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Abstract
The United States Great Lakes Region (USGLR) is a critical geographic area for 
future bioenergy production. Switchgrass (Panicum virgatum) is widely considered a 
carbon (C)-neutral or C-negative bioenergy production system, but projected increases 
in air temperature and precipitation due to climate change might substantially alter 
soil organic C (SOC) dynamics and storage in soils. This study examined long-term 
SOC changes in switchgrass grown on marginal land in the USGLR under current 
and projected climate, predicted using a process-based model (Systems Approach 
to Land-Use Sustainability) extensively calibrated with a wealth of plant and soil 
measurements at nine experimental sites. Simulations indicate that these soils are 
likely a net C sink under switchgrass (average gain 0.87 Mg C ha−1 year−1), although 
substantial variation in the rate of SOC accumulation was predicted (range: 0.2–
1.3  Mg  C  ha−1  year−1). Principal component analysis revealed that the predicted 
intersite variability in SOC sequestration was related in part to differences in climatic 
characteristics, and to a lesser extent, to heterogeneous soils. Although climate change 
impacts on switchgrass plant growth were predicted to be small (4%–6% decrease 
on average), the increased soil respiration was predicted to partially negate SOC 
accumulations down to 70% below historical rates in the most extreme scenarios. 
Increasing N fertilizer rate and decreasing harvest intensity both had modest SOC 
sequestration benefits under projected climate, whereas introducing genotypes better 
adapted to the longer growing seasons was a much more effective strategy. Best-
performing adaptation scenarios were able to offset >60% of the climate change 
impacts, leading to SOC sequestration 0.7 Mg C ha−1 year−1 under projected climate. 
On average, this was 0.3 Mg C ha−1 year−1 more C sequestered than the no adaptation 
baseline. These findings provide crucial knowledge needed to guide policy and 
operational management for maximizing SOC sequestration of future bioenergy 
production on marginal lands in the USGLR.
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1  |  INTRODUCTION

Transitioning bioenergy systems from grain-derived sugars 
and lipids to lignocellulosic plant biomass is a necessary step 
for climate stabilization (DeCicco & Schlesinger, 2018; IPCC, 
2014; Popp et al., 2011; Smith et al., 2016). Lignocellulose 
feedstock production and utilization are poised to become a 
major industry, despite potential drawbacks due to indirect 
land-use change, deforestation, displacement of food pro-
duction, and biodiversity impacts (Fargione, Hill, Tilman, 
Polasky, & Hawthorne,  2008; Fletcher, Brown, Johnstone, 
de Ruiter, & Zyskowski, 2011; Gelfand et al., 2013). As the 
United States moves toward meeting goals set by the renew-
able fuel standards program (Schnepf & Yacobucci, 2013), 
the US Great Lakes region (USGLR; Figure 1a) could be-
come a pivotal geographic location for future biomass feed-
stock production (Becker, Skog, Hellman, Halvorsen, & 
Mace,  2009). This region, which represents the northern 
fringe of the Corn Belt, encompasses large areas of marginal 
land sites that are not typically farmed and remain under pe-
rennial covers (i.e., brush, forest, hay) and that are attractive 
for growing bioenergy crops because of their low opportu-
nity cost (Kells & Swinton, 2014; Swinton, Tanner, Barham, 
Mooney, & Skevas, 2017). Thus, assessing potential benefits 
and drawbacks of growing biomass crops in these marginal 
lands is a priority.

Many carbon (C) budgets implicitly or explicitly require 
lignocellulosic bioenergy systems to be C-neutral, which 
means that biogenic C emissions associated with its produc-
tion and consumption must be offset by plant CO2 uptake 
and storage in soil organic C (SOC) reservoirs (DeCicco 
& Schlesinger,  2018). Given this requirement, the devel-
opment of bioenergy feedstocks has centered around a few 
high-yielding perennial species that are known to increase 
SOC (Agostini, Gregory, & Richter,  2015; Robertson, 
Hamilton, Del Grosso, & Parton, 2011; Sanchez, Nelson, 
Johnston, Mileva, & Kammen, 2015; Sartori, Lal, Ebinger, 
& Parrish,  2006), with switchgrass (Panicum virgatum) 
as the leading candidate for large-scale deployment in 
the United States (Mclaughlin & Kszos,  2005; Parrish & 
Fike, 2005). Yet, the extent to which biogenic C emissions 
are balanced by changes in SOC storage is specific to the 
pedo-climatic context, even in perennial systems (Agostini 
et al., 2015). Thus, predicting the SOC sequestration poten-
tial of switchgrass production systems has become a cru-
cial step in the design of sustainable bioenergy landscapes 
(Field, Marx, Easter, Adler, & Paustian,  2016; Gelfand 
et al., 2020).

