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ABSTRACT

Microbial communities help plants access nutrients and tolerate
stress. Some microbiomes are specific to plant genotypes and,
therefore, may contribute to intraspecific differences in plant
growth and be a promising target for plant breeding. Switchgrass
(Panicum virgatum) is a potential bioenergy crop with broad
variation in yields and environmental responses; recent studies
suggest that associations with distinct microbiomesmay contribute
to variation in cultivar yields. We used a common garden
experiment to investigate variation in 12 mature switchgrass
cultivar soil microbiomes and, furthermore, to examine how root
traits and soil conditions influence microbiome structure. We found
that average root diameter varied up to 33% among cultivars and
that the cultivars also associated with distinct soil microbiomes.
Cultivar had a larger effect on the soil bacterial than fungal
community but both were strongly influenced by soil properties.

Root traits had a weaker effect on microbiome structure but root
length contributed to variation in the fungal community. Unlike the
soil communities, the root bacterial communities did not group by
cultivar, based on a subset of samples. Microbial biomass carbon
and nitrogen and the abundance of several dominant bacterial
phyla varied between ecotypes but overall the differences in soil
microbiomes were greater among cultivars than between
ecotypes. Our findings show that there is not one soil microbiome
that applies to all switchgrass cultivars, or even to each ecotype.
These subtle but significant differences in root traits, microbial
biomass, and the abundance of certain soil bacteria could explain
differences in cultivar yields and environmental responses.

Keywords: bioenergy, microbiome, Panicum virgatum, root traits,
switchgrass

Plants associate with microbial communities that help them
access resources and tolerate stress (Jiang et al. 2017; Pérez-
Jaramillo et al. 2016). Some microbial communities are associ-
ated with specific plant genotypes (Adam et al. 2018; Emmett et al.
2017; Jiang et al. 2017; Pérez-Jaramillo et al. 2017) and, therefore,
have the potential to be targets of plant breeding programs and
inform crop choices (Busby et al. 2017; Mueller and Sachs 2015).
Switchgrass (Panicum virgatum L.), a leading candidate for low-
input bioenergy feedstock, exhibits broad phenotypic and genotypic
variations that contribute to its ability to tolerate a diverse range of
environments (Casler et al. 2017; Yang et al. 2009). However,
genotypic differences only explain roughly 30% of the variation in
cultivar yield responses across different regions, years, and fertilizer
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rates (Casler et al. 2019). Recent studies suggest that the unexplained
variability in cultivar yields and environmental responses may be
driven, in part, by their associations with distinct microbial commu-
nities (Rodrigues et al. 2017; Sawyer et al. 2019; Singer et al. 2019a).
Switchgrass cultivars are broadly classified as upland and low-

land ecotypes. Lowland ecotypes originate from southern, warm,
and mesic regions, and upland ecotypes originate from northern,
cold, and drier regions. Although there are distinct traits across
ecotypes such as earlier flowering and senescence in upland cul-
tivars (Casler 2012), there is also physiological and phenotypic
variation within ecotypes, including in aboveground and below-
ground traits, drought tolerance, yields, and responses to fertilizer
(Aimar et al. 2014; de Graaff et al. 2013; Stahlheber et al. 2020).
Multiple recent studies also suggest that switchgrass cultivars
belonging to upland and lowland ecotypes have distinct soil
microbiomes (Revillini et al. 2019; Rodrigues et al. 2017; Sawyer
et al. 2019; Singer et al. 2019a) but see Emery et al. (2018).
However, most previous studies only focused on one or two of the
most common cultivars, making it hard to identify general patterns
or to determine whether soil microbiomes vary consistently by
switchgrass ecotype. Furthermore, with one notable exception
(Emery et al. 2018), most studies were conducted on young, im-
mature plants even though switchgrass is a long-lived perennial that
reaches stand maturity and peak yields after 3 years. Given reported
ontogenetic differences in plants’microbial communities (Chaparro
et al. 2014; Zhalnina et al. 2018), it seems likely that young and
mature switchgrass plants will recruit distinct microbiomes that may
have different effects on growth or other aspects of plant health such
as nutrient acquisition.
Root and soil microbiomes are influenced by plant traits and soil

conditions (Fierer 2017; Saleem et al. 2018). Plants, particularly
long-lived perennials, can also alter soil properties, which then lead
to differences in microbial communities (DuPont et al. 2014; Liang
et al. 2012; Zhang et al. 2017). Switchgrass cultivars differ in their
root exudate profiles (An et al. 2013), architecture, and tissue
chemistry (de Graaff et al. 2013; Stewart et al. 2017), and these
differences may lead to distinct microbiomes. For instance, culti-
vars with high specific root length (SRL) have a greater relative
proportion of thin, high-quality (low carbon/nitrogen ratio) roots
that provide more labile carbon (C) to microbes (Adkins et al. 2016;
de Graaff et al. 2013; Stewart et al. 2017). This influences microbial
community C acquisition, soil fungal/bacterial ratios (de Graaff
et al. 2013; Roosendaal et al. 2016; Stewart et al. 2017), and the
amount of C allocated belowground (Adkins et al. 2016; Stewart
et al. 2017). These studies show that differences in root traits and
consequent C provisioning likely contribute to variation in
switchgrass cultivar microbiomes; however, few studies have
measured variation in switchgrass root traits and microbial com-
munities simultaneously (Roosendaal et al. 2016; Stewart et al.
2017).
Although root traits and soil conditions drive microbial com-

munity structure, the strength of these drivers may differ for root-
and soil-associated microbial communities (Bulgarelli et al. 2013;
Yu and Hochholdinger 2018). Plant signaling, exudation, and al-
tered abiotic conditions filter and recruit bulk soil microbes to
different microhabitats such as the rhizosphere (soils closely ad-
hering to roots) and endosphere (internal root tissues). Soil-
associated microbes are influenced by changes in root exudates
and soil conditions, while root microbes are assembled through a
two-step process whereby the previously filtered rhizosphere mi-
crobes are recruited to the roots through genotype-specific signaling
(Bulgarelli et al. 2013). Therefore, although soil conditions affect
both root and soil communities, root communities are often a less
diverse but more host-associated subset of the surrounding soil

microbes (Bulgarelli et al. 2013). It is also predicted that root-
associated communities have greater heritable variation than soil
communities (Reinhold-Hurek et al. 2015); however, more research
is needed to assert this claim. Knowing how microbiomes differ
among cultivars’ soils and roots as well as what influences
microbiome structure will help us understand how microbes may
contribute to cultivar and ecotype variation in the field and, fur-
thermore, how microbes could be incorporated into switchgrass
production.
We hypothesize that root traits and microbial communities will

differ among switchgrass cultivars. Furthermore, we expect that a
combination of root traits and soil conditions will drive soil
microbiome structure, while root microbiome structure will be less
diverse but more distinct among cultivars. We predict that root
architectural traits known to increase belowground plant-derived C
inputs (e.g., SRL or root diameter) will be an important driver of
microbial community structure and biomass. In this study, we
address these hypotheses by measuring root traits and microbiomes
across 12 mature switchgrass cultivars, asking two primary ques-
tions. First, does microbial biomass and community structure vary
across switchgrass cultivars? Second, what soil conditions and root
traits influence microbial community structure and biomass?

