do appear to be distinct
clusters by growth stage in the ordination space for these groups
(Supplementary Figures S3D,H).

Beta diversity of no-till and conventional management
systems were analyzed together without the organic management
regime due to the difference of host genotype. There was
a significant effect of management system on beta diversity
across all plant compartments and all growth stages with
the effect ranging from 9 to 29% (Supplementary Table S4
and Supplementary Figure S5). When split into no-till and
conventional management systems, the effect of growth stage
was also significant across management systems and sample
origins. In the no-till roots, a significant effect of group dispersion
(P = 0.016) was found, with separation of growth stages obvious
in ordinational space (Supplementary Figure S5D).

Beta Diversity of Prokaryotic
Communities
When all samples are considered together, prokaryotic
communities are clustered by sample origin, although there
was not a clear distinction between stems and leaves (Figure 5F).
When separated by sample origin, there were not clear clusters
by management regime in any sample origin, but in the soil
the no-till management system did appear slightly separated
from the conventional and organic, primarily appearing in the
upper left of the ordinational space (Figure 5G). In the stems,
the organic management system was the most distinct, primarily
appearing in the upper right of the PCoA (Figure 5I). When
samples are colored by growth stage, there are clear clusters for
each growth stage in the stem and leaf PCoAs with separation
along the X and Y axes (Supplementary Figures S2I,J). Similarly
to fungal communities, soil and root prokaryotic communities
did not show distinct clusters by plant growth stage.

Growth stage and management system had a significant effect
(P < 0.05) on prokaryotic communities at all sample origins,
and the effect of plant growth stage increased moving upwards
from the soil to aboveground and distal compartments of the
plant (Supplementary Table S3B). Since there were significant
interactions between growth stage and management system as
well as significant differences in group dispersion, datasets were
split by management regime and growth stage and analyzed
separately (Table 2 and Supplementary Figure S6). When split
by growth stage, the effect of management system is significant
across all sample origins and all growth stages. This effect
accounts for between 11.3% (R2 roots) and 30.1% (R2 stems)
of the variation. In several groups, there was a significant effect
of group dispersion, making PERMANOVA results difficult to
interpret. In the soil, at all three growth stages there was a
significant (P = 0.00037, 0.0417, 0.00271) effect of dispersion,

but in the ordinational space, there does seem to be separation
by management system (Supplementary Figure S6A). In the
V2 leaves, where there was also a significant effect of dispersion
(P = 0.045), distinct clusters by management system are visible
in the PCoA (Supplementary Figure S6G). When split by
management system, there was a significant effect of growth stage
in all management systems and all sample origins. This effect
accounted for the most variation in the leaves where it accounted
for between 42 and 53% of variation (Table 2B). However, there
was a significant effect of group dispersion (P = 0.0013, 0.0041,
0.00073) in the leaves in all management systems, but samples do
cluster by growth stage in the ordinational space (Supplementary
Figure S6G). In conventional soil and organic stems, there is
also a significant effect of group dispersion (P = 2.5E-8, 7.2 E-
5, respectively), but separation by growth stage is less clear in the
ordinational space (Supplementary Figures S6B,F).

As with fungal communities, the no-till and conventional
systems were analyzed without the organic system due to the
genotypic difference. When split into individual growth stages,
the effect of management system is significant (p < 0.05) in all
growth stages and all sample origins except R2 roots and R2
leaves. This effect is the largest in the V2 soil and the V2 leaves
(22.8 and 20.3% respectively). In groups where the management
system effect is significant, distinct clusters are apparent in
the ordinational spaces (Supplementary Figure S7), although
clusters are less distinct than those of Fungi. In the R6 soil, there
was a significant effect of group dispersion (P = 4.58E-4), but
the PCoA reveals separation between no-till and conventional
management systems. When split into no-till and conventional
management regimes, the effect of growth stage was significant
throughout the management systems and sample origins. In the
leaves, there were significant differences (P = 0.0012, 0.0097) in
group dispersion for both conventional and no-till management
systems, but there are distinct clusters by growth stage in both
management regimes (Supplementary Figure S7H).

Indicator Species Analysis and Random
Forest Modeling of Fungal Communities
Many fungal OTUs were strongly associated with specific
management systems. Heatmaps of the top 30 most relatively
abundant indicator OTUs in above and belowground samples
are shown in Figure 6. In belowground fungal communities,
many of the indicator taxa were OTUs which were indicators
for conventional and organic soils but were lacking in no-
till soils. These indicators were from several genera including
Didymella OTU 17, Mortierella OTU 46, Podospora OTU 56,
and Minemedusa OTU 57 (Figure 6A). All these taxa were
also identified as being in the top 30 most important taxa for
distinguishing between management systems in random forest
analysis (Supplementary Figure S4A). Indicators to no-till soils
included a Sordariomycetes OTU and Fusarium OTU 96 which
was also identified by random forest analysis. In the roots, a
Glomeromycotina OTU 188 was highly associated to the no-till
management system. An unidentified Agaricales OTU 87 was an
indicator for the conventional and organic management regimes,
and Mycoleptodiscus OTU 150 was an indicator for organic
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TABLE 2 | Permutational multivariate analysis of variance adonis and multivariate homogeneity of groups dispersions analysis (betadisper) results for prokaryotic
communities associated with soybean soil, root, stem, and leal samples showing (A) the effect of agricultural management on individual growth stages (V2 – two sets of
unfolded tri foliate leaves, R2 – full flower reproductive stage, and R6 – full pod development), and (B) the effect of growth stage on individual agricultural
management systems.