Changes in SOC in perennial systems are driven by 
both the amount of plant-derived C inputs to soils (root 
and aboveground litter) and organic C decomposition 
rates (Agostini et al., 2015; Fuss et al., 2014; Searchinger 
et  al.,  2008). Both of these are controlled by various 

site-specific factors such as climate, soil texture, and drain-
age (Field et  al.,  2018); land-use history and disturbance 
(Qin, Dunn, Kwon, Mueller, & Wander, 2016); and fertil-
izer use (Ruan, Bhardwaj, Hamilton, & Robertson, 2016). 
These factors dictate whether soils under perennial bioen-
ergy feedstock production will act as net sinks or sources 
of C at a specific location. In switchgrass, C allocation to 
belowground biomass (BGB) is four to seven times that 
of annual crops (Anderson-Teixeira et  al., 2013), produc-
ing a BGB stock in excess of 5  Mg  C/ha in some cases 
(Sainju, Allen, Lenssen, & Mikha,  2017). It is through 
the turnover of this live root C pool that switchgrass has 
been seen able to add substantial C to soils, even when a 
large portion of the aboveground biomass (AGB) is har-
vested (Agostini et al., 2015; Robertson et al., 2011, 2017; 
Ruan et al., 2016; Sartori et al., 2006). With this increase 
in SOC storage, switchgrass bioenergy production systems 
have potential to partially or totally offset emissions asso-
ciated with its production and conversion into biofuel or 
bioelectricity (Gelfand et al., 2020; Sanchez et al., 2015). 
Nevertheless, experimental estimates of switchgrass SOC 
changes vary substantially among studies, from little or no 
SOC gain to accrual rates upward of 2.0 Mg C ha−1 year−1 
(Agostini et  al.,  2015; Follett, Vogel, Varvel, Kimble, & 
Mitchell, 2012; Liebig, Schmer, Vogel, & Mitchell, 2008). 
This reflects the uncertainties in long-term SOC balances 
across heterogenous conditions.

Critically, because the development of the lignocellu-
losic bioenergy industry is likely to take several decades, 
predictions must account for how future climates might in-
fluence C sequestration in soils. Studies in annual crops 
suggest that projected increases in temperatures are likely to 
decrease plant growth mainly due to a faster accumulation 
of heat units and earlier maturation (Bassu et al., 2014) but 
also due to changes in seasonal precipitation patterns (Liu 
& Basso, 2020). Decreased plant growth typically means 
lower plant residues returning to soils. Warming also pro-
motes greater heterotrophic soil respiration, accelerating 
the rate of SOC decomposition (Crowther et al., 2016; Jian, 
Steele, Day, & Thomas, 2018). It has been estimated that 
annual agricultural systems will need to increase C inputs 
by ~30% to maintain SOC storage under future climate pro-
jections (Wiesmeier et al., 2016). Furthermore, the bidirec-
tional feedback between crop productivity and SOC could 
amplify climate change impacts on SOC storage in the long 
term (Basso et al., 2018). Nevertheless, these impacts have 
mainly been studied in annual systems, and much less are 
known about how perennial bioenergy production systems 
might respond to projected climate change, and the poten-
tial of adaptations to mitigate impacts. This is a crucial 
research gap that limits our ability to appropriately guide 
planning, implementation, and operational management of 
these production systems.
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In this study, we hypothesize decreased C sequestration in 
soils by switchgrass grown on marginal lands in the USGLR 
under projected climate, due to concomitant decreases in soil 
C inputs and increases in SOC decomposition rates. Our ob-
jectives were to: (a) examine long-term SOC balances and 
the factors explaining variation across heterogenous sites; 
(b) assess how SOC changes could be affected by projected 

climates; and (c) explore potential adaptation strategies to 
mitigate climate change impacts. We based our findings on 
data simulated using the Systems Approach to Land-Use 
Sustainability (SALUS) model, which was extensively cali-
brated using long-term plant and soil measurements at nine 
experimental sites along a range of pedo-climatic conditions 
in the USGLR (Figure 1b,c).

F I G U R E  1  The US Great Lakes region and pedo-climatic characteristics of experimental sites. (a) Choropleth shadings for US counties 
indicate share of land area designated within USDA's Land Capability Classifications IV through VII (source: SSURGO [county data] and Stamen 
Maps [base layer]). (b) Long-term baseline climate (1980–2000). (c) Soil characteristics for the 0–100 cm profile. Size of the circle and fill color 
ramp indicates soil organic carbon (SOC) content. Textural classes correspond to the USDA textural classification
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2  |  MATERIALS AND METHODS

