Lei, C., M. Abraha, J. Chen, and Y. J. Su. 2021. Long-term variability of root production in bioenergy crops from ingrowth core measurements. Journal of Plant Ecology 14:757-770.

Citable PDF link: https://lter.kbs.msu.edu/pub/3930

Long-term determination of root biomass production upon land use conversion to biofuel crops is rare. To assess land-use legacy influences on belowground biomass accumulation, we converted 22-year-old Conservation Reserve Program (CRP) grasslands and 50+-year-old agricultural (AGR) lands to corn ©, switchgrass (Sw) and restored prairie (Pr) biofuel crops. We maintained one CRP grassland as a reference (Ref). We hypothesized that land use history and crop type have significant effects on root density, with perennial crops on CRP grasslands having a higher root biomass productivity, while corn grown on former agricultural lands produce the lowest root biomass.The ingrowth core method was used to determine in situ ingrowth root biomass, alongside measurements of aboveground net primary productivity (ANPP). Ancillary measurements, including air temperature, growing season length, and precipitation were used to examine their influences on root biomass production.Root biomass productivity was the highest in unconverted CRP grassland (1716 g m -2 yr -1), and lowest in corn fields (526 g m -2 yr -1). All perennial sites converted from CRP and AGR lands had lower root biomass and ANPP in the first year of planting but peaked in 2011 for switchgrass and a year later for restored prairies. Ecosystem stability was higher in restored prairies (AGR-Pr: 4.3 ± 0.11; CRP-Pr: 4.1 ± 0.10), with all monocultures exhibiting a lower stability. Root biomass production was positively related to ANPP (R  2 = 0.40). Overall, attention should be given to root biomass accumulation in large-scale biofuel production as it is a major source of carbon sequestration.

DOI: 10.1093/jpe/rtab018

Associated Treatment Areas:

GLBRC Scale-up Fields

Download citation to endnote bibtex

Sign in to download PDF back to index
Sign In