MATERIALS AND METHODS

Site description. We conducted this study in southwest Mich-
igan, United States, at the Great Lake Bioenergy Research Center’s
Switchgrass Variety Experiment (https://lter.kbs.msu.edu/research/
long-term-experiments/glbrc-switchgrass-variety-experiment/) lo-
cated at the W.K. Kellogg Biological Station Long-Term Eco-
logical Research Site (42�239470 N, 85�229260 W). Mean annual
precipitation is 100 cm and soils are moderately fertile sandy clay
loam (https://lter.kbs.msu.edu/research). In 2009, 12 switchgrass
cultivars, including 8 upland and 4 lowland cultivars, were
established in a complete randomized block design (4 cultivars with
poor establishment were replanted in 2010). Details on seed source
and breeding history are shown in Table 1. Cultivars were planted as
live seed at a rate of 9 kg ha

_1 into 12 plots within four uniformly
treated replicate blocks, in the same soil type, and within 80 m of
one another (n = 48, plots = 4.6 × 12.2 m). The blocks were not
irrigated and urea fertilizer was applied annually in the spring
(nitrogen at 78 kg ha

_1). Preemergence weeds were controlled with
Quinclorac Drive (1.1 kg ha

_1) and Atrazine (0.6 kg ha
_1) and

postemergence weeds were treated with herbicides (Glyphosate,
2,4-D, or Dicamba) as needed.
Sampling and soil analyses. In June and July 2016, we collected

soil cores (2 cm in diameter by 20 cm deep) from the rhizome
(within 10 cm from the rhizome center) of three randomly chosen
switchgrass plants from either end and the center of each block (3
replicate cores × 4 blocks = 12 cores/cultivar). All instruments were
sterilized with 70% ethanol between sampling. Because plant
phenological stage can affect microbial communities (Chaparro
et al. 2014; Zhalnina et al. 2018), we sampled each cultivar at the
same developmental stage: flowering (Emmett et al. 2017). The 12
cultivars flowered over a 4-week period and, at each sampling date,
we sampled at least two cultivars (Table 1). This controlled for the
impact of phenology on microbiome structure but microbiome
differences may have also been affected by variation in host res-
idence time (Dombrowski et al. 2017) or soil conditions. We
accounted for some of this temporal variation by including soil
moisture content, the edaphic factor that varied most among dates,
as a covariate in our analyses (see Analyses section).
After sampling, the soils were stored at 4�C and were frozen

at _20�C within 48 h after sampling. Before freezing the soil cores,
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we sieved (1 mm) a 30 g subset of the collected soils to remove roots
and rocks and subsample for various assays, including chloroform
fumigation and potassium sulfate extractions for microbial biomass,
soil nitrate and ammonium (12 g soil), volumetric soil moisture
content (5 g of soils dried at 60�C), and downstream DNA ex-
tractions (2 g of soil stored at _20�C). Microbial biomass carbon
(MBC) and nitrogen (MBN) were analyzed on a TOC analyzer
(Shimadzu TOC-VCPH) and calculated by subtracting the total
carbon (C) and nitrogen (N) of unfumigated samples from fumi-
gated samples (Vance et al. 1987). Unfumigated potassium sulfate
extracts were used to determine soil inorganic ammonium (NH4

+)
and nitrate (NO3

_
) with colorimetric 96-well plate assays. Ammo-

nium concentration was analyzed using ammonia salicylate and
ammonia cyanurate as described by Sinsabaugh et al. (2000).
Nitrate reductase enzyme (EC number 1.7.1.1) was used to reduce
NO3

_
to NO2

_
and concentrations of NO2

_
were determined using

sulfanilamide andN-(1-naphthyl)-ethylenediamine. Absorbance for
NH4

+ and NO3
_
assays were read on a Synergy HTX plate reader

(BioTek, Winooski, VT, U.S.A.) at 610 and 540 nm, respectfully.
All roots collected during initial sieving and remaining soils were
stored at _20�C until further root trait analysis and root DNA
extractions.
Root sterilization and trait analysis. The previously frozen

sieved roots and undisturbed soils were wet sieved (2 mm) with
Nanopure (0.2 mM) water and all visible roots were separated with
sterilized tweezers for an average of 30 min per sample. These roots
were stored at 4�C in Nanopure water and scanned within 48 h. To
maintain sterility and minimize microbial cross-contamination, we
sterilized all equipment with 70% ethanol between scans. The roots
were scanned (1,200-dpi resolution with Epson perfection V600
scanner) in a glass scanning bed with 200 ml of Nanopure water,
exported as tiff files, manually edited to remove image artifacts, and
compressed before analyzing root traits with GiA Roots software
(Galkovskyi et al. 2012). Following scanning, 0.25 g of the scanned
roots (<2 mm in diameter to standardize for root age) were

subsampled and sterilized for root-associated (endophyte) microbial
characterization (details below). The remaining roots were weighed
and dried at 60�C for 1 week to calculate the dry/wet root biomass
ratio. Predicted total dry root weight was back calculated using the
dry/wet ratio to estimate the dry weight of the 0.25 g subset. This
back calculation of total dry root weight may underestimate actual
root weight values if root water content varies with root diameter; an
underestimation of root weight could contribute to miscalculations
of other root traits such as mass-weighted specific root length (total
root length/dry root biomass). Using GiA Roots, we calculated the
following root traits: total root length (in centimeters), average root
diameter (in centimeters), total root system volume (in cubic
centimeters), and SRL. SRL was calculated in two ways: (i) mass-
weighted SRL, which we calculated using the back-calculated dry/
wet root ratios (centimeters of total root length per gram of total dry
root biomass), and (ii) volume-weighted SRL (centimeters of total
root length per cubic centimeters of total root volume).
To prepare the root tissues for DNA extractions, we first sterilized

the 0.25 g of subsampled roots. Immediately after scanning, we
sterilized the subset roots following Sun et al. (2008): roots were
immersed in 70% ethanol for 3 min, sterilized with fresh household
sodium hypochlorite solution (2.5% available Cl

_
) for 5 min, rinsed

with 70% ethanol for 30 s, rinsed 10 times with sterile autoclaved
water, blotted dry with Kimwipes (Kimberly-Clark, Roswell, GA,
U.S.A.), and frozen at _20�C (Sun et al. 2008). To test root-surface
sterilization, the final water rinse was plated on Luria-Bertani (LB)
agar and incubated at 30�C for 7 days. A majority of the LB plates
had bacterial growth after 1 week of incubation. Although the
bacterial growth may suggest incomplete sterilization of the rhi-
zoplane, because these samples were root segments, the cultured
bacteria may have been endophytic bacteria that dispersed from the
interior of the roots. Due to the thorough sterilization procedure, we
believe the remaining microbes are strongly root associated but
cannot conclude that they are obligate endophytes. Before DNA
extraction, the frozen, surface-sterilized root samples were