A – Growth stage PERMANOVA DISPERSION

F-value R2 P-value F-value P-value

Soil V2 5.93 0.26 1.00E-04 10.1 3.70E-04

R2 3.47 0.21 1.00E-04 3.6 0.0417

R6 3.1 0.16 1.00E-04 7.11 2.71E-03

Roots V2 3.56 0.18 2.00E-04 2.07 0.143

R2 2.01 0.11 0.0123 0.032 0.969

R6 3.32 0.18 1.90E-03 0.739 0.486

Stems V2 6.17 0.29 1.00E-04 3.44 0.045

R2 6.9 0.30 1.00E-04 0.247 0.783

R6 4.49 0.25 1.00E-04 1.11 0.344

Leaves V2 3.94 0.23 1.00E-04 3.49 0.045

R2 3.29 0.18 1.00E-04 0.119 0.887

R6 6.25 0.28 1.00E-04 0.289 0.751

B – Management PERMANOVA DISPERSION

F-value R2 P-value F-value P-value

Soil Conventional 3.1 0.16 1.00E-04 31.7 2.50E-08

No-Till 2.21 0.12 1.10E-03 1.01 0.376

Organic 2.55 0.18 3.00E-04 0.49 0.619

Roots Conventional 2.34 0.13 7.20E-03 0.175 0.841

No-Till 4.09 0.21 1.00E-04 0.898 0.418

Organic 3.76 0.19 1.00E-04 0.796 0.459

Stems Conventional 5.2 0.26 1.00E-04 1.04 0.367

No-Till 9.1 0.36 1.00E-04 1.07 0.356

Organic 4.31 0.24 2.00E-04 13.9 7.20E-05

Leaves Conventional 13.9 0.48 1.00E-04 8.26 1.30E-03

No-Till 18.6 0.54 1.00E-04 6.55 4.12E-03

Organic 9.85 0.42 1.00E-04 9.56 7.30E-04

Significant P-values (P < 0.05) are shown in bold.

root communities (Figure 6A). Both taxa were also identified
in random forest models as being important in distinguishing
between management systems.

In aboveground fungal communities, many of the indicator
species for no-till and conventional stems and early vegetative
(V2) leaves clustered together. These OTUs included Diaporthe
OTU 13 which was abundant in conventional stems and leaves, as
well as Fusarium OTU 96 which was abundant in no-till tissues.
Both indicator taxa were also identified as being important in
aboveground random forest models. At later growth stages in the
leaves, a Hanaella sp. was an indicator in the conventional and
no-till leaves. The main indicator for the organic management
system was an Edenia sp. which was most highly abundant in the
stems at the late reproductive (R6) growth stage (Figure 6B).

Trends identified through indicator species analysis were
further assessed with random forest analysis. Above and
belowground fungal communities were assessed, and it was
demonstrated that for belowground fungal communities there
was an out of bag error for assigning management system to
belowground samples of 7.7% (Supplementary Figure S4A).
Conventional samples were assigned incorrectly 10.6% of the
time, no-till samples were assigned incorrectly 4.3% of the

time, and organic samples were assigned incorrectly 10% of
the time. For aboveground samples, the out of bag error
was 3.1% (Supplementary Figure S4B). The error rate in
the organic management system was 0.0%, while the rate
for conventional samples was 1.4% and the rate for no-till
samples was 8.8%. Conversion of sample proximities to Bray-
Curtis distance allowed for the visualization of clusters of
samples by each management regime for above and belowground
samples (Supplementary Figures S4A,B). Random forest models
identified several Phoma and Paraphoma taxa which were
important in distinguishing management systems but were
not identified by indicator species analysis (Supplementary
Figure S4A).

Indicator Species Analysis and Random
Forest Modeling of Prokaryotic
Communities
Belowground prokaryotic indicator OTUs in root and soil
compartments form into groups when clustered by Bray-Curtis
distances. In the organic management system, Steroidobacter
OTU 56 and Promicromonospora OTU 106 were indicator
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FIGURE 6 | Heatmaps of the relative abundances of the top 30 most abundant indicator taxa of fungal (A) belowground taxa, (B) aboveground taxa and prokaryotic
(C) belowground taxa, and (D) aboveground taxa associated with conventional, no-till, organic, conventional and no-till, conventional and organic, or no-till and
organic management systems. Samples are clustered by the displayed dendrogram using Bray-Curtis distances. The associated barplots show the relative
abundance among indicator species of the taxa. Taxa that were also among the top 30 most important for distinguishing between managements in Random Forest
models of above and belowground samples are indicated with an asterisk (*).
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Bacteria in the soybean root compartment, whereas a
Streptomyces OTU was an indicator in roots from conventional
and no-till management systems. Promicromonsopora OTU 106
was also identified as being among the top 30 most important
OTUs in random forest modeling (Supplementary Figure S4C).
In the soil, a Phormidium OTU was an indicator for conventional
and no-till management systems, while Cellulosmicrobium
OTU 372 was an indicator to the organic soil and roots and
was also identified by random forest modeling (Figure 6C and
Supplementary Figure S4C).

