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Conservation tillage in American soybean production has become increasingly common, improving soil
health while reducing soil erosion and fuel consumption. This trend has been reinforced by the widespread
adoption of glyphosate-based weed control systems. Many weed species have since evolved to resist glyph-
osate, reducing its effectiveness. We provide evidence that the spread of glyphosate-resistant weeds is
responsible for significant reductions in the use of conservation tillage in soybean production. We estimate
reduced-form and structural probit models of tillage choice, using a large panel of field-level soybean man-
agement decisions from across the United States spanning 1998–2016. We find that the first emergence of
glyphosate-resistant weed species has little initial effect on tillage practices, though by the time that eight
glyphosate-resistant weed species are identified, conservation tillage and no-till use fall by 3.9 percentage
points and 7.6 percentage points, respectively. We further find that when ten glyphosate-resistant species
are present, the predicted adoption rate of non-glyphosate herbicides rises 50 percentage points, and that
the availability of non-glyphosate herbicides facilitates continued use of conservation tillage as glyphosate-
resistant weeds proliferate. Using a simple benefits transfer model, we conservatively estimate that between
2008 and 2016 farmers’ tillage responses to the spread of glyphosate-resistant weeds have causedwater qual-
ity and climate damages via fuel emissions valued at nearly $245million. This value does not account for cli-
mate damages due to carbon released during soil disruptions and is likely to grow as glyphosate resistance
becomes more widespread and more farmers turn to tillage for supplemental weed control.
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Since the mid-1900s, chemical herbicides have
been an essential tool for weed control in the
conventional production of soybeans and
other U.S. field crops. Prior to the first com-
mercial herbicides, farmers typically relied on
mechanical weed control, characterized by
multiple tillage passes to uproot established
weeds and disrupt weed seedling emergence.
Although intensive tillage can provide effec-
tive weed control, this control comes at a cost
to the environment, leading to increased soil
erosion and energy use, which can impair
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water quality and increase the carbon foot-
print of agricultural production (Uri, Atwood,
and Sanabria 1999). In this paper we explore
how the declining efficacy of glyphosate, the
most widely used herbicide in American soy-
bean production, has led farmers to return to
increased use of tillage and non-glyphosate
herbicides to control weeds.
When first introduced, herbicides were rap-

idly adopted by American field crop farmers.
Herbicides offered weed control at least as
good as tillage but at lower cost (Swinton and
Van Deynze 2017). The introduction of soy-
bean varieties genetically engineered to toler-
ate glyphosate (and later other herbicides)
has further shifted soybean weed control away
from tillage (Fernandez-Cornejo et al. 2012;
Perry, Moschini, and Hennessy 2016b).
Glyphosate is a broad-spectrum herbicide that
could effectively control almost all weeds in
the early 1990s, when herbicide tolerant crop
varieties were first introduced. Glyphosate-
tolerant crops, like Roundup Ready™ soy-
beans, allow farmers to spray the herbicide
throughout the growing season without dam-
aging their crop. Farmers using these technol-
ogies could rely exclusively on glyphosate for
weed control, forgoing tillage passes and
therefore providing cost savings to farmers
and averting environmental damages. In many
instances, glyphosate also replaced herbicides
with higher acute toxicity to non-target spe-
cies, including humans (e.g., atrazine, a possi-
ble human carcinogen that is toxic to many
fish; Ribaudo and Bouzaher 1994; Ye, Wu,
and Hennessy 2021).1

As glyphosate use became more frequent in
soybeans and other crops, weeds soon evolved
to resist the chemical. In 2000, glyphosate
resistance in weeds was first identified in a
population of horseweed growing in a Dela-
ware soybean field (Van Gessel 2001). Glyph-
osate resistance has since been identified in
seventeen weed species in the United States
(Heap 2020). The rise of glyphosate-resistant
weeds (GRWs) has led to a growing literature
on best practices to delay and manage the
onset of herbicide resistance in weeds
(e.g., Beckie 2006; Evans et al. 2015;
Bonny 2016; Beckie and Harker 2017). The
increased use of tillage for weed control is fre-
quently found among these recommendations.