TABLE 1
Details on cultivar origin, sampling date, and establishment year in the common garden experimenta

Cultivar Ecotype Sampling date Year Breeding history (native seed source)

Alamo Lowland 27 July 2009 Seed increase from native remnant prairie (southern Texas)b

EG1101 Lowland 13 July 2010 Improved Alamo-type bred for biomass yield (NA)c

EG1102 Lowland 27 July 2010 Improved Kanlow-type bred for biomass yield (NA)c

Kanlow Lowland 27 July 2009 Seed collection from native remnant prairie, selected for leafiness,
vigor, late-season greenness (northern Oklahoma)b

Blackwell Upland 28 June 2009 Seed increase from native remnant prairie (northern Oklahoma)b

Cave-in-Rock Upland 20 July 2009 Seed increase from native remnant prairie (southern Illinois)b

Dacotah Upland 28 June 2009 Seed increase from native remnant prairie, selected for leafiness,
color and winter hardiness (southern North Dakota)b

EG2101 Upland 13 July 2010 Improved Cave-in-Rock bred for biomass yield (NA)c

Nebraska 28 Upland 20 July 2009 Seed increase native remnant prairie (Nebraska)b

Shelter Upland 13 July 2010 Seed increase from native prairie, selected for thick stems, less
leafiness, early maturing (West Virginia)b

Southlow Upland 20 July 2009 Seed increase from local remnant native stands to represent local
germplasm (southwest Michigan)d

Trailblazer Upland 20 July 2009 Seed increase from natural grassland, selected for high
digestibility and forage (Kansas and Nebraska)b

a Seed source location and breeding history details from Stahlheber et al. (2020). NA denotes not available.
b Alderson and Sharp (1994).
c Ceres, Inc. Blade seeds.
d USDA-NRCS (2014).
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submerged in liquid N and ground with a tissue lyser (Qiagen
Tissue Lyser II, Valencia, CA, U.S.A.). If any root pieces >2 mm
remained, sterilized scissors (10% bleach and 70% ethanol) were
used to more finely cut the roots.
DNA extraction, sequencing, and bioinformatics. DNA was

extracted similarly from soil and sterilized roots but only a subset of
cultivars were processed for root-associated microbes. Soil DNA
was extracted from 0.25 g of sieved and homogenized sample from
all 12 cultivars (n = 144 samples: 12 cultivars × 4 blocks × 3
replicate cores). Root DNA was extracted from approximately
0.25 g of sterilized, ground root tissue from four commonly planted
cultivars (upland: Cave-in-Rock and Southlow; and lowland:
Alamo and Kanlow; n = 48 samples: 4 cultivars × 4 blocks × 3
replicate cores, notated with “+” in all figures). For both soils and
roots, we used the MoBio PowerSoil DNA extraction kit and
followed all kit-suggested protocols, with an added 10-min cell lysis
step at 65�C before the bead-beating step (MoBio Laboratories,
Carlsbad, CA, U.S.A.). The purity and quantity of the extracted
DNA was examined using a Nanodrop 2000 (Thermo Scientific,
U.S.A.) and via fluorometry with the Quanti-iT PicoGreen dsDNA
kit (Thermo Fisher, U.S.A.). We targeted the bacterial V4 region of
the 16S ribosomal RNA (rRNA) gene (primers 515f/806r) and the
fungal ITS1 region (primers ITS1-F/ITS2) for library preparation.
Bacterial communities were analyzed for all soil (12 cultivars) and
root (4 cultivars) DNA, whereas fungal communities were only
analyzed from the soil DNA (12 cultivars).
Bacterial and fungal PCR and MiSeq Illumina (V2) paired-end

sequencing was conducted by the Research Technology Support
Facility Genomics Core at Michigan State University (East
Lansing, MI, U.S.A.). Briefly, for both ITS and 16S sequences,
reads were assembled, and quality filtered (maxEE < 1.0 and base
pairs < 250) using Usearch (version 10.0.240) (Edgar 2010). Se-
quences were dereplicated, clustered, chimera checked, filtered de
novo, and clustered into unique operational taxonomic units
(OTUs) based on 97% identity using the default settings with
Usearch UPARSE function. Representative sequences were aligned
and classified using the Silva (version 123) and Unite (7.2) ref-
erence databases for bacterial and fungal sequences, respectively
(Nilsson et al. 2018; Quast et al. 2012). Soil- and root-associated
bacterial sequences were also aligned to the Greengenes (version
13.8) database using Usearch closed-reference (closed_ref) for
downstream PICRUSt analysis (DeSantis et al. 2006; Langille et al.
2013). Nonbacterial and nonfungal sequences, singleton OTUs, and
samples with poor sequence coverage were removed from the
reference-based OTU tables (Supplementary Table S1). A bacterial
phylogenetic tree was generated using an iterative maximum-
likelihood approach with PASTA R package (Mirarab et al.
2015). Phylogenetic-based Weighted Unifrac distance was used
for all bacterial community composition analyses. It is challenging
to map the variable ITS region to a trustworthy phylogenetic tree
(Nilsson et al. 2008); therefore, we used a nonphylogenetic com-
munity metric, Bray-Curtis, for the fungal community analyses.
Due to large variation (>10-fold) in library sizes within and among

the root and soil samples, we rarefied our datasets using the ‘rar-
efy_even_depth’ function in the Phyloseq R package (McMurdie and
Holmes 2014) to control for sequencing depth differences and
minimize false discovery rates (FDRs) (McKnight et al. 2019; Weiss
et al. 2017). The soil bacterial and fungal datasets for 12 cultivars
were filtered and rarefied to 4,694 and 4,153 reads, respectively. We
compared root and soil bacterial communities for four cultivars on a
combined dataset that was rarefied to 2,026 reads. We confirmed that
our results were robust to normalization techniques and not biased by
rarefaction (McMurdie and Holmes 2014) by comparing community
matrices normalized with rarefaction and Deseq2’s “variance

stabilizing transformation” (Love et al. 2014) with a Protest analysis in
the Vegan R package (Oksanen et al. 2018). All Protest comparisons
were significantly correlated (P < 0.001) (Supplementary Table S1) but
the combined root and soil dataset had the weakest correlation (r =
0.41), likely due to the 27-fold difference in the sample library sizes.
However, because rarefaction is the preferred method for normalizing
for large variation in library depth (Weiss et al. 2017), we used the
bacterial (Silva-referenced) and fungal (Unite-referenced) rarefied
datasets for all community composition and diversity analyses. The
rarefied Greengenes-referenced bacterial dataset was used to predict
metagenome functions with PICRUSt. Fasta files (NCBI Sequence
Read Archive, accession number PRJNA577732) and sequencing
pipeline are publicly available (https://github.com/TaylerUlbrich/
SwitchgrassCultivarMicrobiomeStudy).
Data analysis: Univariate statistics. Prior to all data analysis,