2.1 | Simulation model

Systems Approach to Land-Use Sustainability is a cropping 
systems simulation platform that contains processed-based 
models derived from the well-validated CERES model, 
providing simulation of crop growth and development, and 
carbon, water, nitrogen (N), and phosphorus cycling dy-
namics on a daily time step. The model uses as input daily 
values of incoming solar radiation (MJ/m2), maximum 
and minimum air temperature (°C), and rainfall (mm), as 
well as information on soil characteristics and manage-
ment. SALUS has been tested extensively for simulating 
soil carbon dynamics (Basso et  al.,  2018; Senthilkumar, 
Basso, Kravchenko, & Robertson, 2009), crop yield (Basso, 
Bertocco, Sartori, & Martin, 2007), plant N uptake and phe-
nology (Albarenque, Basso, Caviglia, & Melchiori,  2016; 
Basso, Ritchie, Cammarano, & Sartori, 2011), nitrate leach-
ing (Basso et al., 2016; Giola, Basso, Pruneddu, Giunta, & 
Jones,  2012; Syswerda et  al.,  2012), water use efficiency 
(Ritchie & Basso, 2008), and transpiration efficiency (Basso 
& Ritchie, 2012). A general description on SALUS is pro-
vided by Basso and Ritchie (2015). Details about SOC 
dynamics and perennial crop simulation subroutines are in-
cluded in Supporting Information S1.

2.2 | Sites and data sources

We use data from nine long-term experiments in the USGLR 
(Figure 1) to calibrate SALUS and test its ability to simulate 
switchgrass crop growth and long-term SOC change.

The experiments in Michigan and Wisconsin are part of 
the Great Lakes Bioenergy Research Center (GLBRC) senti-
nel sites network, which were established to study the feasi-
bility of producing various bioenergy feedstocks on marginal 
lands in the USGLR. Experiments at Kellogg and Arlington 
were established in 2008. Experiments at Escanaba, Lake 
City, Lux Arbor, Hancock, Oregon, and Rhinelander were 
established in 2013. All experiments followed a completely 
randomized plot design (n = 5) with several biofuel cropping 
system treatments including many annual or perennial crops. 
Details about the GLBRC experimental sites can be found 
in the following studies (Jones, Oates, Philip Robertson, & 
Cesar Izaurralde, 2018; Ruan et al., 2016; Sprunger, Oates, 
Jackson, & Robertson, 2017).

Switchgrass (variety “Cave-in-rock”) plots at the 
GLBRC sites were managed without and with N fertilizer 
(~56 kg N ha−1 year−1) and harvested once a year after crop 
had reach maturity. Crop and soil measurements at these sites 
included: (a) peak AGB in late summer; (b) end of season ag-
ronomic yields (~65% of peak AGB; Figure S2.1); (c) BGB 

(aggregate of rhizomes, coarse roots, and fine roots) at har-
vest estimated using the deep core method (0–100 cm); (d) 
in-season leaf area index, estimated with using the AccuPAR 
LP-80 Ceptometer (Meter group, Inc.) or LAI-2000 Plant 
Canopy Analyzer (Licor Inc.); (e) daily profile volumet-
ric soil water content (0–120  cm) using TDR100 probes 
(Campbell Scientific); and (f) soil texture, bulk density, total 
organic C and N (0–100 cm depth) measured at establishment 
of the plots, and in 2013 in Kellogg and Arlington.

Data for the experiment in Indiana were obtained from 
the database published by Ojeda, Volenec, Brouder, Caviglia, 
and Agnusdei (2017). This experiment was conducted in the 
Water Quality Field Station at Purdue University Agronomy 
Center for Research and Education near West Lafayette, 
Indiana. This dataset included in-season measurements of 
switchgrass (variety “Shawnee”) AGB, as well as soil hy-
draulic properties, SOC, and bulk density. We also use BGB 
measurements for the same experiment collected by the pit 
method (0–30 cm) as reported by Burks (2013). For further 
details of this experimental site, we refer the reader to the 
original studies (Burks, 2013; Ojeda et al., 2017).

A summary of the site characteristics and measured data 
available at each site is provided in the Supporting Information 
(Tables S2.1 and S2.2). Daily weather data (1980–2018) 
for all of the sites were retrieved from the North American 
Land Data Assimilation System project phase 2 (NLDAS-2) 
dataset (Xia et al., 2012) using the location coordinates for 
each site. Management records for planting date, fertilization 
amount, and timing were also available (Tables S2.3–S2.5).

2.3 | Model setup and calibration

Systems Approach to Land-Use Sustainability requires sev-
eral user-provided soil input parameters to adequately de-
scribe the soil hydrology and nutrient cycling dynamics of 
the cropping system and capture variability among different 
sites. We used the soil texture (sand, silt, and clay percent-
ages), SOC content, and bulk density measured at plot estab-
lishment in pedotransfer functions (Saxton & Rawls, 2006) 
to derive soil fertility and hydraulic parameters for each site. 
The derived soils are found in the Supporting Information 
(Table S2.6). We configured switchgrass crop management 
in the model according to the management records avail-
able for each site. Briefly, switchgrass was planted the first 
year of the simulation typically May–June at a seeding rate 
600–1,100 seeds m−2 and fertilized the second or third year 
onward with 56–75 kg N/ha. Harvesting typically occurred 
in mid-October or early November with 50%–75% har-
vesting efficiency (ratio of agronomic yield to peak AGB; 
Tables S2.1).