A smaller literature has focused on how
farmers have responded to the onset of
GRWs. Livingston et al. (2015) reports the
results of cross-sectional surveys of corn and
soybean growers in 2010 and 2012, respec-
tively. They find that farmers who self-report
experiencing problems with GRWs supple-
mented glyphosate-based weed control with
non-glyphosate herbicides and increased their
use of both glyphosate and tillage.2 Reporting
on farm-level, repeated cross-sectional yield
and weed control practice data from corn-
growing states in 2005 and 2010, Wechsler,
McFadden, and Smith (2017) find that low
numbers of GRWs have a fairly small impact
on corn farmers’ weed control practices, costs,
and yields. Lambert et al. (2017) use data from
a 2012 survey of upland U.S. cotton farmers
and find that weed control costs increase by
$34–55/acre following the emergence of
GRWs as farmers adopt labor-intensive alter-
natives to glyphosate.

These papers all rely on cross-sectional or
repeated cross-sectional data that are not suit-
able for panel data methods that can control
for unobserved heterogeneity over time at
the microlevel. Perry et al. (2016a), using
farmer-level panel data from corn and soy-
bean growers across the U.S., observe a sharp
increase in the use of non-glyphosate herbi-
cides in corn and soybeans from 2007 to 2011
and speculate that this increase is due to
GRWs. But this study neither explicitly
includes data on glyphosate resistant weed
prevalence nor addresses practice change
beyond herbicide use. Finally, none of these
previous studies on farmer response to herbi-
cide resistance includes data beyond 2012.
Since 2012, herbicide resistance weeds have
become far more widespread (Heap 2020),
providing an improved opportunity to observe
farmer response.

In this paper, we contribute to the literature
on weed management in the face of herbicide
resistance by providing the first estimate of
the impact of GRWs on the adoption rates
of conservation tillage practices in soybeans.
Like Perry et al. (2016a), we also find a sharp
increase in non-glyphosate herbicide use,

1Although the possibility of chronic human toxicity from glyph-
osate is actively debated (NRC 2016), the focus of this paper is on
farmer responses to glyphosate-resistant weeds.

2A reviewer notes other possible farmer responses to the spread
of GRWs include switching to seeds with other traits, such as toler-
ance to glufosinate, 2,4-D, or dicamba herbicides. To date, there is
little documentation of widespread adoption of such responses
over our study period, and these traits are typically adopted jointly
with their associated herbicides. Hence, this paper concentrates on
the use of non-glyphosate herbicides broadly and tillage as
responses to the spread of GRWs.
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which we argue has allowed at least some
farmers to continue conservation tillage prac-
tices even in the face of spreading GRWs.
We reach our findings first by developing a
conceptual model of a cost-minimizing farmer
who chooses among multiple herbicide and
tillage options to meet predetermined weed
control targets. This model indicates a non-
linear response to herbicide resistance: as
more weed species develop glyphosate resis-
tance, farmers become increasingly likely to
make major changes to their weed control
practices. We test this model empirically with
data on the field-level weed control choices
of thousands of soybean farmers during
1998–2016.

Our econometric results, which account for
substitution effects between tillage and herbi-
cides, and take advantage of panel data to con-
trol for unobserved heterogeneity, indicate
that low numbers of GRWs have little impact
on tillage choices. However, by the time that
eight GRW species are identified at the state
level, conservation tillage adoption falls by
3.9 percentage points and no-till adoption falls
7.6 percentage points. Meanwhile, our
reduced-form model of herbicide use predicts
that use of herbicides other than glyphosate
grows 50 percentage points over the range of
observed GRW species identified (zero
through ten).