we ensured that all univariate data met assumptions of normality
(see Supplementary Materials for details). Univariate statistics were
conducted using one-factor analyses of variance (ANOVA) models
and type 3 sum of squares (Satterthwaite’s method) with the lm4
and lmerTest packages in R (Bates et al. 2015; Kuznetsova et al.
2017). To differentiate the effect of cultivar and ecotype, all var-
iables were analyzed with either cultivar or ecotype as a fixed effect,
with a random, nested block factor. Because we sampled the
cultivars across 4 weeks to control for phenology-driven variation
in microbiomes (Chaparro et al. 2014; Zhalnina et al. 2018), date
was confounded with cultivar and ecotype. Due to this collinearity,
the model was rank deficient when both date and cultivar or ecotype
were included. Therefore, instead of date, we included soil moisture
content, which varied up to 47% across sampling dates (ANOVA,
P < 0.001; correlation with Julian date P < 0.001, r = 0.52) as a
covariate when it improved model fit (i.e., lower Akaike infor-
mation criteria evaluation [AIC]). Soil moisture content also cor-
related with soil nitrate (r = 0.46, P < 0.002), which varied by date
(P < 0.001). However, we decided to include soil moisture content,
not soil nitrate, as a covariate because soil moisture content also
varied across blocks (ANOVA, P < 0.001), allowing us to account
for both temporal and spatial heterogeneity. Two extreme outliers
that were three times the interquartile range were removed from the
soil moisture data; thus, cultivars EG1102 and Blackwell had only
11 replicates for any model that included soil moisture as a co-
variate. Several univariate models were improved with soil moisture
as a covariate—fungal community richness and evenness, soil and
root bacterial richness, MBN and MBC, and root length—but soil
moisture was only a significant predictor variable (P < 0.05) for
MBC. Posthoc comparisons (P values adjusted with Benjamini-
Hochberg FDR, a = 0.05) were conducted using the multcomp and
emmeans R packages (Lenth 2019; Hothorn et al. 2008). Fungal
Shannon diversity and Pielou’s evenness did not meet normality
assumptions; therefore, we used nonparametric Kruskal-Wallis and
Wilcox tests (no block factor included). Pearson correlations were
used to determine relationships between edaphic conditions, root
traits, and MBC using the cor.test in R (R Core Team 2018).
Data analysis: Microbiome community composition. Micro-

bial community data were visualized and analyzed using the Vegan,
Phyloseq, and ggplot2 R packages (McMurdie and Holmes 2013;
Oksanen et al. 2018; Wickham 2016). We examined overall var-
iation in the cultivars’ microbiome composition using permutation-
based ANOVA (PERMANOVA) and b-dispersion tests with type 1
sum of squares. PERMANOVAs, b-dispersion, and posthoc
pairwise comparisons (FDR-adjusted) were evaluated on the rar-
efied datasets using the previously described one-factor, blocked
model, with soil moisture as a covariate, with the PRIMER-e
software (version 6 with PERMANOVA+) (Anderson et al.
2008). After removing samples with poor sequence coverage and
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samples with two extreme outliers for the soil moisture covariate, all
cultivars had at least nine replicates for microbiome analyses
(Supplementary Table S2). As in the univariate models, date and
cultivar were confounded; thus, including sampling date in the
model did not improve model fit (based on AIC evaluation).
However, because the permutational null model can still be cal-
culated for a rank-deficient design, we used supplemental
PERMANOVAs with date as a covariate to evaluate the cultivar-
level effects when controlling for date. Models with date used
instead of soil moisture content were qualitatively similar but the
significance was lower (Supplementary Tables S3 and S4). Within
sampling date, PERMANOVAs were used to further evaluate
cultivar-level differences not driven by confounding date effects
(e.g., cultivars sampled on the same date in one model) (Table 1).
All ordinations were made with the Phyloseq R package ‘ordinate’
function with set.seed = 2 for reproducibility (McMurdie and
Holmes 2013).
To further characterize differences in microbial community

structure across cultivars, we evaluated the proportion of shared and
indicator taxa among the cultivars. We defined shared taxa as those
OTUs present in at least 75% of the samples within each cultivar
(e.g., 9 of 12 sample units/cultivar) and across all cultivars. Indi-
cator taxa were identified (after removing singleton OTUs) using
the ‘multiplatt’ function in the indicspecies R package (Cáceres and
Legendre 2009) and defined as OTUs present in at least 25% of the
samples (3 of 12 sample units, or indicspecies specificity param-
eter = 0.25). Rarefied datasets are biased against rare taxa; thus, it is
possible that we identified fewer indicator taxa because less
dominant, rare taxa were lost during rarefaction (McMurdie and
Holmes 2014). We also characterized phyla-level differences
among cultivars and ecotypes using the ‘manyglm’ function in the
MVabund R package and ANOVA posthoc pairwise comparisons
(FDR-adjusted), with either cultivar or ecotype as a fixed effect and
soil moisture content as a covariate when it improved model fit
(based on AIC) (details in Supplementary Materials) (R Core Team
2018; Wang et al. 2012).
We were also interested in whether compositional differences

based on 16S rRNA were likely to lead to differences in cultivar N
fixation, a function recently identified in switchgrass soils and roots
and relevant to cultivar survival in low-nutrient environments
(Roley et al. 2018, 2019, 2021). We assessed this by (i) cal-
culating variation in the relative abundance of common N-fixing
orders Rhizobiales and Burkholderiales and (ii) using PICRUSt to
predict the relative proportion of putative N-fixing taxa (Langille
et al. 2013) (details in Supplementary Materials). Both approaches
have limitations but we intended for findings to generate further
hypotheses, not to provide definitive assessments of N-fixing po-
tential. The same univariate statistics described above were used to
analyze proxies of functional differences among cultivars and
ecotypes for the soil and root communities.
We further evaluated differences in cultivar microbiomes by

determining how edaphic conditions and root traits affect micro-
biome structure and individual OTU- and order-level abundances.
Differences in OTU- and order-level abundance with root traits
were evaluated using the ‘manyglm’ and ‘anova’ functions in the
MVabund R package (details in Supplementary Materials) (Wang
et al. 2012). At the community level, we determined which vari-
ables (average root diameter, total root length, soil nitrate, soil
ammonium, and soil moisture content) significantly contributed
(a = 0.05) to microbiome structure when controlling for spatial
heterogeneity (block) with a partial distance-based redundancy
analysis for each dataset: soil bacterial (Weighted Unifrac) and
fungal (Bray-Curtis) communities for 12 cultivars and combined
root and soil bacterial dataset for 4 cultivars (Weighted Unifrac).

We used the ‘dbrda’ function in Vegan with a conditional matrix for
block to determine the relative contribution of block and predictor
variables to community structure, as well as the independent,
“marginal” effects of each term (Oksanen et al. 2018). Specific root
length (volume and mass weighted) and total dry root weight were
removed from all analyses because they significantly correlated
with average root diameter and total root length (_0.50 < r > 0.50,
P < 0.05).