Because all the sites were planted with upland variet-
ies (“Cave-in-rock” or “Shawnee”), we performed a single 
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model calibration across the nine sites. To establish a robust 
parameterization for all the user-defined crop and SOM pa-
rameters, we first surveyed the relevant literature to estab-
lish initial values for each model parameters (Tables S1.1 
and S1.2). Next, we conducted a global sensitivity analysis 
(GSA) with parameter values sampled uniformly (n = 1,000) 
on a plus and minus 20% interval to generate random sets 
of parameters. ABG, BGB, and SOC changes at each model 
run were averaged across years and sites. Then, we followed 
the methodology described by Stanfill, Mielenz, Clifford, 
and Thorburn (2015), where univariate generalized addi-
tive model (GAM) was fit to output variable simulated by 
SALUS, and then, variance-based sensitivity indices were 
calculated using the variance terms estimated by the GAM 
emulator. We examined solely first-order (main effects) sen-
sitivity indices, because we assumed that the impact of two-
way and higher order interactions among parameters were 
small, as indicated by the high agreement between SALUS 
and GAM values (R2 > .93; Figure S3.1). For each output 
variable, we ranked parameters based on their sensitivity 
index and selected the most sensitive parameters that to-
gether accounted for at least 70% of the total variation. This 
step revealed 10 most influential parameters, which we used 
for model optimization.

Next, we subjected the model to a multi-objective op-
timization routine to find values for these parameters. 
The objective of this optimization was to maximize the 
agreement between the measured and simulated values at 
Arlington, Kellogg, and West Lafayette sites. Agreement 
between observed and simulated values was assessed by 
using the Nash–Sutcliffe model efficiency coefficient 
(NSE):

where for the ith observation, Oi and Pi are the observed and 
predicted values, respectively, O is the mean observed value 
and n is the total number of observations. The NSE measures 
improvement in model fit, relative to a simple mean. Negative 
values of NSE indicate that the model performs worse than a 
simple mean, whereas NSE of 1 indicates perfect fit. The op-
timal solution maximized average NSE across the simulated 
variables (AGB, BGB, LAI, soil water, and SOC change). 
The optimization routine was performed in R (version 3.5.2; 
R Core Team, 2018) via the optim function using the qua-
si-Newton method with box constraints (Byrd, Lu, Nocedal, 
& Zhu, 1995).

After convergence of the optimization algorithm, the cal-
ibrated model was evaluated against the agronomic yields at 
the remaining sites. We also used additional metrics to quan-
tify model fit including the regression of the observed versus 

predicted values, and the root mean-squared error (RMSE) of 
the prediction (Equation 2).

2.4 | Future climate projections

We generated weather under future climates to reflect three 
shared socioeconomic pathways (SSP): a sustainability 
(SSP1-26), middle-of-the-road (SSP2-45), and high (SPP5-
85) emission scenarios. Downscaled CMIP6 monthly climate 
projections for the 2081–2100 timeframe (~12  km resolu-
tion) were retrieved from the WorldClim database (Fick &  
Hijmans,  2017). We used the median ensemble prediction 
of five General Circulation Model runs: MRI-ESM2-0, 
MIROC6, IPSL-CM6A-LR, CNRM-CM6-1, and BCC-
CSM2-MR. For each SPP scenario at each site, we calculated 
the delta in average monthly daily minimum and maximum 
temperatures and cumulative precipitation compared to the 
historical baseline (1981–2000; Figures  S4.1–S4.3). Then, 
we created future weather by modifying the historical daily 
weather with the calculated delta factors on a month-by-month  
basis. Additionally, we assumed CO2 concentrations of 385, 
450, 590, and 950 ppm for the historical, SSP2-45, SSP3-70, 
and SSP5-85 climate scenarios, respectively (Meinshausen 
et al., 2019).

2.5 | Climate change and 
adaptation scenarios

Long-term SOC changes were simulated by configuring 
the model to run with 20 years of weather data at each site. 
Baseline management consisted on annual fertilization of 
50  kg  N/ha on May 30 (beginning on the third year after 
planting) and harvested on October 15, with a harvest 
efficiency of 65% (i.e., 35% of total AGB production was 
non-harvestable plant litter detached before harvesting and 
other residue), which was based on the mean observed values 
across the sites (Figure S2.1). This management scenario was 
run for the historical weather benchmark (1981–2000).

In addition, we simulated adaptation treatments 
which included: three doses of N fertilizer (50, 75, and 
100  kg  N  ha−1  year−1); three harvest intensities (65, 55, 
and 45% AGB removal); and two genotypes (baseline and 
adapted). To simulate the “adapted” genotype, we increased 
the thermal time requirement to reach maturity by 30% com-
pared to the baseline (i.e., calibrated) genotype. Treatments 
were run within each site, climate scenario (historical, 
SSP1-26, SSP2-45, and SSP5-85), and a random (n = 100; 
±20%) sampling for the most influential SALUS parameters 
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identified in the GSA, all in a full factorial grid (n = 64,800 
simulations).