Extrapolating from literature estimates of
soil erosion and fuel emissions from tillage,
and their environmental costs, we conserva-
tively estimate that the shift toward more
intensive tillage practices in response to
GRWs has caused water quality and climate
damage via fuel emissions costing nearly $245
million through 2016, the final year of our
panel. These damages accrued beginning in
2008 and have beenmost acute in the southern
states, where GRWs are most prevalent. Our
estimate does not account for additional dam-
ages due to carbon released from soil disrup-
tion during tillage events, which are likely
considerable. These findings are of particular
relevance for policymakers considering work-
ing lands programs that rely on farmers volun-
tarily reducing tillage, including those that
provide credits in exchange for practice
adoption.

The rest of this paper is structured as fol-
lows: we first present a conceptual model of a
cost-minimizing farmer who seeks to control
multiple weed species and is faced with a
shrinking set of herbicide options to accom-
pany tillage options. We then present our

empirical strategy and follow this with a dis-
cussion of the data. After presenting our
econometric results, we conduct a benefits
transfer simulation to illustrate a subset of
potential environmental costs. We close with
discussions of the policy implications of our
findings and of directions for future research.

Conceptual Model

We model a farmer’s tillage decision as a two-
stage cost-minimization problem, assuming a
farmer has already determined optimal levels
of weed control that are consistent with maxi-
mization of expected utility (Lichtenberg and
Zilberman 1986). Letting k∈ 1, � � �,Kf g index
different weed species, a farmer sets a weed
control target for each of their soybean fields,
denoted in vector form as �g¼ �g1, � � �,�gKð Þ. This
target represents theminimum level of control
acceptable for each weed in the field.3

A farmer can achieve these weed control
targets through a combination of tillage sys-
tems and chemical herbicides. A farmer
selects a single tillage system τ from the choice
set τCT ,τIT

� �
, where CT denotes conservation

tillage, and IT denotes intensive tillage (some-
times referred to as “conventional tillage”). A
farmer can select any combination of L alter-
native herbicides to supplement weed control
provided by their tillage system. Let hl denote
the (non-negative) quantity of herbicide
l∈ 1, � � �,Lf g, so that a farmer’s herbicide
choice set is H ¼RL

þ.
4 Together, a farmer’s

weed control choice set is τCT ,τIT
� ��H . In

principle, the farmer’s choice of whether to
plant a herbicide-tolerant crop variety condi-
tions the herbicide options. However, because
the subset of feasible herbicide options with no
herbicide-tolerant crop is subsumed by the
options with herbicide-tolerant crops, this her-
bicide choice set implicitly embeds the choice
of herbicide-tolerant crop traits.

3Farmers and weed control experts typically use a maximum
acceptable density of weeds in a field measured as individuals
per area (e.g. weeds/m2). This value is typically an “economic
threshold” at which control action is cost efficient (Marra andCarl-
son 1983; Swinton and King 1994). In this model we instead use a
functionally identical concept of minimum acceptable control.

4Note that farmers can combine different products via tank
mixes and can broaden the set of available herbicides by planting
traited seed. We envision H as a farmer’s herbicide choice set
accounting for all feasible tank mixes and other combinations of
retail products.
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These choices provide weed control
through a “kill function” for each weed spe-
cies, denoted by gk h,τð Þ. We assume that for
all weeds gk h,τð Þ is twice continuously differ-
entiable, that larger quantities of herbicide
increase control at a decreasing rate
(∂gk=∂hl > 0 and ∂2gk=∂hl

2 < 0, 8k, l), and that
intensive tillage provides greater weed control
than conservation tillage for any given choice of
herbicides (gk �h,τIT

� �
> gk �h,τCT

� �
, 8k,�h∈H).

Notice that when weed k has adapted to
completely resist herbicide l (or if the herbi-
cide was never lethal for that weed), then
∂gk=∂hl ¼ 0 for all quantities of that herbicide.
We now turn to the costs of weed control.