RESULTS

Root traits. Total dry root biomass (estimated from dry/wet root
calculations), total root length, and mass-weighted SRL (total root
length/root biomass) did not significantly differ by cultivar or
ecotype (P > 0.05) (Supplementary Table S5). Mass- and volume-
weighted SRL were significantly correlated (r = 0.70, P < 0.001)
and, unlike mass-weighted SRL, volume-weighted SRL (total root
length/root volume) significantly differed among cultivars (P <
0.01) but not by ecotype (P > 0.05) (Fig. 1A; Supplementary Table
S5). The cultivar differences in volume-weighted SRL were likely
driven by average root diameter, which significantly differed by
cultivar (P < 0.001) (Fig. 1B), and was used to calculate root
network volume. There was a 30% difference between the cultivars
with the thickest (e.g., Cave-in-Rock and EG2101) and thinnest
(e.g., Kanlow and NE28) roots.
Microbial biomass. MBC and MBN significantly differed

among cultivars (MBC: P < 0.001, and MBN: P < 0.001) and
ecotypes (MBC: P < 0.01, and MBN: P < 0.001) (Fig. 1C and D),
even after controlling for soil moisture content which influenced
MBC (soil moisture covariate with MBC: P < 0.001, and with
MBN: P > 0.05) and varied by date (P < 0.05). Lowland MBC and
MBN were 25 and 65% greater than upland ecotypes, respectively.
Soil- versus root-associated bacterial communities. For a

subset of four commonly planted cultivars (Cave-in-Rock,
Southlow, Alamo, and Kanlow), we found that root and soil
bacterial communities differed in diversity, composition, and the
extent to which they were affected by cultivar identity. Microhabitat
(soil or root) explained 59% of the overall variance in community
composition (Table 2; Fig. 2A), and the root community had five
and three times lower bacterial richness and Shannon diversity,
respectively, than the soil communities (Supplementary Table S6).
The differences in b diversity between roots and soils were mirrored
in their dominant phyla. The most abundant bacterial phyla in the
roots (n = 4 cultivars) were Proteobacteria (70%), Actinobacteria
(11%), and Bacteroidetes (5%), while the soil communities (n = 4
cultivars) were dominated by Acidobacteria (30%), Proteobacteria
(29%), and Verrucomicrobia (11%) (Fig. 2B). The same phyla were
most abundant in the soil communities when analyzed across all 12
cultivars (data not shown). Roots and soils also differed in the
relative abundance of common N-fixing orders (Burkholderiales
and Rhizobiales), with roots having approximately three times
greater relative abundance than soils (Kruskal-Wallis: P < 0.001)
(data not shown).
The degree of cultivar effect also differed for the root and soil

bacterial communities (n = 4 cultivars). Cultivar explained 15% of
the variation in the soil community but did not significantly in-
fluence the root communities (Table 2). The two upland cultivars’
soil communities significantly differed from the two lowland
cultivars’ soil bacterial communities (data not shown) but this may
have been driven by differences in soil conditions across sampling
dates, which differed for the subset of two ecotypes (Supplementary
Table S4). There was also no cultivar effect on root or soil bacterial
a diversity (Supplementary Table S6) and there were fewer dif-
ferences in the relative abundance of dominant soil phyla for these

112  Phytobiomes Journal



Fig. 1. Variation in cultivar and ecotypeA, volume-weighted specific root length (SRL);B, average root diameter;C,microbial biomass carbon (MBC);D,
microbial biomass nitrogen (MBN); E, soil bacterial Shannon diversity; and F, predicted proportion of putative nitrogen (N) fixers in soil. The last two
bars represent means for lowland (n = 4; gray boxes) and upland (n = 8; white boxes) ecotypes. The central line is the median value for each cultivar,
vertical bars represent the first and third interquartiles of the data, and points are outliers outside the interquartile range. Symbol + denotes subset of
cultivars analyzed for root-associated bacterial communities. Different letters denote significant differences among cultivars (false discovery rate, P <
0.05). Analysis of variance results with fixed cultivar (C) or ecotype (E) term, nested block term, and soil moisture content (SMC) included as a covariate
when it improved model fit (based on Akaike information criteria evaluation). Significance values: ns, *, **, and *** indicate P > 0.05, 0.05, and 0.01 and
P < 0.001, respectively.
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four cultivars, suggesting that there was less variation among these
four commonly planted cultivars’ microbiomes compared to the
remaining eight cultivars.
Soil bacterial communities. When evaluated across all 12

cultivars, we found that the soil-associated bacterial communities
significantly differed in composition and diversity. Soil bacterial
richness, Shannon diversity, and Pielou’s phylogenetic evenness
differed among cultivars and was 1 to 3% higher for upland
ecotypes for all diversity metrics (P < 0.05) (Fig. 1E; Supple-
mentary Table S7). However, these differences were driven by
Dacotah, which had the highest bacterial richness and Shannon
diversity (Supplementary Table S8). Dacotah is a low-yielding
upland cultivar that had greater weed invasion, which may have
contributed to greater bacterial diversity. Even when controlling for
sampling date (Supplementary Table S3) and soil moisture content
(Table 3), soil bacterial community composition differed among
cultivars. When controlling for soil moisture content, block (32%)
and cultivar (21%) explained the most variation in community
composition, whereas ecotype only explained 3% of the variation
(Fig. 3A; Table 3). The bacterial communities of three culti-
vars—Alamo (lowland), EG1102 (lowland), and NE28 (upland)—

were more dissimilar from all other cultivars (pairwise compari-
sons, P < 0.10) (Supplementary Table S9). When assessed within
sampling date, cultivar explained a significant proportion of vari-
ation in the bacterial community composition within one date (16%,
P < 0.05) (Supplementary Table S10): cultivar NE28 had a sig-
nificantly different soil bacterial community than the other three
upland cultivars (Southlow, Cave-in-Rock, and Trailblazer) sam-
pled on the same date.
The cultivars’ soil bacterial communities also differed at the

phyla level and were comprised of many shared and few unique
taxa. Eight soil bacterial phyla (74.3% of all reads) significantly
differed among cultivars (Fig. 4). Several of these phyla also
differed by ecotype; specifically, Bacteroidetes, Planctomycetes,
and Verrucomicrobia are more abundant in lowland cultivars, while
Actinobacteria, d-Proteobacteria, and Gemmatimonadetes are more
abundant in upland cultivars. At the OTU level, we found that 160
OTUs (out of 14,590 total) were shared across all cultivars (present
in 75% of samples units within and among cultivars). These shared
OTUs make up 45% of the total sequences and are dominated by
three classes: Acidobacteria (39%), a-Proteobacteria (17%), and
Spartobacteria (12%). In contrast, indicator bacterial OTUs of the

TABLE 2
Percent variability (permutation-based analysis of variance [PERMANOVA R2]) in bacterial community composition explained by habitat

(soil or root) and cultivara

PERMANOVA R2 (P) per factor

Habitat effectb Soil and root bacteria (4 cultivars) Soil bacteria (12 cultivars) Root bacteria (4 cultivars)

Cultivar 2.59* 15.06** ns

Block (cultivar) 6.56* 29.72*** ns

Habitat 58.64*** NA NA

Cultivar × habitat ns NA NA

Habitat × block (cultivar) 6.73* NA NA

Soil moisture ns 4.41* ns

a Significance values: ns indicates P > 0.05 and asterisks signify the interaction between factors; * indicates P £ 0.05, ** indicates P < 0.01, and
*** indicates P < 0.001. NA denotes not applicable for the model.

b Nested factors shown in parentheses.