In aboveground tissues, indicator OTUs clustered based on
plant compartments, management regime and growth stage.
For example, at the early vegetative (V2) growth stage, stems
and leaves from conventional managed soybean shared several
indicator OTUs, including Cyanobacteria belonging to Tricholeus
(OTU 83) and an unidentified Cyanobacteria Family L species
(OTU 103). Both taxa were also identified as being important
for assigning samples to management systems by random forest
analysis. Many of the bacterial indicator taxa were Hymenobacter
species, the majority of which were associated with no-till and
conventional management regimes in both leaves and stems
(Figure 6D). Many of the Hymenobacter taxa were also identified
as being important in random forest modeling (Supplementary
Figure S4D). A stem associated Arthrobacter sp. was an indicator
of the organic management system and was identified in random
forest modeling.

Random forest modeling performed on belowground
prokaryotic communities revealed that samples were assigned
to the correct management system 89.9% of the time
(Supplementary Figure S4C). Samples of the conventional
management regime were assigned incorrectly 10.1% of the
time, no-till samples 9.9% of the time, and organic samples
10.3% of the time. When proximities between samples were
converted to Bray Curtis distance, clustering by management
system is visible, but less clear compared to belowground fungal
communities. The aboveground prokaryotic random forest
model had an out of bag error rate of 10.7% (Supplementary
Figure S4D). The conventional management system samples
were assigned incorrectly 12.1% of the time, no-till samples were
assigned incorrectly 4.2% of the time, while organic samples were
assigned incorrectly 0% of the time. In the MDS space, there
was separation by management system, but the clusters were less
clear than aboveground Fungi (Supplementary Figure S4D).

Core Network Analysis and Hub Species
Detection
Microbial networks constructed for above and belowground
compartments across each management system differed in their
network statistics (Table 3). Microbial networks in the no-till
management system had the greatest numbers of nodes and
edges for both above and belowground networks. Belowground,
the network for the organic management system had the next
highest number of edges and nodes, but aboveground the organic
network was the sparsest in terms of edges and nodes. When
compared to 100 random networks, each network except the
aboveground organic and belowground conventional networks TA
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consistently had a significantly (p < 0.05) different degree
distribution than 100 random networks (Table 3). Since the
aboveground organic network and belowground conventional
network did not have a significantly different degree distribution
than a random network, they will not be interpreted further.
All networks contained a greater number of prokaryotic
than fungal nodes and this difference was more pronounced
belowground. Overall, networks had a diverse mix of bacterial
and fungal phyla but were dominated by Proteobacteria and
Actinobacteria with fungal nodes primarily being Ascomycota
(Supplementary Figure S8).

Within above and belowground networks created for each
management system, 10 hubs were identified from significant
networks to belong to 10 separate fungal and bacterial genera
(Figure 7A). Most bacterial hubs consisted of Proteobacteria and
Actinobacteria while the two fungal hubs were one basidiomycete
and one ascomycete. The hub OTUs varied in relative abundance,
the Massilia OTU 17 and Bulleria OTU 10 were dominant among
hubs in the roots, stems, and leaves (Figure 7B). Some hubs

varied in relative abundance by management system, for example,
Tetracladium OTU 59 was less relatively abundant in organic
leaves and stems compared to no-till and conventional samples.
Most hub OTUs were restricted to one compartment or to only
above or belowground samples. This was not the case for Massilia
OTU 17 which was present throughout and Modestobacter OTU
116 which was present in the soil and stems (Figure 7B).

DISCUSSION

In this study, we assessed impacts of long-term cropping
management systems on the soybean microbiome at a unique
agricultural LTER site with 30 years of consistent management.
We detected differences in the soybean-associated microbiome
between management systems and growth stages throughout
all sample origins. It is important to note that since plant
compartments are not independent of each other; detected
differences between managements in non-soil compartments

FIGURE 7 | Summary of hub taxa detected in above and belowground bipartite networks for conventional, no-till, and organic management systems displayed as
(A) a table of detected hub genera and (B) stacked barplot showing the distributions of hub taxa across all managements and sample origins.
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may be largely driven by differences in the soil due to the role
of the soil in seeding the microbiome of plant compartments
(Grady et al., 2019). However, if this is the case, our results
demonstrate that differences from the soil persist throughout the
plant. Additionally, since the same plots were sampled repeatedly
throughout the season, samples from the same plot at different
time points are not completely independent. However, when
differences by growth stage are the highest (in the leaves and
stems) the samples cluster by growth stage even when they are
from different management systems; indicating that this is likely
a true effect of growth stage, not simply differences between plots
that persist due to repeated sampling of that plot (Supplementary
Figure S2). Some effect of growth stage may in fact be obscured
due to differences between plots that persist because of repeated
sampling of the same plots. Future studies performed at multiple
sites can identify taxa which are consistently affected by the
growth stage of the host plant at multiple sites.