Denote the per unit costs of herbicide l as wl
and the costs of tillage system τ as c τð Þ. These
costs include labor, fuel, and chemical
expenses, as well as potential capital invest-
ments for new tillage equipment if adopting a
system for the first time. A farmer’s objective
is to minimize these costs while achieving their
weed control targets. To do so, the farmer first
determines the herbicide combination that
minimizes total weed control costs for each of
the two tillage systems subject toK constraints
(one for each weed species):

ð1Þ min
h

w �hþ c �τð Þ s:t:g h,�τð Þ≥ �g

The optimality conditions for this prob-
lem are:

ð2Þ wl ¼
X

k
λk∂gk h,�τð Þ=∂hl 8l∈ 1, � � �,Lf g

ð3Þ λk gk h,�τð Þ��g½ � ¼ 0 8k∈ 1, � � �,Kf g

where λk are Lagrange multipliers for each
constraint. Call the solution to the above min-
imization problem h* �τð Þ, and call the value
function for this solution V �τð Þ:

ð4Þ V �τð Þ�w �h* �τð Þþ c �τð Þ

A farmer then compares the solutions to
these first-stage cost-minimization problems
for each tillage type and selects the least-cost
option:

ð5Þ τ* ¼ argmin
τ∈ τCT ,τITf g

V τð Þ

The full solution to a farmer’s weed control
problem is thus the tillage–herbicide pair-
ing, τ*,h* τ*ð Þ� �

.

Comparative Statics of Herbicide Resistance

Now we use an exercise in comparative statics
to consider how a decrease in the effectiveness
of a given herbicide l against a given target
weed k, represented by a decrease in

∂gk h,�τð Þ=∂hl, would affect h* �τð Þ. Let ~h
*
�τð Þ

denote the optimal herbicide choices in a sce-
nario with a different, separate kill function
denoted ~gk h,τð Þ, where weed k has evolved
genetic resistance to herbicide l. That is, we
assume that ∂~gk h,�τð Þ=∂hl < ∂gk h,�τð Þ=∂hl,
ceteris paribus. Under what conditions does
~h
*
�τð Þ≠ h* �τð Þ? That is, under what conditions

does the optimal herbicide regime for a given
tillage system differ when one herbicide
becomes less effective against a given
target weed?

If the weed control constraint for weed k is
binding under either kill function (hence

λk > 0), then ~h
*
�τð Þ≠ h* �τð Þ, as ∂2gk=∂hl

2 < 0
and therefore, by the continuity and strict mono-
tonicity of ∂gk h,�τð Þ=∂hl, h* �τð Þ cannot satisfy
equation (2) if ∂~gk h,�τð Þ=∂hl < ∂gk h,�τð Þ=∂hl.

But if the weed control constraint for weed
k is non-binding in both scenarios (hence
λk ¼ 0 in both pre-resistance and post-resis-
tance weed control cost minimization prob-

lems), then ~h
*
�τð Þ¼ h* �τð Þ, as ∂gk h,�τð Þ=∂hl

would be multiplied by λk ¼ 0 in equation (2)
and play no role in the solution. Thus, decreas-
ing herbicide effectiveness from ∂gk h,�τð Þ=∂hl
to ∂~gk h,�τð Þ=∂hl has no effect on herbicide or
tillage choices for weeds that were “over-con-
trolled” prior to evolving to resist the
herbicide.

Further, this result implies that decreasing
herbicide effectiveness weakly increases weed
control costs for a given tillage choice, and
therefore a single weed evolving partial or
even complete resistance toward a single her-
bicide does not necessarily influence tillage
choices. As more weeds develop resistance to
a herbicide, changes in herbicide use and till-
age practices become more likely as farmers
seek alternative methods to reach their weed
control targets. But because some weeds are
likely to be overcontrolled (i.e., the weed tar-
get constraint is non-binding), the response
to herbicide resistance is inherently non-lin-
ear. As more weeds develop herbicide resis-
tance, equation (2) implies three potential
responses: (a) increase in the rate of herbicide
hl, (b) replacement or supplementation of ini-
tially optimal herbicide hl, with another
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herbicide with efficacy against the resistant
weed(s), and (c) change in tillage practice, τ.
This last response is triggered when the rising
cost of control with herbicides under conserva-
tion tillage begins to outweigh the savings in
tillage costs, inducing the cost-minimizing
farmer to switch to intensive tillage.