3 |  RESULTS

3.1 | Model evaluation

Calibrated switchgrass parameter values fell well within 
ranges of previous studies (Table S2.1 and references within). 
Optimized values for the 10 most influential parameters 
(Figure S3.1) were determined by maximizing the fit to the ob-
served AGB, BGB, LAI, and soil profile moisture and change 

in SOC concentrations at three sites (Arlington, Kellogg, and 
West Lafayette). The optimization routine produced a multi-
objective (i.e., average) NSE of 0.69. With the optimal set of 
parameters, the SALUS model was able to satisfactorily cap-
ture the long-term and seasonal patterns of plant growth in both 
AGB (NSE = 0.74) and BGB (NSE = 0.61), with RMSE rang-
ing 1.5–3.3 and 1.8–2.8 Mg ha for AGB and BGB, respectively 
(Figure  2a). Similarly, the model reproduced adequately the 
seasonal variation in LAI (NSE = 0.72; RMSE = 0.6 m2/m2  
Figure 2b) and soil profile moisture measurements (NSE = 0.64; 
RMSE = 26 mm; Figure 2c), although these two latter meas-
urements were only available at one site (Kellogg). Changes in 
SOC concentrations 5 years after establishment at the two sites 

F I G U R E  2  Switchgrass model calibration. Evaluation of predictions against observations of (a) aboveground and belowground biomass; 
(b) seasonal leaf area index (LAI); (c) total soil water content integrated to 100 cm depth; (d) change in soil C concentrations by depth; and (e) end-of-
season agronomic (i.e., harvested) biomass yield; NSE, Nash–Sutcliffe modeling efficiency; RMSE, root mean squared error; SOC, soil organic carbon
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were reasonably well reproduced given the large variation in the 
experimental measurements (NSE = 0.24, RMSE = 0.5 g/kg;  
Figure 2d). Finally, the model performed satisfactorily when 
evaluated against the end-of-season agronomic yields in plots 
managed with and without N fertilizer at six independent vali-
dation sites (NSE = 0.42; Figure 2e), replicating the year-to-
year variation in harvested yields with an RMSE of 2.1 Mg/ha. 
These results indicated that the model was able to adequately 
capture multiple aboveground and belowground soil–plant pro-
cesses, and therefore could be used to extrapolate the effects of 
management and weather at these sites.

3.2 | SOC changes and variability across  
sites

Over the 20  year historical period (1981–2000) and with 
baseline management (50 kg/ha N fertilizer and 65% AGB re-
moval), mean switchgrass AGB productivity simulated with the 
optimized model ranged from 10.0 to 13.4 Mg dm ha−1 year−1 
across sites. For the 100 cm profile, mean total (AGB + BGB) 
soil C inputs from plant biomass ranged between 4.1 and 
5.7 Mg C/ha, with ~63% of plant C inputs to soil originating 
from BGB turnover (Figure 3a) and the rest from deposited 
AGB litter and harvest residues. Averaged across sites, simu-
lated soil C inputs were on average 14% greater than soil CO2-C 
respired (Figure  3a), resulting in a mean positive long-term 
gain of 0.87 Mg C ha−1 year−1 in belowground SOC pools.

Although estimates of SOC change were highly influenced 
by the set of parameters used for the simulation (55% of the vari-
ance), predicted changes using the optimized model also var-
ied substantially across sites (39% of the variance; Figure 3b). 
Simulated SOC gain ranged from 0.2  Mg  C  ha−1  year−1 in 
West Lafayette to 1.4 Mg C ha−1 year−1 in Rhinelander. In most 
sites, the SOC sock was predicted to increase linearly. Only 
those with large initial SOC storage (Arlington, Escanaba, and 
West Lafayette; Figure 1) were predicted to reach a new equi-
librium after 20 years of switchgrass production (Figure 3c).

Principal component analysis of six site descriptor vari-
ables revealed that 89% of the variation across the nine sites 
could be characterized with two principal components (PC1 
and PC2; Figure 4a). Climatic variables (latitude, mean an-
nual daily temperature, and mean annual cumulative precipi-
tation) were mostly correlated to PC1, whereas soil variables 
(bulk density, sand content, and initial SOC) were mostly 
correlated to PC2. When regressed against SOC change, PC1 
was a much better predictor (R2 = .54) than PC2 (R2 = .28; 
Figure 4b), suggesting that SOC gain in our simulations de-
pended more on climatic parameters than soil characteristics.

3.3 | Impacts of climate change and  
adaptation

Running the model with projected future climate under the 
three SSP scenarios without adaptations marginally affected 

F I G U R E  3  Simulated long-term C balances at the nine sites with baseline climate (1981–2000). (a) Predicted plant C inputs to soil and CO2-C 
respired during decomposition of soil organic carbon (SOC). (b) Share of the variance in predicted SOC change attributable to each simulation 
factor. (c) Predicted change in SOC over the 20 years. Error bars in (a) and blue shadings in (c) represent ranges of simulations with randomly 
sampled values (n = 100, ±20%) for 10 influential SALUS model parameters (Figure S3.1). SALUS, Systems Approach to Land-Use Sustainability
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switchgrass productivity compared to the historical climate, 
decreasing site average AGB by 5.7, 8.8, and 7.0% in the 
SSP1-26, SSP2-45, and SSP5-85 scenarios, respectively. 