In terms of alpha diversity, there was not a consistent
difference between organic and conventional management
systems, a pattern that was also observed for corn (Chen H. et al.,
2018). Alpha diversity results were consistent with studies that
have demonstrated the highest alpha diversity of both Fungi and
Prokaryotes in the soil (Lebreton et al., 2019; Suárez-Moo et al.,
2019). Additionally our results were consistent with previous
results from the same site which demonstrated that the highest
within plant alpha diversity for Prokaryotes could be found in
the roots, but for Fungi the root alpha diversity was similar
to that of the leaves (Gdanetz and Trail, 2017). Interestingly,
previous studies have demonstrated higher alpha diversity of
fungal communities in Populus stems compared to leaves which
contradicts our results (Cregger et al., 2018). This may be due to
differences in plants, or the level at which stems were sampled.
Within a single compartment, in terms of alpha diversity, the
primary pattern in fungal and prokaryotic communities was
a decrease in richness in the early reproductive (R2) stage
followed by an increase at the late reproductive (R6) growth
stage. This differed from a trend of increasing alpha diversity
in plant organs throughout the season, as was detected in a
previous study on wheat at the KBS LTER (Gdanetz and Trail,
2017). Our results also differed from a previous observation of
a reduction in phyllosphere prokaryotic diversity throughout a
soybean growing season (Copeland et al., 2014). Additionally,
fungal richness was lower in organic stems and leaves. It is
possible that this was due to management but it could also be
due to the different plant genotype that was used in the organic
system, as has been demonstrated to be an important source of
variation in the maize rhizosphere (Peiffer et al., 2013). Taken
together, these observations suggest that trends in alpha diversity
are not consistent across crops and sites. This may indicate that
alpha diversity and other microbial community measures may
be altered by unmeasured environmental factors as well as biotic
factors such as plant exudates, interspecies competition, and the
effects of non-microbial taxa (Jones et al., 2019).

The structures of the fungal communities were distinct
between management regimes in terms of the presence and
absence of particular fungal genera. For example, although
abundant in other treatments, in no-till soils, Podospora and

Didymyella were below the 4% threshold to be included in bar
graphs (Figure 1A). Podospora has been identified previously
as being more abundant in conventionally tilled wheat soils
(Degrune et al., 2017). In the soil, it is postulated that tillage
can alter fungal communities such as arbuscular mycorrhizal
fungi (AMF) by disrupting hyphae (Sharma-Poudyal et al., 2017).
Consistent with this hypothesis, the highest relative abundance
of AMF was detected in no-till soils, but mechanistic studies are
needed to ensure that this difference is due to tillage at the KBS
LTER site.

Indicator species analysis identified taxa such as Mortierella
and Minimedusa that were associated with organic and
conventional management systems (Figure 6A). These same
taxa were identified as being important in assigning samples to
management systems in random forest models (Supplementary
Figure S4). Minimedusa polyspora is of interest because it
has been suggested to be plant growth promoting given its
ability to solubilize phosphorous (Ceci et al., 2018). Some
Mortierella species are also known to solubilize phosphorus
(Osorio and Habte, 2013). Mortierella elongata has been reported
to upregulate nutrient uptake and lipid signaling pathways in
Populus (Liao et al., 2019), and are known to break down toxic
organic compounds in the soil (Li et al., 2018).

Phoma was enriched in aboveground stem and leaf fungal
communities in organic managements, while, Fusarium and
Phaeosphaeriopsis were conspicuously absent (Figures 1C,D).
Additionally, various Phoma OTUs were identified as being
important for separating belowground management systems
in random forest models (Supplementary Figure S4A).
Interestingly, Phoma spp. have been indicated as a possible
biocontrol agent for Fusarium graminearum in wheat, which
may explain the lack of Fusarium where Phoma was abundant
(Gdanetz and Trail, 2017). Indicator species analysis identified
Fusarium sp. as statistically associated to aboveground soybean
tissues in conventional and no-till managements. This result
was interesting because previous work at the same site found
Fusarium to be enriched in the phyllosphere of organic wheat
(Gdanetz and Trail, 2017). It is also possible that this microbiome
difference is due to the difference in soybean cultivar used in
the organic system, as host genotype differences have been
demonstrated in grape, maize, and poplar phyllospheres (Bálint
et al., 2013; Mezzasalma et al., 2018; Chen et al., 2019).

In soil prokaryotic communities, Spartobacteria were enriched
in no-till treatments. Spartobacteria has been found to be
associated with no -till corn/soybean fields in a previous study,
indicating that tillage regime may be specifically disruptive
to these bacteria (Smith et al., 2016). The no-till prokaryotic
community was enriched in Bradyrhizobium. Previous studies
have found a positive correlation between Bradyrhizobium and
increased organic carbon caused by not tilling (Yan et al.,
2014). No-till and organic management regimes have been
demonstrated to significantly increase total carbon in surface
soils at the KBS LTER, which may explain the enrichment of
Bradyrhizobium in the no-till management system (Syswerda
et al., 2011). However, since soil carbon was not measured as
a part of this study, further work is needed to establish this
relationship. In aboveground tissues, Hymenobacter was enriched
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in the no-till and conventional management systems. Some
Hymenobacter species are plant growth promoting bacteria that
can increase fatty acid content of plants (Dimitrijević et al.,
2017; Aydogan et al., 2018). Together, these results indicate
that management choices may select for beneficial microbes,
but strain level identifications of taxa will be needed to assess
this hypothesis. The indicator species analysis identified taxa
which were tightly associated with roots or soils or tightly
associated with specific growth stages (Figure 6C). For example,
Aureimonas appeared only in the early reproductive (R2) and late
reproductive (R6) growth stage of the three management systems.
This observation is consistent with the idea that plants can recruit
diverse microbes throughout their life cycles as they develop
and their environment changes (Rodriguez et al., 2019). It is
important to note that future studies on the effect of management
regimes on the soybean microbiome are unlikely to identify
the exact same indicator taxa. However, future work and more
mechanistic studies may identify classes of microbes likely to be
highly impacted by agricultural management. This information
could then be used to predict the effect of the microbiome on
plant health under alternative agricultural management.