Fig. 2. A, Nonmetric multidimensional scaling ordination of combined soil and root bacterial community (n = 4 cultivars, Weighted Unifrac, stress: 0.08).
Soil (triangles) and roots (circles) represent two lowland cultivars (L, dark gray points) and two upland cultivars (U, light gray points). B,Mean relative
abundance (percentage) of bacterial phyla and proteobacteria classes in roots or soils among four cultivars.
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12 cultivars include 683 OTUs and make up 21% of the total
sequences dominated by classes Acidobacteria (33%), a-Proteo-
bacteria (10%), and d-Proteobacteria (7%).
We used PICRUSt to test whether cultivars’ soil and root bac-

terial communities might have different abilities to fix N2. We first
used NSTI scores to assess whether PICRUSt accurately approx-
imated bacterial function for our sequences. Larger NSTI scores
(>0.15) are expected for highly diverse and largely uncharacterized
environments such as soils and indicate less phylogenetic relat-
edness between the predicted OTUs and reference genomes
(Langille et al. 2013). The average NSTI score for the soil samples
was 0.23, which is within the typical range for soil samples
(Langille et al. 2013) but indicates that results should be interpreted
with caution due to weak phylogenetic relatedness. Root NTSI
(0.32) indicated low relatedness with reference genomes which,

therefore, were not analyzed. We found that cultivar soil bacterial
communities varied in the proportion of OTUs with putative N-
fixation genes (P < 0.001) (Fig. 1F). On average, upland ecotypes
had a greater proportion of predicted soil N-fixers than lowland
ecotypes (P < 0.05). Predicted soil N-fixer abundance negatively
correlated with soil nitrate availability (r = _0.33, P < 0.001) but did
not correlate with soil N-fixation rates (P > 0.05) that were mea-
sured in a paired study (Roley et al. 2021) (data not shown). We
also compared the relative abundance of common N-fixing orders
(Burkholderiales and Rhizobiales) and found no differences among
cultivars (P > 0.05).
Soil fungal communities. When controlling for soil moisture

content, the primary drivers of soil fungal community composition
were similar to the bacterial community: block explained the most
variation (33%), followed by cultivar (12%) and ecotype (1%)
(Table 3; Fig. 3B). However, unlike the bacterial communities, the
cultivar-level effects on fungal communities were not robust to
variation across (Supplementary Table S3) or within (Supple-
mentary Table S10) sampling dates. Fungal community diversity
(richness, Shannon, and evenness) also did not differ by cultivar or
ecotype (P > 0.05) (Supplementary Table S7).
Only one fungal phylum, Rozellomycota, significantly differed in

abundance among the cultivars (MVabund 9, P < 0.01), and no
phyla differed by ecotype (MVabund, P > 0.05). OTUs identified as
Rozellomycota made up only 0.73% of the reads and, therefore,
likely did not contribute much to variation in cultivar microbiomes.
The dominant fungal phyla were Ascomycota (32%), Basidio-
mycota (17%), Mortierellomycota (14%), and Glomeromycota
(9%) but 25% of the fungal OTUs were unclassifiable at phyla level.
Among fungal OTUs (4,064 total), 37 were shared across all
cultivars (present in 75% of samples units within and among
cultivars). These shared OTUs made up 35% of the total sequences
and were dominated by classes Mortierellomycetes (28%) and
Sordariomycetes (23%), and those that were unclassified (29%).
Indicator fungal OTUs of the 12 cultivars made up 25% of the total
fungal sequences and included 213 OTUs dominated by classes
Sordariomycetes (19%) and Dothideomycetes (17%), and 27%
were unclassified at class level.

TABLE 3
Percent variability (permutation-based analysis of variance
[PERMANOVA R2]) in microbial community composition

explained by cultivar or ecotypea

PERMANOVA R2 (P) per factor
(12 cultivars each)

Effectb Soil fungi Soil bacteria

Cultivar effect

Cultivar 11.95* 21.20***

Block (cultivar) 32.71*** 31.94***

Soil moisture 1.85*** 3.49***

Ecotype effect

Ecotype 1.34* 3.43**

Plot (ecotype) 43.31*** 49.70***

Soil moisture 1.85*** 3.49***

a Significance values: asterisks signify the interaction between fac-
tors; * indicatesP £ 0.05, ** indicatesP < 0.01, and *** indicates
P < 0.001.

b Nested factors shown in parentheses.

Fig. 3. Nonmetric multidimensional scaling (NMDS) ordination of A, soil bacterial community (Weighted Unifrac, stress: 0.18) and B, soil fungal
community (Bray-Curtis, stress: 0.26) across four lowland (L, gray points) and eight upland (U, white points) cultivars. Numbers indicate centroid of
sample replicates and horizontal and vertical bars represent ± 1 standard error from the centroid. Names followed by + denote subset of cultivars
analyzed for root-associated bacterial communities. See Supplementary Figure S1 for NMDS with all sample replicates.
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Effect of edaphic properties and root traits on microbiome.
To further understand variation in cultivar microbiomes, we in-
vestigated how root traits and edaphic conditions (N and water
content) impact community structure. Across all 12 cultivars, the
five predictor variables (average root diameter, root length, soil
moisture content, soil nitrate, and soil ammonium) explained more
variation for the soil bacterial (10%) than the soil fungal (5%)
communities (Table 4). Mirroring the PERMANOVA results,
spatial heterogeneity (conditional block variance) explained a
significant portion of community dissimilarity for the soil bacteria
and fungi. While controlling for variance due to spatial hetero-
geneity, variance in the bacterial community structure was still
explained by soil nitrate (6%) and soil moisture content (2%) while
the fungal community was explained by soil nitrate (1%) and root
length (1%). Within the four cultivars evaluated for soil and root
bacterial community composition, nitrate explained 6% of the
variation in the soil community; however, no edaphic conditions or
root traits contributed to variation in the root communities (Table 4).
We also investigated whether the relative abundance of bacteria

or fungal taxa (at the order and OTU level) or microbial biomass

correlated with root traits (average root diameter and root length).
We did not identify any bacterial orders that correlated with root
traits but identified one fungal order, Mortierellales, that negatively
correlated with root length (MVabund P < 0.05, correlation:
r = _0.41, P < 0.001). Furthermore, MBC negatively correlated with
root length (r = _0.23, P < 0.01) but not with average root diameter
(P > 0.05).