This resulted in a reduction in mean soil C inputs of 4%–6% 
(Figure 5). In addition, soil respiration was predicted to in-
crease on average by 2%, 6%, and 11% relative to the historical 

F I G U R E  4  Site characteristics influencing the rate of soil organic carbon (SOC) gain. (a) Principal components for six site descriptors: 
latitude, mean annual daily temperature (MAT), mean annual cumulative precipitation (MAP), soil bulk density, sand content and initial SOC. 
Height of the var indicate the share of variance explained by each principal component, and the area within each bar represent the correlation of 
each variable descriptor with the principal component (i.e., loadings). (b) Correlation of the PC1 and PC2 with the rate of SOC sequestration across 
sites. Error bars represent ranges of simulations with randomly sampled values (n = 100, ±20%) for 10 influential SALUS model parameters 
(Figure S3.1). SALUS, Systems Approach to Land-Use Sustainability

F I G U R E  5  Annual rates of plant-derived soil C inputs, soil organic carbon (SOC) decomposition and SOC change under historical baseline 
(1981–2000) and future climate projections in the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios. Violins depict the distribution of the simulated 
values across sites and random samples (n = 100, ±20%) for 10 influential SALUS model parameters (Figure S3.1). Points indicate simulated 
values at the sites with the optimized parameter values. SALUS, Systems Approach to Land-Use Sustainability; SSP, shared socioeconomic 
pathway
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baseline climate, SSP1-26, SSP2-45, and SSP5-85 scenarios, 
respectively. Aggregated impacts of both reduced C inputs 
and increased respiration resulted in a decrease in the rate 
of SOC gain, by 0.31, 0.48, and 0.61 Mg C ha−1 year−1 in 
the SSP1-26, SSP2-45, and SSP5-85 scenarios, respectively 
(Figure 5).

Predictions of SOC change under future climate were 
most influenced by site and the sets of SALUS parameters 
used, which together they accounted for nearly two-thirds of 
the total variation of the simulation experiment, whereas cli-
mate scenarios and the adaptation practices examined were 
less influential (Figure 6a).

Increasing N fertilizer application rates and reducing 
the percentage of biomass removal were predicted to have 
minimal effects under future climate (Figure 6b). For exam-
ple, doubling N fertilizer additions under projected climate 
produced SOC accrual rates that were greater only in the 

most extreme climate scenario (SSP5-85), by an average of 
0.05 C ha−1 year−1 compared to no adaptations. Similarly, har-
vesting 20% less AGB improved SOC sequestration rates rel-
ative to no adaptation across all future climate scenarios, but 
only by 0.05–0.1 C ha−1 year−1. Combining higher fertilizer 
rates and lower harvest intensity was able to improve average 
SOC gain up to 0.16 C ha−1 year−1, but only in the SSP2-45 
and SSP5-85 scenarios. A greater benefit under the climate 
change scenarios was predicted with adapted genotypes with 
longer seasonal growth cycles (i.e., 30% greater thermal time 
required to reach maturity; Figure 5a,b). This was especially 
true under the SSP1-26 scenario, where average soil C se-
questration rates were virtually on par with historical SOC 
accrual rates, achieving 0.35  Mg  C  ha−1  year−1 SOC gain 
greater than with no adaptations and making this the best ad-
aptation strategy for this climate scenario. The combination 
of adapted cultivar with 20% residue removal was the best 

F I G U R E  6  (a) Share of the variance in soil organic carbon (SOC) change attributed to each of the treatments in the long-term climate change 
and adaptation scenarios. (b) Rate of SOC change under different configuration of adaptation practices and climate scenarios (SSP1-26, SSP2-
45, SSP5-85), compared to the rate of SOC under historical baseline climate (1981–2000) and no adaptations. Violins depict the distribution 
of the simulated values across sites and random samples (n = 100, ±20%) for 10 influential SALUS model parameters (Figure S3.1). Points 
indicate simulated values at the sites with the optimized parameter values. SALUS, Systems Approach to Land-Use Sustainability; SSP, shared 
socioeconomic pathway
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strategy for the SSP2-45 and SSP5-85, outperforming the no 
adaptation baseline by 0.29 and 0.24 Mg C ha−1 year−1, re-
spectively (Figure 5b).