The main explanatory variable of beta diversity in the soybean
microbiome appeared to be whether the sample was from above
or below ground compartments (Figures 5A,F). This result
agrees with previous microbiome studies in Arabidopsis and
wheat which showed different microbial communities are present
in above and belowground plant tissues (Gdanetz and Trail, 2017;
Bergelson et al., 2019). At a finer resolution, there was separate
clustering for leaves and stems and roots and soils, as has been
noted in prokaryotic and fungal communities in the Populus
microbiome (Cregger et al., 2018). Differences between microbial
communities of organic vs. non-organic management systems
have been demonstrated in grape and apple (Ottesen et al., 2009;
Schmid et al., 2011). Alternatively, pronounced effects of plant
genotype could be driving differences in the phyllosphere fungal
community, as has been reported for Populus (Bálint et al., 2013;
Cregger et al., 2018). However, there were also distinct fungal
communities between conventional and no-till management
systems that persisted throughout the growing season in
various plant compartments (Supplementary Table S4A and
Supplementary Figure S5). Differences between conventional
and no-till management systems were also made clear by the low
error rate of random forest analyses in distinguishing agricultural
management regimes (Supplementary Figures S4A,B). Tillage
is known to be damaging to fungal mycelial networks in
the soil, reducing the ratio of fungal to bacterial cells in
soils (Beare et al., 1997). Consequently, changes in fungal
communities were expected given the substantial differences
between tilled and non-tilled soils as has been demonstrated
previously (Sharma-Poudyal et al., 2017). Differences between
conventional and no-till management systems were not only
in the soil but persisted in the leaves throughout the
growing season (Supplementary Figure 5G). The effect of no-
till vs. conventional agricultural management on the fungal
communities of aboveground plant compartments has been
understudied but may have an important impact on plant
health. Our study found shifts in the phyllosphere community

throughout a growing season, and is consistent with previous
observations of seasonal phyllosphere shifts in fungal and
bacterial communities at the KBS LTER in wheat, switchgrass
and miscanthus (Gdanetz and Trail, 2017; Grady et al., 2019).
While PERMANOVA results confirm the effect of sampling time-
point on aboveground plant microbiome compartments, they
also confirm the effects of crop management regime on soil and
rhizobiome (Tables 1, 2). Further work is warranted in this area
to determine if time- point shifts are driven by deterministic or
stochastic effects.

PCoA plots of prokaryotic communities did not show
a clear signature of management system on the soybean
microbiome (Figures 5G–J), yet a clustering of growth stages
is evident in aboveground tissues (Supplementary Figure S2).
PERMANOVA results showed that management system played
a larger role in the soil and growth stage/sampling point
played a larger role in plant tissues, but the effects of both
factors were significant in all sample origins (Tables 1, 2).
The moderate but significant effect of management regime
on soil prokaryotic communities was consistent with results
of a previous study that compared organic and conventional
management systems (Chen H. et al., 2018). As with fungal
communities, changes in aboveground and root prokaryotic
communities based on plant growth stage and sampling time-
point are consistent with the results of previous studies on
maize and rice (Manching et al., 2017; Edwards et al., 2018).
Differences in assembly between above and belowground tissues
may alter the community’s ability to respond to agricultural
management and plant growth. Similar to Fungi, when the
organic management system was not included in analyses,
there was still a significant difference between conventional
and no-till management systems, although the difference
was smaller than in fungal communities (Supplementary
Table S4B and Supplementary Figure S7). As with Fungi, this
distinction between conventional and no-till agriculture has
been demonstrated in soils, but has been understudied within
plant compartments (Piazza et al., 2019). Additionally, in the
leaves the effect of management regime was reduced throughout
the growing season when analyzing no-till and conventionally
managed treatments alone (Supplementary Figure S7G and
Supplementary Table S4B).

Microbial networks in the long-term no-till management were
denser than those of conventional or organic managements. This
is undoubtedly related to higher prokaryotic alpha diversity in
the no-till management system. We speculate that the increased
number of core taxa, and therefore nodes, in the no-till networks
may be related to both the lack of disturbance and increased
soil carbon quality and quantity associated with no-till (Smith
et al., 2016; Banerjee et al., 2019). Differences in network
density and other network statistics between organic and other
management systems may be due to management regime or
due to host genotype differences. Further mechanistic studies
are needed to assess the effects of more complex networks on
host plant health.

Microbial networks detected different hub species in each
network. Due to the lack of taxonomic resolution in amplicon
sequencing studies, species and strain level identification
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of hubs is impossible. However, detection of hub OTUs belonging
to particular microbial genera may inform future mechanistic
studies. In the no-till belowground network, two detected hubs
were from the Gaillales order, which has been previously shown
to be enriched in the roots of rice compared to surrounding
soil, their detection as hubs may indicate an important role in
structuring the root microbiome (Hernández et al., 2015). The
only hub OTU detected in the belowground organic network was
Phenylobacterium. This particular OTU seemed to only appear at
a low relative abundance among hubs and only appeared in the
roots and soil. Species from this genus have been understudied in
terms of their effect on plant health, but it’s detection as a hub in
the roots indicates that it may play a role in structuring the root
microbiome.