The Case of Glyphosate and
Glyphosate-Resistant Weeds

Glyphosate is a broad-spectrum herbicide
that, in the absence of genetic resistance, is
highly effective at controlling essentially all
weeds. The introduction of glyphosate-
tolerant crop varieties allowed farmers to rely
heavily (sometimes exclusively) on this spe-
cific herbicide for weed control in soybeans
throughout the growing season at a relatively
low cost. As glyphosate use ramped up, the
use of other herbicides declined (Livingston
et al. 2015). Swinton and Van Deynze (2017)
attribute this trend to the cost dominance of
glyphosate-based weed control. When used
in conjunction with glyphosate-tolerant crops,
pre- and post-emergent applications of glyph-
osate make tillage passes for weed control
redundant as it provides little to no additional
weed control but incurs additional fuel,
machinery, and labor costs for a farmer.

In terms of our conceptual model, the pre-
resistance, broad-spectrum effectiveness of
glyphosate used alongside conservation tillage
is represented by non-zero marginal weed
control effectiveness under conservation till-
age ∂gk h,τCT

� �
=∂hl > 0) for all weeds. Because

glyphosate provides effective control for all
weeds, it is unlikely that the effective control
constraint, equation (3), is binding for each,
leading to over control (i.e., λk ¼ 0). When a
weed develops resistance to glyphosate, the
marginal weed control effectiveness of glypho-
sate falls. If this weed is not sufficiently con-
trolled by other methods under lower
glyphosate resistance (i.e., λk > 0), then either
glyphosate use must rise or some other herbi-
cide must be added, or else the farmer must
switch to intensive tillage to continue to meet
their weed control targets. For a single weed,
this can be achieved by adopting a specialized
herbicide. However, as more weeds evolve to
resist glyphosate, its advantage as a broad-
spectrum weed control method over intensive
tillage falls because additional herbicides
become necessary to achieve weed control tar-
gets. Therefore, we expect increasing pressure

to use intensive tillage over conservation till-
age as glyphosate-resistant weeds become
more widespread. In other words, as
glyphosate-resistant weeds proliferate, we
expect both that intensive tillage becomes
more common and that the rate at which it
becomes more common will increase.

Empirical Model

To test for the implications of the conceptual
analysis, we estimate a series of dynamic
probit models with the tillage decision as the
dependent variable. Our primary objective is
to estimate the impact of increasing glypho-
sate resistance among weeds on τ* from equa-
tion (5), the optimal tillage choice. We do so
by developing a model of the probability that
τ* ¼ τCT conditional on glyphosate resistance,
where glyphosate resistance among weeds is
measured as a count variable representing
the number of weeds a farmer expects to
exhibit glyphosate resistance, zit . We use a
two-pronged empirical approach, estimating
both a reduced-form tillage model and a struc-
tural model using a first-stage control function
to account for potentially endogenous herbi-
cide use. The former allows us to estimate
the total effect of GRWs on tillage decisions.
The latter allows us to examine the direct
effect of GRWs on the adoption of conserva-
tion tillage while also conditioning on related
herbicide decisions, which we expect to be
affected by the onset of GRWs, allowing us
to test whether farmers first supplement glyph-
osate with non-glyphosate chemical control,
thereby allowing continued use of conserva-
tion tillage in the presence of GRWs.
The unit of analysis is the field-level (j) till-

age decision on each farm (i) in a year (t).With
yCTjit as an indicator for the use of conservation
tillage, zit as the number of GRWs, yNGH

jit as an
indicator for the use of non-glyphosate herbi-
cides, yCTi,t�1 as an indicator for the farm’s con-
servation tillage decision in the previous
period, pt as a vector of indices for prices rele-
vant to the tillage decision (specifically, fuel
prices pFUEL

t , soybean prices pBEANS
t , herbicide

prices represented as the price premium on
glyphosate over a bundle of alternatives
pGH�NGH
t ), and xit as a vector of farm-level

conditioning variables, the structural function
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we seek to estimate is the probability that con-
servation tillage is chosen:

ð6Þ
Pr yCTjit ¼ 1jzit ,yNGH

jit ,yCTi,t�1,pt ,xit, t,δi
� �

¼Φðβ0þzitβ1þz2itβ2þyNGH
jit β3þ

þyCTi,t�1β4þptβ5þxitβ6þ tβ7þδiþ εjitÞ,

where Φ �ð Þ is the standard normal cumulative
distribution function. To account for themulti-
level nature of our data, δi is a normally
distributed farm-level random effect with
zero-mean and variance σ2δ , and εjit is a nor-
mally distributed error term with zero-mean
and variance σ2ε .
In this specification, we account for a non-

linear response to additional GRWs suggested
by our conceptual model by including the var-
iable zit in quadratic form. As controls we
include variables xit , including measures of
farm size (for scale economies in use of tillage
equipment), soil erodibility (which affects till-
age difficulty and soil water retention), and
drought incidence (as tillage tends to reduce
water retention). We include a time trend t to
capture the effects of other unobserved time-
varying factors consistent across observations
that may have contributed to shifts in the use
of conservation tillage over time. We call the
function represented in equation (6) the struc-
tural tillage function.
Before estimating this structural function

via maximum likelihood, we must first address
two issues: the initial conditions problem
induced by including a lagged dependent vari-
able and the potential endogeneity of non-
glyphosate herbicide use.
Adopting conservation tillage requires sig-

nificant farmer investment in both learning
new skills and acquiring new equipment
(Krause and Black 1995; Uri 1999). Farmers
who have made these investments in previous
seasons face lower costs associated with con-
servation tillage. To account for this effect,
we use the farmer’s lagged tillage decision
across all observed fields,

yCTi,t�1 ¼max
j

yCTji,t�1

n o
, assuming that previously

used conservation tillage equipment remains
available in the following period. However,
including the lagged dependent variable in a
panel data model forces us to address the ini-
tial conditions problem (Arellano and Honoré
2001). This problem occurs when themodelled

process is not observed from its beginning.
Therefore, the initial condition, yCTi0 , is likely
correlated with the farm-level random
effect, δi.

One approach to addressing this issue in
non-linear models is to explicitly model the
distribution of the random effect conditional
on the initial condition and the other explana-
tory variables (Wooldridge 2005). Although
this method can take several forms, we follow
a specification for the random effect that has
been shown to produce unbiased estimates
for parameters:

ð7Þ δi ¼ α0þyCTi0 α1þ�xiα2þxi0α3þθi; θi
�Normal 0,σ2θ

� �
;

where xi0 is a vector of all initial period explan-
atory variables (including zit , z2it , and pt) and �xi
is a vector of all explanatory variables aver-
aged across all available periods (Rabe-
Hesketh and Skrondal 2013), including GRW
numbers. Although Wooldridge (2005) sug-
gests including all explanatory variables from
all time periods in this auxiliary model, doing
so results in a model that is often computation-
ally unwieldy due to the large number of inci-
dental parameters. Rabe-Hesketh and
Skrondal (2013) show that the above con-
strained model performs similarly to the origi-
nal Wooldridge solution. In this form, the
random effect δi is constrained to depend on
xit in the same fashion for t > 0. But because
the presence of any non-zero parameters in
the tillage model implies that yCTi0 is directly
dependent on xi0, we include xi0 separately
from �xi to account for this potential effect. This
expression can be substituted directly into the
structural equation, equation (6), and estima-
tion can proceed as usual.