DISCUSSION

We examined bacterial and fungal microbiomes, soil variables,
and root traits across 12 mature switchgrass cultivars grown in a
common garden experiment. Overall, we found that cultivars vary
in their average root diameter, have different soil microbial bio-
mass, and associate with distinct soil but not root bacterial com-
munities. Differences in the soil microbiomes were driven by
variation in root traits, phenology, and soil properties, and were
more pronounced at the cultivar level than across ecotypes. Still,
cultivar was a weaker driver of soil communities than among-plot
soil heterogeneity, and we saw less overall variation in fungal

Fig. 4.Mean relative abundance of bacterial phyla (and proteobacteria classes) that significantly vary among cultivars (MVabund by cultivar: MVabund
Dev (11/126) = 1,105.8, P = 0.001; each phyla, P < 0.05). Bars represent standard error. Phyla are ordered by relative abundance (left = most
abundant) and, in each phyla, the bars are ordered by cultivar (1 to 12), followed by means for lowland (L; n = 4) and upland (U; n = 8) ecotypes. Names
followed by + denote subset of cultivars analyzed for root-associated bacterial communities. Asterisks (*) above ecotypes indicate statistically significant
differences among ecotypes (analysis of variance: *, **, and *** indicate P < 0.05, 0.01, and 0.001, respectively).

TABLE 4
Percent variability (R2) of microbiome structure explained by soil conditions and root traits using db-RDA analysisa

Conditions and traits Soil bacteria (12 cultivars) Soil fungi (12 cultivars) Soil bacteria (4 cultivars) Root bacteria (4 cultivars)

Nitrate (N in mg/g of dry soil) 6.36*** 1.17** 5.72** NA

Ammonium (N in mg/g of dry soil) ns ns ns NA

Soil moisture content (g/g of dry soil) 1.86** ns ns NA

Average root diameter (cm) ns ns ns NA

Root length (cm) ns 1.06* ns NA

Model significance *** *** ** ns

Conditional variance 7.67 6.23 9.83 NA

Constrained variance 10.12 5.03 15.31 NA

Unconstrained variance 82.22 88.75 74.86 NA

a Percent explained partitioned by conditional (block), constrained (all predictor variables), and unconstrained (residuals) factors; ns indicatesP > 0.05,
* indicates P £ 0.05, ** indicates P < 0.01, and *** indicates P < 0.001. NA denotes not applicable for models that were not significant (P > 0.05).
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communities. These subtle but significant differences in root traits
and soil bacterial communities that we observed may contribute to
variation in cultivar yields, environmental responses, or ability to
provide beneficial ecosystem services (e.g., soil C sequestration).
Cultivars have a greater effect on soil bacterial than root

bacterial or soil fungal communities. Traditionally, ecotypes are
used to classify differences among switchgrass cultivars; however,
we found greater differences in switchgrass microbiomes across
cultivars than between ecotypes. We found that cultivar explained
10 to 20% of the variance in soil microbiome b diversity, whereas
ecotype explained less than 5% of the variation; these stronger
cultivar effects were also found in a previous study on switchgrass
cultivar soil bacterial and fungal communities (Singer et al. 2019a)
but Emery et al. (2018) observed no cultivar effects on arbuscular
mycorrhizal fungi (AMF) in the same common garden experiment.
Our findings show that, at this site, the weak effect of cultivar on
AMF is true for a broader assessment of fungi as well (assessed via
the ITS region). Despite overall weak effects of ecotype on OTU-
level composition, ecotypes differed in the relative abundance of
several dominant bacterial phyla. This may suggest that higher-
level taxonomic differences are conserved across ecotypes whereas
finer, OTU-level differences occur among cultivars. Although we
did not examine specific functions in this study, OTU-level dif-
ferences among cultivars could contribute to variation in their
nutrient cycling or yields. In fact, in the same common garden
experiment, Stahlheber et al. (2020) found that aboveground traits
and yields varied more among cultivars than between ecotypes, a
pattern that could have been influenced by microbiome differences.
On a subset of four cultivars, we predicted that there would be a

greater cultivar effect on root-associated than soil bacterial com-
munities but, in fact, the soil bacterial communities differed more
among cultivars. The weak cultivar effect on the root communities
could have been influenced by our cultivar selection, such that the
other eight cultivars—which had greater variation in soil com-
munities—may have also had more distinct root microbiomes.
Furthermore, it is also possible that we undersampled the root
bacterial diversity, because many chloroplast and mitochondrial
sequences reduced microbiome sampling. Despite these potential
caveats, other studies conducted on a similar number of cultivars
also report greater cultivar-level differences among soil than root
microbiomes in switchgrass (Singer et al. 2019a, n = 4 cultivars)
and rice (Edwards et al. 2015, n = 6 cultivars); therefore, we posit
that our observation of greater cultivar effects on soil than root
communities is biologically relevant. The soil communities also had
less within-cultivar variation than the root communities. This has
been observed previously (Edwards et al. 2015) and may suggest
that there is greater intraspecific variation in traits that affect mi-
crobial recruitment to the rhizosphere (e.g., root structure, exu-
dation, or diffuse signaling) than in traits that regulate microbial
entry into the root (e.g., physical and immune system interactions).
In fact, it may be that plant traits associated with root microbiome
assembly are conserved at even higher taxonomic levels, because
Singer et al. (2019b) found that two Panicum spp. have similar
endophyte bacterial communities. The role of genotype on
microbiome structure remains unclear but it could be clarified with
surveys of microbiome variation across multiple genotypes and
species. Additionally, it seems that the proximity of the microbiome
to the plant may not be a good predictor of the influence of plant
genotype on microbiome structure but finer-scale sampling (e.g.,
soil, rhizosphere, rhizoplane, and endosphere) would help confirm
this (Edwards et al. 2015).
Edaphic conditions and plant traits influence soil community

structure. Soil water and N content influenced switchgrass cultivar
soil but not root microbiomes, while root traits only affected the soil

fungal community. Soil nitrate availability explained the most
variation in the cultivars’ soil microbiomes but no edaphic or root
traits influenced the root community composition. Similar patterns
were observed by Singer et al. (2019b): rhizosphere soil commu-
nities of Panicum spp. were more affected by soil type than
endosphere communities. These edaphic conditions are considered
to have larger effects on soil microbiomes than plant identity (Fierer
2017); however, the observed differences in soil N in this study
could be driven by the cultivars’ differential effects on N cycling
(Roley et al. 2021) which could, in turn, influence the micro-
biome (Revillini et al. 2019). Contrary to our prediction, we did not
observe any effect of root traits on bacterial community structure
but found that fungal community structure was affected by root
length. Root length may be a particularly important trait for root-
colonizing fungi (e.g., AMF) because root system size determines
the amount of niche space available for colonization. Few studies
simultaneously evaluate fungal community structure and root
length but, in the same common garden experiment, AMF root
colonization correlated with root biomass (Emery et al. 2018). Our
results support this finding because root length significantly cor-
related with root biomass (r = 0.75, P < 0.001). In these conclusions,
we are presuming that root traits drive bacterial and fungal com-
munities; however, the observed correlation could also describe
microbes driving root traits (Petipas et al. 2020; Verbon and
Liberman 2016).
We found that spatial variability (block factor) also explained a