One hub of the aboveground no-till network was a fungus
belonging to the genus, Bullera. Similar to many other
basidiomycete yeasts, Bullera species have been isolated from the
phyllosphere of various plants, but their roles in plant health
are undetermined (Wang et al., 2016). The only other fungal
hub detected was a Tetracladium OTU which was a hub in the
aboveground conventional network and was previously found to
be abundant at the KBS-LTER site (Gdanetz and Trail, 2017).
Massilia is another aboveground hub taxon of interest. Although
studied primarily in the roots, taxa from this genus are potentially
beneficial due to their ability to solubilize phosphate (Silva et al.,
2017). Its presence in aboveground tissues indicates that it may
be important in structuring plant microbiomes in both above
and belowground phytobiomes. Further research is needed to
determine why hub taxa are highly connected to other microbial
members and how these connections help assemble soybean-
associated microbial communities.

CONCLUSION

Here we report on the impact of long-term cropping
management systems on the soybean microbiome. In doing so,
we also addressed whole plant-microbiome changes in above
and belowground compartments across the growing season. Our
results indicate that the management system and growth stage
have significant effects on the soybean microbiome. The effect of
management system persisted when comparing conventional
and no-till systems, excluding organic samples that were of
a different genotype. Our results also indicated that specific
indicator taxa varied between management regimes. Some of
the indicator taxa such as Mortierella and Hymenobacter may be
beneficial to plants. Additionally, the management system altered
the network hub taxa, which may be important in structuring
the microbiome. Some hub OTUs, such as Massilia, belonged

to microbial genera that are known to contain plant beneficial
organisms. Taken together, these results indicate that agricultural
management practices impact whole-plant microbiomes. How
specific management regimes can be employed to select desired
microbial traits is still an open question. Further research into
taxa identified by indicator species and network analyses may
help to elucidate their functional roles to explain why specific
taxa may be enriched under different management systems.
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Supplementary Material 

 

 

 

 

Supplementary Fig 1 Rarefaction curves representing the number of OTUs detected 
per number of reads produced in sequencing of  fungal communities (A) associated with 
soil samples, (B) associated with soybean root samples, (C) associated with soybean 
stem samples, (D) associated with soybean leaf samples and prokaryotic communities 
(E) associated with soil samples, (F) associated with soybean root samples, (G) 
associated with soybean stem samples, and (H) associated with soybean leaf samples. 
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 Supplementary Fig 2  Principal coordinates analysis plots, based on Bray-Curtis dissimilarity, of 
fungal (A) communities associated with soybean soil, root, stem, and leaf samples, (B) associated 
with  soil samples, (C) associated with root samples (D)associated with stem samples, (E) associated 
with leaf samples and prokaryotic (F) communities associated with soil, root, stem, and leaf samples, 
(G) associated with soil samples, (H) associated with root samples, (I) associated with stem samples, 
and (J) associated with leaf samples. The shape represents the plant growth stage, while color 
represents sample origin in (A) and (F).  In all others the color represents the plant growth stage. 
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Supplementary Fig 3 Principal coordinates analysis plots using Bray-Curtis dissimilarity of 
fungal (A) communities associated with soybean soil split by soybean growth stage, (B) 
communities associated with soybean soil split by agricultural management system, (C) 
communities associated with soybean roots split by soybean growth stage, (D) communities 
associated with soybean roots split by agricultural management system, (E) communities 
associated with soybean stems split by soybean growth stage, (F) communities associated with 
soybean stems split by agricultural management system, (G) communities associated with 
soybean leaves split by soybean growth stage, and (H) communities associated with soybean 
leaves split by agricultural management system. 
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Supplementary Fig 4 Random forest modelling results of fungal communities (A) 
associated with belowground samples, (B) communities associated with aboveground plant 
tissues, and prokaryotic communities (C) associated with belowground samples, and (D) 
communities associated with aboveground plant tissues. 
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Supplementary Fig 5 Principal coordinates analysis plots using Bray-Curtis dissimilarity, excluding 
the organic management of fungal (A) communities associated with soybean soil split by soybean 
growth stage, (B) communities associated with soybean soil split by agricultural management system, 
(C) communities associated with soybean roots split by soybean growth stage, (D) communities 
associated with soybean roots split by agricultural management system, (E) communities associated 
with soybean stems split by soybean growth stage, (F) communities associated with soybean stems 
split by agricultural management system, (G) communities associated with soybean leaves split by 
soybean growth stage, and (H) communities associated with soybean leaves split by agricultural 
management system. 
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Supplementary Figure 6 Principal coordinates analysis plots using Bray-Curtis dissimilarity,  of 
prokaryotic communities (A) associated with soybean soil split by soybean growth stage, (B) associated 
with soybean soil split by agricultural management system, (C) associated with soybean roots split by 
soybean growth stage, (D) associated with soybean roots split by agricultural management system, (E) 
\associated with soybean stems split by soybean growth stage, (F) associated with soybean stems split 
by agricultural management system, (G) associated with soybean leaves split by soybean growth stage, 
and those (H) associated with soybean leaves split by agricultural management system. 
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Supplementary Figure 7 Principal coordinates analysis plots using Bray-Curtis dissimilarity, 
excluding the organic management of prokaryotic communities (A) associated with soybean soil 
split by soybean growth stage, (B) associated with soybean soil split by agricultural management 
system, (C) associated with soybean roots split by soybean growth stage, (D) associated with 
soybean roots split by agricultural management system, (E) associated with soybean stems split by 
soybean growth stage, (F) associated with soybean stems split by agricultural management 
system, (G) associated with soybean leaves split by soybean growth stage, and (H) associated with 
soybean leaves split by agricultural management system. 
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Supplementary Figure 8 Bipartite networks constructed for fungal and 
prokaryotic communities of (A) belowground conventional samples, (B) 
aboveground conventional samples, (C) belowground no-till samples, (D) 
aboveground no-till samples, (E) belowground organic samples, and (F) 
aboveground organic samples. 