The second issue relates to the use of non-
glyphosate herbicides, yNGH

jit . As herbicide
use decisions may be made simultaneously
with tillage decisions, this variable is poten-
tially endogenous. Our primary goal is to
achieve consistent estimation of the param-
eters on the GRW terms of the tillage
model rather than the partial effect of
non-glyphosate herbicides on tillage. With
that in mind, we consider two approaches.
First, we omit the non-glyphosate herbicide
variable to estimate a reduced form
model of the probability of conservation
tillage adoption unconditional on herbicide
choices:
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ð8Þ

Pr yCTjit ¼ 1jzit ,yCTi,t�1,pt ,xit, t,δi
� �

¼Φðβ’0þ zitβ’1þ z2itβ’2þyCTi,t�1β’4

þptβ’5þxitβ’6þ tβ’7þδiþ εjitÞ:

In this formulation, we essentially treat non-
glyphosate herbicide use as unobserved,
assuming that it is part of the error term εjit
and independent of the observed explanatory
variables. If this assumption is violated, such
a model is still useful in that the estimates of
GRW parameters will now include both any
direct effect of GRWs on tillage decisions
and any indirect effect the GRW variable
might have via its effect on non-glyphosate
herbicide use.

However, we also seek to test the implica-
tion from our conceptual model that GRWs
will affect tillage choices through their effect
on the suite of necessary herbicides to
achieve acceptable levels of weed control.
We expect that when non-glyphosate herbi-
cides are used as a first response to GRWs,
conservation tillage is more likely to be used
even in the presence of GRWs. Therefore,
we also present an extended model that
accounts for the expected endogeneity of
non-glyphosate herbicide use through a first-
stage model that produces a control function
(Wooldridge 2014; Wooldridge 2015).

In cases like this, where both the dependent
variable and potentially endogenous variable
are discrete, straight-forward approaches like
two-stage least squares are unavailable
(Wooldridge 2015). Alternatives in this setting
include bivariate probit models jointly esti-
mated with maximum likelihood and “plug-
in” methods where the fitted values for a
first-stage model of the potentially endoge-
nous variable are directly included in the struc-
tural model (Wooldridge 2015). The bivariate
probit approach is computationally complex,
especially when random intercepts and
lagged dependent variables are included,
whereas “plug-in” methods generally estimate
coefficients and partial effects inconsistently
(Wooldridge 2015).

In the present setting we use a third option:
a control function approach for binary endog-
enous variables in binary dependent variable
models known as two-stage residual inclusion
(Terza, Basu, and Rathouz 2008 Wooldridge
2014). This method offers computational

simplicity when compared to jointly estimated,
bivariate techniques, particularly in cases
where lags are included for the dependent var-
iables. Prior to estimating the tillagemodel, we
estimate a first-stage, reduced-form model for
the distribution of the endogenous variable;
calculate generalized residuals of this model;
and include these residuals, denoted as r̂jit in
the structural model as an explanatory vari-
able. The idea is that the residuals serve as a
sufficient statistic for the degree of endogene-
ity in the explanatory variable. The unob-
served variables that are the source of the
endogeneity, for example unobserved latent
weed pressure, are captured in the error term
of the first-stage model. By including the resid-
uals of the first-stage model in the second-
stage, structural model, we essentially control
for endogeneity by including an imperfect
but sufficient aggregated measure of the unob-
served variables that induce the problem in
the first place.
The reduced form model we estimate for

the first-stage model of non-glyphosate herbi-
cide use is:

Pr yNGH
jit ¼ 1jx0it ,μi

� �

¼Φ x0itγþμiþρjit

� �
:

ð9Þ

The vector x0it represents all explanatory
variables from equation (6), including the
additional initial condition correction vari-
ables constructed in equation (7), whereas a
farm-level random effect, μi, is assumed to fol-
low a normal distribution with zero-mean and
variance σ2μ, whereas ρjit is a normally distrib-
uted error term with zero-mean and vari-
ance σ2ρ.
We estimate the first-stage model of non-

glyphosate herbicide use following standard
maximum likelihood procedures for probit
models with random effects. The model is esti-
mated twice, once with lagged no-till use and
again with lagged conservation tillage use as
independent variables to estimate control
functions for corresponding second-stage
models.
To ensure identification of the second-stage