4 |  DISCUSSION

The C neutrality of bioenergy production systems greatly de-
pends on their ability to curtail biogenic CO2 emissions and 
boost the flux of atmospheric CO2-C into long-term SOC 
storage. It has been previously estimated that perennial bio-
energy systems in the United States need to sequester more 
than 0.25 Mg C ha−1 year−1 to, at a minimum, offset the CO2 
emitted by the non-renewable energy used for their cultiva-
tion and conversion into biofuel (Volk, Verwijst, Tharakan, 
Abrahamson, & White,  2004). Our simulations with the 
SALUS model, which was extensively calibrated and tested 
against a wealth of plant and soil measurements collected at 
the sites (Figure 2), indicate that current switchgrass SOC ac-
crual rates in the USGLR could average well over this thresh-
old (0.87 Mg C ha−1 year−1) in the top 100 cm.

These simulated SOC gains are in agreement to es-
timates from a net ecosystem C exchange field study in 
Illinois (~1.0 Mg C ha−1 year−1 within 3.5 years; Anderson-
Teixeira et al., 2013), as well as those reported under early 
successional native grasslands (1.1  Mg  C  ha−1  year−1; 
0–100  cm, 12  year stand) at the Kellogg site (Gelfand 
et  al.,  2013). Similarly, a survey of 10 commercial-scale 
fields across the US Central Plains found that soils gained 
on average 1.1 Mg C ha−1 year−1 in the top 30 cm within the 
first 5 years of switchgrass cultivation (Liebig et al., 2008). 
However, these estimates are much lower than observations 
from a field study in Nebraska (2.0  Mg  C  ha−1  year−1 in 
0–150 cm profile after 10 years; Follett et  al.,  2012), and 
higher than reports from a 3-year experiment under irri-
gated conditions in Washington (0.5  Mg  C  ha−1  year−1, 
0–30  cm depth) and a simulation study in Pennsylvania 
with the DAYCENT model (~0.42 Mg C ha−1 year−1; Adler, 
Del Grosso, & Parton, 2007). A recent literature review has 
placed the global average for switchgrass SOC accrual rate 
around 1.5 Mg C ha−1 year−1 (Agostini et al., 2015). Thus, 
our rates of SOC accrual can be considered lower end, con-
servative estimates. In addition, these predictions are made 
with a fair amount of uncertainty stemming from the set of 
model parameter values reached by the optimization phase 
(Figure 3). A short discussion on uncertainties in parameter 
values and comparison with other studies are included in 
Supporting Information S3.

Variation in SOC sequestration among studies may be in part 
attributable to methodological inconsistencies, such as sam-
pling depth, time horizon, SOC stock calculation method (i.e., 
fixed depth layers vs. soil mass basis; Wendt & Hauser, 2013), 
or the organic matter pools included in the long-term SOC stock 

(Agostini et al., 2015). Nonetheless, we predict large intersite 
variability (range 0.2–1.3 Mg C ha−1 year−1), which is in line 
with reports from multi-site trials (e.g., Liebig et al., 2008). 
According to our simulations, the variation seems to be largely 
driven by differences in climate and, to a lesser extent, het-
erogeneous soils (Figures 3 and 4). In the USGLR, northern 
sites with colder and dryer climates are predicted to gain more 
SOC than southern sites with warmer and wetter climates, 
mainly due to faster SOC decomposition rates in the south-
ern sites. Within similar climates, C-depleted, coarser texture 
soils are predicted to have greater SOC gains than medium 
texture soils with already large SOC stocks (e.g., Hancock vs. 
Arlington; Figures 1 and 3; Senthilkumar et al., 2009). This 
finding suggests that, in order to maximize C sequestration in 
soils, policies and mechanisms to incentivize adoption should 
be targeted to marginal land sites based also on climatic pa-
rameters, rather than production and soil characteristics alone.

The latter is especially critical if we consider that the 
model predicts overall negative impacts of future climates 
on rates of SOC gains. The effect of climate change on the 
productivity of switchgrass upland cultivars used at the sites 
was predicted to be small. This is consistent with findings of 
a recent simulation study with the ALMANAC model (Kim 
et  al.,  2020) and climate envelope models for the Midwest 
(Tulbure, Wimberly, & Owens, 2012), though another study 
in Michigan found greater impacts on yields mainly associ-
ated with increased risk of water stress (Liu & Basso, 2017). 
In our simulations, the reductions in plant growth and soil C 
inputs (4%–6%) together with the increases in SOC decompo-
sition (2%–11%) were predicted to decrease the rate of SOC 
gain by 70% below current rates under the most extreme cli-
mate change scenario (Figure 5). These findings support our 
hypothesis that, in the absence of adaptations, future climates 
could diminish soil C sequestration potential of switchgrass 
due to concomitant decreases in soil C inputs and increases in 
SOC decomposition rates.

Greater soil respiration under future climates, while 
largely driven by increases in air temperatures and precipi-
tation, is also predicted to be a result of increased crop tran-
spiration efficiency (i.e., decreased stomatal conductance) 
under elevated atmospheric CO2 (Durand et al., 2018) and 
the feedback response to soil surface wetness of the tran-
spiration fraction of total evapotranspiration (Basso & 
Ritchie,  2012, 2018), both of which are accounted in the 
SALUS model. These effects translated into lower crop water 
demand, greater soil moisture, and SOC decomposition (see 
details in Supporting Information S5). We must also point 
out that uncertainties surrounding SOC change diminished 
with increasing climate change (Figure 5), which means that 
variability in site characteristics and SALUS parameters be-
comes less important as SOC decomposition intensifies.