  Supplementary Material 

 10 

Fungi and Soil Prokaryotes Cycling   
Step 1   Step 2   Step 3    
Time  Temperature (c) Cycles Time  Temperature (c) Cycles Time Temperature (c) Cycles 

5:00 95  5:00 95  5:00 95   
0:30 95 10X

 

0:35 95 10X
 

0:40 95 15X
 0:30 50 0:35 50 0:50 63 

1:00 72 1:10 72 1:20 72 
7:00 72  7:00 72  7:00 72   

Infinite 10  Infinite 10  Infinite 10   
                  

Plant Tissue Prokaryotes Cycling   
Step 1   Step 2   Step 3    
Time  Temperature (c) Cycles Time  Temperature (c) Cycles Time Temperature (c) Cycles 

5:00 95  5:00 95  5:00 95   
0:30 95 

10X
 

0:30 95 

10X
 

0:40 95 15X
 

0:15 75 0:15 75 
0:30 50 0:35 50 0:50 63 
0:45 72 0:50 72 1:20 72 
7:00 72  7:00 72  7:00 72   

Infinite 10   Infinite 10   Infinite 10   

Supplementary Table 1. Thermocycling conditions used for amplifying fungal (ITS) and bacterial 
(16S) genes from all sample origins. 
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Plant Associated Prokaryotes Fungi  

Step 1 Step 1 

Component 
Volume/Sample 
(uL) Component 

Volume/Sample 
(uL) 

2X Platinum Green Taq  Master Mix(Thermo 
Fisher,USA) 6.25 

2X Dream Taq Green PCR Master Mix (Thermo 
Fisher) 6.25 

10 uM 515F Primer (IDT, USA) 0.375 10 uM ITS 1F Primer (IDT,USA) 0.375 

10 uM 806R Primer (IDT, USA) 0.375 10 uM ITS 4 Primer (IDT,USA) 0.375 

Bovine Serum Albumin (BSA, 3%) 1 Bovine Serum Albumin (BSA, 3%) 1 

50 uM Mitochondrial PNA clamp (PNA Bio, USA) 0.18 H2O 3 

50 uM Plastid PNA clamp (PNA Bio, USA) 0.18 Extracted DNA 1 

GC Enhancer (Thermo Fisher,USA) 2 Step 2 

H2O 0.64 Component 
Volume/sample 
(uL) 

Extracted DNA 1 
2X Dream Taq Green PCR Master Mix (Thermo 
Fisher) 6.25 

Step 2 10 uM ITS 1F Primer Frameshift (IDT,USA) 0.375 

Component 
Volume/Sample 
(uL) 10 uM ITS 4 Primer Frameshift (IDT,USA) 0.375 

2X Platinum Green Taq  Master Mix(Thermo 
Fisher,USA) 6.25 Bovine Serum Albumin (BSA, 3%) 1 

10 uM 515F Primer Frameshift (IDT, USA) 0.375 H2O 2 

10 uM 806R Primer Frameshift (IDT, USA) 0.375 Step 1 Product 2 

Bovine Serum Albumin (BSA, 3%) 0.64 Step 3 

50 uM Mitochondrial PNA clamp (PNA Bio, USA) 0.18 Component 
Volume/sample 
(uL) 

50 uM Plastid PNA clamp (PNA Bio, USA) 0.18 
2X Dream Taq Green PCR Master Mix (Thermo 
Fisher) 8 

GC Enhancer (Thermo Fisher,USA) 2 Barcode Forward Primer 0.5 

Step 1 Product 2 Bovine Serum Albumin (BSA, 3%) 1 

Step 3 H2O 0.5 

Component 
Volume/Sample 
(uL) Unique 10 Nucleotide Barcode 1 

2X Platinum Green Taq Master Mix (Thermo 
Fisher,USA) 8 Step 2 Product 4 

Barcode Forward Primer 0.5     

Bovine Serum Albumin (BSA, 3%) 1 
Soil Prokaryote PCR Mixes are the same as Fungi, but with Platinum 

Taq 

GC Enhancer (Thermo Fisher,USA) 0.5     

Unique 10 Nucleotide Barcode 1     

Step 2 Product 4     

Supplementary Table 2.  PCR recipes for amplifying the ITS and 16S markers. 
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 Factor PERMANOVA  DISPERSION 

 A - Fungi Df F-value R2 P-value  F-value P-value 

Soil 

Growth Stage 2 4.347 0.071 0.0001  2.566 0.08580 
Management 2 9.794 0.160 0.0001  8.123 0.00056 
Growth Stage:Management 4 1.948 0.064 0.0001    
Residuals 86       
Total 94       

Roots 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 4.310 0.075 0.0001  3.525 0.03337 
Management 2 4.198 0.073 0.0001  0.709 0.49480 
Growth Stage:Management 4 2.286 0.079 0.0001    
Residuals 89       
Total 97       

Stems 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 8.324 0.138 0.0001  0.279 0.7571 
Management 2 8.699 0.144 0.0001  4.553 0.0132 
Growth Stage:Management 4 1.891 0.063 0.002    
Residuals 79       
Total 87       

Leaves 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 59.172 0.433 0.0001  7.763 7.24E-04 
Management 2 15.091 0.110 0.0001  0.032 0.9685 
Growth Stage:Management 4 6.998 0.102 0.0001   

