Basyal, B. and S. M. Emery. 2020. An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient. Mycorrhiza 31:251-258.

Citable PDF link: https://lter.kbs.msu.edu/pub/3912

The abiotic environment can dictate the relative costs and benefits of plant-arbuscular mycorrhizal fungi (AMF) symbioses. While the effects of varying light or soil nutrient conditions are well studied, outcomes of plant-AMF interactions along soil moisture gradients are not fully understood. It is predicted that mycorrhizal associations may become parasitic in extreme soil moisture conditions. Under low soil moisture stress, costs of maintaining a mycorrhizal symbiont may outweigh benefits for the host plant, whereas under high soil moisture stress, the host plant may not need the symbiont. In a factorial growth chamber study, we investigated the effects of a plant-arbuscular mycorrhizal fungus symbiosis along a soil moisture gradient on growth, cell wall chemistry, and root architecture of a biofuel crop, Panicum virgatum (switchgrass). Regardless of soil moisture conditions, we found an increase in the number of tillers, number of leaves, root biomass, and amount of cellulose and hemicellulose in response to root colonization by the arbuscular mycorrhizal fungus. The fungus also increased aboveground biomass and changed several root architectural traits, but only under low soil moisture conditions, indicating a reduction in benefits of the mycorrhizal association under high soil moisture. Results from this study indicate that an arbuscular mycorrhizal fungus can increase some key measures of plant growth and cell wall chemistry regardless of soil moisture conditions but is most beneficial in low soil moisture conditions.

DOI: 10.1007/s00572-020-00992-6

Download citation to endnote bibtex

Sign in to download PDF back to index
Sign In