While, to our knowledge, this is the first study to exam-
ine and quantify climate change impacts on SOC change in 
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switchgrass, greater potential for SOC loss is a well-known 
effect of warming and it is expected to affect both culti-
vated and natural ecosystems alike (Basso et al., 2018; Jian 
et al., 2018; Liu & Basso, 2020; Senthilkumar et al., 2009; 
Wiesmeier et al., 2016). Yet, this fact is seldom considered in 
biofuel life-cycle analyses and similar assessments (DeCicco 
& Schlesinger, 2018; Gelfand et al., 2020). This could mean 
that future switchgrass soil C sequestration potential in mar-
ginal lands might be generally overestimated in these anal-
yses, if we consider that the bioenergy supply chains may 
take several decades to be fully operational. It is true that 
perennial cropping systems might be better equipped to 
maintain SOC stocks under future weather relative to annual 
production systems (e.g., row crops; Jones et al., 2018). As 
such, further research is needed to elucidate relative benefits. 
However, from a purely C-accounting perspective, our results 
suggest that without C capture and storage in geological lay-
ers (Fuss et al., 2014), bioenergy production systems may not 
be a strong sink for atmospheric CO2-C under future climates 
as originally expected. Here, we only examine production 
systems in the USGLR, although this finding may extrapolate 
to other temperate regions.

Adjusting switchgrass production practices could pro-
vide a feasible pathway to mitigate some of the impacts of 
future climate on C sequestration in soils, with the best- 
performing adaptation scenarios predicted to offset more 
than 60% of the climate change impact on SOC, on average 
leading to an additional 0.3 Mg C ha−1 year−1 SOC storage 
compared to no adaptations (Figure 6). With about half mil-
lion ha of non-forested marginal lands potentially available 
for bioenergy production in the USGLR (0.3 and 0.23 mil-
lion ha in Michigan and Wisconsin, respectively; Gelfand 
et  al.,  2013; Liu & Basso,  2017), an SOC sequestration 
benefit of this magnitude would represent approximately 
additional atmospheric removal of 0.5 million tons of CO2 
per year. Changes in N fertilization and harvest intensity 
are well-known management strategies used to modulate 
C inputs and SOC decomposition rates (Ruan et al., 2016; 
Valdez, Hockaday, Masiello, Gallagher, & Philip Robertson, 
2017). However, here the SOC loss mitigation potential of 
increasing N fertilization and reducing the amount of har-
vested AGB (i.e., more soil C inputs) is predicted to be 
modest and would come at the expense of profitability (i.e., 
higher inputs and lower harvested yields). Additionally, 
greater nitrous oxide emissions associated with higher N 
fertilization may offset some or all of the benefits from in-
creased SOC gains from a greenhouse gas mitigation po-
tential perspective (Ruan et al., 2016), as this gas has ~300 
times more radiative forcing than CO2 (Davidson & Kanter,  
2014).

An introduction of genotypes adapted to longer growing 
seasons (e.g., lowland ecotypes) seems particularly prom-
ising as an adaptation strategy to mitigate climate change 

impacts on SOC, since it also means increased profitability 
through greater biomass yields. The more productive, longer 
cycle lowland ecotypes have not been historically grown in 
the northern United States because of poor winter survival 
and biomass quality issues (i.e., high moisture and N con-
tent at harvest). Both of these are related to insufficient heat 
units available for nutrient relocation and senescence in the 
fall (Casler & Vogel, 2014; Parrish & Fike, 2005). Yet, with 
the milder winter temperatures and longer growing seasons 
projected (Figures S4.1 and S4.2), areas in the USGLR could 
increasingly become suitable environments for lowland eco-
types in the coming decades, as shown in a previous model-
ing study (Tulbure et al., 2012). We must point out, however, 
that here genotype adaptation was simulated rather coarsely, 
that is, by increasing thermal time requirement for matu-
rity by 30%, without considering other aspects of genotype 
adaptation such as response to daylength, winter survival, 
and nutrient relocation. Long-term breeding programs have 
shown that adaptation of southern germplasm to northern en-
vironments is possible, through two-site reciprocal transplant 
trails or hybridization with upland ecotypes, with promising 
improvements in biomass yields (Casler & Vogel,  2014). 
Accelerating progress in genetic adaptation to local environ-
ments is also being explored through quantitative trait loci 
mapping techniques (Lowry et  al.,  2019). Although breed-
ing locally adapted genotypes for non-stationary climates re-
mains a challenge, its success has large implications not only 
for switchgrass yield and profitability but also for the soil C 
sequestration and C neutrality of this bioenergy production 
system.
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