 

Residuals 97       
Total 105       

 B-Prokaryotes Df F-value R2 P-value  F-value P-value 

Soil 

Growth Stage 2 3.829 0.063 0.0001  5.086 0.0079 
Management 2 7.526 0.119 0.0001  8.555 0.0004 
Growth Stage:Management 4 1.882 0.060 0.0002    
Residuals 92       
Total 101       

Roots 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 7.087 0.110 0.0001  3.477 0.0350 
Management 2 4.405 0.069 0.0001  3.055 0.0514 
Growth Stage:Management 4 2.149 0.067 0.0007    
Residuals 97       
Total 105       

Stems 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 19.511 0.253 0.0001  8.146 8.96E-05 
Management 2 8.932 0.116 0.0001  10.287 0.0001 
Growth Stage:Management 4 1.784 0.046 0.0205    
Residuals 90       
Total 98       
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Leaves 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 33.654 0.366 0.0001  29.286 1.24E-10 
Management 2 4.557 0.050 0.0001  1.431 0.2442 
Growth Stage:Management 4 4.559 0.099 0.0001   

 

Residuals 89       
Total 97       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3: Permutational multivariate analysis of variance (adonis) 
and multivariate homogeneity of groups dispersions analysis (betadisper) results for 
(A) fungal communities associated with soybean soil, root, stem, and leaf samples, 
(B) prokaryotic communities associated with soybean soil, root, stem, and leaf 
samples. Significance values at p ≤ .05 are indicated in bold. 
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A - Fungi PERMANOVA  DISPERSION 
Growth Stage F-value R2 P-value  F-value P-value 

Soil 

V2 4.515 0.17 1.00E-04  0.043 0.8377 
R2 3.871 0.17 1.00E-04  0.4581 0.507 
R6 4.241 0.17 1.00E-04  0.4612 0.505 

Roots 

V2 4.05 0.16 3.00E-04  0.831 0.372 
R2 2.16 0.102 1.60E-02  4.83 0.041 
R6 2.06 0.089 7.60E-03  0.778 0.387 

Stems 

V2 3.96 0.16 1.00E-04  0.339 0.567 
R2 2.33 0.11 9.40E-03  2.723 0.115 
R6 7.5 0.283 1.00E-04  2.394 0.138 

Leaves 

V2 8.62 0.29 1.00E-04  1.867 0.186 
R2 3.57 0.15 8.00E-04  2.645 0.119 
R6 7.27 0.25 1.00E-04  0.169 0.291 

Management F-value R2 P-value  F-value P-value 

Soil 
Conventional 1.57 0.095 1.00E-03  0.453 0.639 
No-Till 2.22 0.125 1.00E-04  0.825 0.448 

Roots 

Conventional 2.79 0.161 3.00E-04  0.209 0.812 

No-Till 4.42 0.216 1.00E-04  4.712 0.016 

Stems 

Conventional 3.18 0.175 1.00E-04  0.997 0.381 

No-Till 4.69 0.244 1.00E-04  0.462 0.634 

Leaves 

Conventional 27.35 0.638 1.00E-04  2.39 0.108 

No-Till 29.53 0.642 1.00E-04  1.21 0.31 
B - Prokaryotes PERMANOVA  DISPERSION 
Growth Stage F-value R2 P-value  F-value P-value 

Soil 

V2 6.504 0.228 1.00E-04  1.656 0.212 
R2 3.124 0.135 6.00E-04  0.951 0.341 
R6 3.301 0.13 1.00E-04  16.913 4.58E-04 

Roots 

V2 2.731 0.115 1.69E-02  2.98 0.099 
R2 0.694 0.032 7.68E-01  0.0309 0.862 
R6 2.213 0.0914 2.71E-02  1.523 0.23 

Stems 

V2 2.864 0.12 5.30E-03  1.127 0.3 
R2 3.679 0.143 6.00E-04  0.347 0.5621 
R6 3.567 0.151 1.00E-04  1.392 0.251 

Leaves 

V2 5.108 0.203 1.00E-04  1.709 0.206 
R2 1.418 0.0662 2.15E-01  2.492 0.13 
R6 2.406 0.0986 1.21E-02  0.869 0.361 

Management F-value R2 P-value  F-value P-value 

Soil 
Conventional 2.972 0.157 1.00E-04  29.747 5.00E-08 
No-Till 2.259 0.124 1.30E-03  1.023 0.371 

Roots 
Conventional 2.359 0.132 7.80E-03  0.165 0.849 
No-Till 3.494 0.175 6.00E-04  2.87 0.071 
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Stems 
Conventional 5.33 0.262 1.00E-04  1.19 0.319 
No-Till 10.06 0.378 1.00E-04  0.627 0.541 

Leaves 
Conventional 15.56 0.509 1.00E-04  8.53 1.20E-03 
No-Till 16.79 0.512 1.00E-04  5.38 0.0097 

 

 

 

 

 

Supplementary Table 4:  Permutational multivariate analysis of variance (adonis) and 
multivariate homogeneity of groups dispersions analysis (betadisper) results for (A) fungal 
communities associated with soybean soil, root, stem, and leaf samples showing the effect of 
agricultural management on individual growth stages and the effect of growth stage on 
individual agricultural management systems, and (B) prokaryotic communities associated with 
soybean soil, root, stem, and leaf samples showing the effect of agricultural management on 
individual growth stages and the effect of growth stage on individual agricultural management 
systems. 
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