surprisingly large percentage (>30%) of variation in the soil
microbiomes. Although our blocks were the same soil type and
within 80 m of one another, they differed in soil moisture and N
content (also in paired study Roley et al. 2021). Our analysis of
microbiome composition and edaphic conditions controlled for this
block effect; however, it is difficult to disentangle the relative
contribution of cultivar traits, spatial heterogeneity, and sampling
date on these edaphic conditions and, in turn, microbiome structure.
Furthermore, it is possible that the variation across blocks con-
tributed to greater plasticity in the cultivars’ traits, thus making it
more challenging to identify correlations between traits and
microbiome structure. Overall, although the primary drivers of
switchgrass microbiome structure are challenging to disentangle,
our results suggest that heterogeneous soil conditions, plant traits,
and feedbacks between plant traits and soil conditions all likely
contribute to microbiome variability among switchgrass cultivars.
The strength of relationships between root traits and soil

microbiomes can also be influenced by soil fertility and sampling
techniques. Our study was conducted on productive, annually
fertilized soils, and cultivar differences and plant–microbe asso-
ciations may be stronger in less-fertile, marginal soils, when plants
and microbes are more dependent on one another (Bell et al. 2014;
Sawyer 2017). Sawyer (2017) found that switchgrass cultivar
microbiomes were more distinct in less fertile soils. It is also
possible that cultivars that were grown outside of their native range
(e.g., not from the north-central United States) had weaker effects
on their microbiomes because they could not associate with their
native, potentially coevolved microbial communities. Studies of
cultivars in common gardens across many sites could elucidate the
contribution of native range or seed source on plant–microbe in-
teractions. Furthermore, because we did not sample the soils di-
rectly adhering to the roots or use primers to target root-colonizing
microbes (e.g., AMF), we may not have captured the microbes most
influenced by root traits and exudates. Finally, we found that
cultivars vary in average root diameter and, therefore, soils beneath
each cultivar likely differ in the amount of root turnover and de-
velopment. Microbial composition and function has been shown to
vary with root age, type (e.g., seminal or nodal root), and location
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(e.g., root branch or tip) (de Graaff et al. 2013; Kawasaki et al. 2016;
Marschner and Baumann 2003); however, sampling with soil cores
made it challenging to identify the effects of root age, type, or
location on soil microbial communities. Therefore, future studies
should use methods that standardize root age (e.g., use of root-in-
growth cores) or root type and location (e.g., visualizing root
differences and sampling within rhizoboxes) to better understand
how root traits influence microbiome structure (Yu and
Hochholdinger 2018).
Plant developmental stage (e.g., phenology and maturity) also

contributes to microbiome variability (Edwards et al. 2018; Na et al.
2019; Zhalnina et al. 2018). We sampled cultivars at the same stage
(flowering) to control for this variation but sampling on different
dates may have increased differences in edaphic conditions that
influence the microbiome. Yet, when we controlled for variation
among sampling dates, cultivar still contributed to variation in the
soil bacterial but not fungal communities. This suggests that the
fungal communities were more influenced by variation in abiotic
conditions across dates, or that cultivars with different phenology
and, thus, sampling dates had more dissimilar fungal communities.
In contrast, bacterial community structure was more strongly
influenced by cultivar identity, which explained a significant per-
cent (16%) of the variation in bacterial community structure within
one of the four sampling dates. We hypothesize that greater dif-
ferences were not observed within the other three sampling dates
because cultivars with comparable phenology (e.g., flowering at the
same time) likely have other similar traits and, thus, more similar
microbial communities than cultivars with different phenology.
However, to better understand the effect of similar phenology and
traits on cultivar microbiomes, future studies should evaluate the
switchgrass cultivar microbiomes across multiple phenological
stages (Na et al. 2019; Qiao et al. 2017; Wagner et al. 2016) because
both the microbiome structure and the magnitude of cultivar effects
may change with phenological stage (İnceoğlu et al. 2010; Na et al.
2019).
Functional implications and conclusions. Differences in cul-

tivar root traits andmicrobial biomass could contribute to variability
in the cultivars’ soil C-cycling and C-sequestration potential. We
found differences in microbial biomass and root diameter but not
root biomass across cultivars. Another study conducted in the same
common garden experiment, however, did find differences in root
biomass among cultivars (Emery et al. 2018). These differences in
average root diameter have the potential to drive variation in the
cultivars’ C-cycling and microbial community structure. Root
systems with high SRL, corresponding to long, thin roots, positively
correlate with switchgrass-derived soil C (Adkins et al. 2016;
Stewart et al. 2017), decomposition (de Graaff et al. 2013, 2014),
bacterial/fungal ratios (de Graaff et al. 2013), and microbial bio-
mass (PLFA-C) (Stewart et al. 2017). Greater rhizodeposition from
thin roots can directly contribute to soil C pools, as well as indirectly
influence soil C by supporting the growth and turnover of microbial
communities which, in turn, contributes to greater soil C and ag-
gregate stability (Grandy and Neff 2008; Tiemann et al. 2015).
Therefore, the cultivars we identified with thinner roots (Kanlow
and NE28) or with higher microbial biomass C (many lowland
cultivars) may have greater potential to increase soil C in marginal
soils and improve C sequestration.
The observed differences in microbial communities and root

traits could also influence cultivar nutrient cycling and tolerance to
different environmental conditions, in turn affecting yield. We
found that the predicted N-fixer abundance in soil communities
varied among cultivars and ecotypes. A paired study (same location
and sampling dates) found that the rate of soil N fixation also varies
among cultivars (Roley et al. 2021) but our PICRUSt-inferred

functional potentials did not correlate to the measured rates (data not
shown). Still, our results suggest that functional differences are
likely, and future studies should investigate N fixation and other
functions with more targeted approaches, because microbiome
function may influence the suitability of various cultivars for
surviving under different soil conditions.
In summary, we found that root traits, microbial biomass, and soil

bacterial community composition differ among switchgrass culti-
vars, and that this variation could contribute to differences in their
potential as bioenergy crops. Despite ecotype being the most
common way to group cultivars, soil microbiome structure and root
traits differed more among cultivars than ecotype. Future research
on switchgrass–microbe interactions should examine multiple
cultivars rather than relying on results from one model cultivar to
make ecotype-level assumptions. Understanding how cultivar traits
influence microbial communities can improve our ability to select
and breed cultivars with optimal microbiome-mediated traits such
as high N fixation or C sequestration. We also observed larger
cultivar effects on bacterial than fungal soil communities, sug-
gesting that there may be greater heritable variation and, thus,
breeding potential for switchgrass bacterial than fungal micro-
biomes. This study shows that differences in switchgrass cultivars
that have been documented aboveground also exist belowground
and have the potential to influence the future success and ecosystem
service provisioning of switchgrass as a bioenergy crop.
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Pérez-Jaramillo, J. E., Carrión, V. J., Bosse, M., Ferrão, L. F. V., de Hollander,
M., Garcia, A. A. F., Ramı́rez, C. A., Mendes, R., and Raaijmakers, J. M.
2017. Linking rhizosphere microbiome composition of wild and domesticated
Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11:
2244-2257.
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