tillage model, at least one exclusion restriction
is required so that the first-stage residuals have
independent variation that is not entirely
determined by variables already in the model
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(Wooldridge 2014).We argue that the indexed
price premium between glyphosate and
non-glyphosate prices, pGH�NGH

t , satisfies the
exclusion restriction.
To satisfy the exclusion restriction,

pGH�NGH
t must meet three conditions: it must

(a) not have a direct influence on the depen-
dent variable in the structural model, yCTjit ; (b)
be uncorrelated with omitted explanatory var-
iables in the structural model; and (c) be
strongly correlated with the potentially endog-
enous variable, yNGH

jit (Terza, Basu, and
Rathouz 2008).We argue that these three con-
ditions are met. First, we assume that these
prices only affect farmers’ tillage choices via
their effects on the herbicides required for
each alternative system, thereby satisfying
condition (1). A similar assumption is main-
tained in Perry, Moschini, and Hennessy
(2016b), where the premium for glyphosate-
tolerant seed is assumed not to directly affect
tillage decisions. The remaining two condi-
tions are addressed as the paper proceeds.
With residuals from the first-stagemodel and

the auxiliary model for δi in hand, the struc-
tural tillage function we ultimately estimate is:

where ptillt is the full vector of prices omitting
pGH�NGH
t in accordance with the exclusion

restriction. This structural function can be esti-
mated using standard maximum likelihood
procedures for probit models with random
effects.5 Note that in the structural form, the
GRWvariable can affect tillage decisions both
directly through the effects estimated in
Equation (10) (β1 and β2) and indirectly
through the effect on non-glyphosate herbi-
cide use estimated in equation (9) (γ1 and γ2,
through β3), whereas in the reduced-form the
total of both these effects is accounted for with
β01 and β02. In both models, the effects of
GRWs can also compound across periods in

both formulations through β4 and β04, the
parameters on the lagged tillage decision. These
will serve as our primary parameters of interest.

In sum, we estimate each of equations
(8)–(10) twice, once for the use of all forms
of conservation tillage as the dependent vari-
able and again for the specific use of no-till,
for a total of six models.

For the two-stage residual inclusion method
to fully account for the endogeneity we expect
with regards to the consistent estimation of the
yNGH
jit parameter in equation (6), we must also

assume that ρjit in equation (9) and εjit from
equation (6) are independent conditional on
the explanatory variables, and that μi and θi
are independent conditional on the explana-
tory variables as well (Wooldridge 2014).
These are strong assumptions, and they would
fail to hold if remaining unexplained factors at
the farm or field level jointly influence both
the tillage and herbicide use decisions. The
strength of this assumption is one limitation
of our analysis, although we contend that the
inclusion of initial conditions correction vari-
ables and yCTi,t�1 in x0it , the explanatory variables
for non-glyphosate herbicide use in equation

(9) largely accounts for potentially correlated
errors and farm-level random effects across
equations in a similar way as their inclusion
accounts for unobserved effects that may jointly
influence yCTi,t�1 and δi as shown in equation (7).

We present and interpret the reduced-form
estimates of the tillage model in equation
(8) on their own and in comparison to the
two-stage, structural model. The reduced-
form results represent robust estimates of the
full effect of GRWs on tillage choice.
The structural model results allow GRWs to
affect tillage choice through two paths: their
direct impact on tillage holding herbicide
choice constant and their effect on herbicide
choices that themselves impact tillage, and
we expect that the sum of these two effects in
the structural model to match the total effect
estimated from the reduced form. However,

ð10Þ Pr yCTjit ¼ 1jzit,yNGH
jit ,yCTi,t�1,p

till
t ,xit, t, r̂it,yCTi0 ,�xi,xi0,θi

� �

¼Φ β0þzitβ1þz2itβ2þyNGH
jit β3þyCTi,t�1β4þptillt β5þxitβ6þ tβ7þ r̂jitβ8þyCTi0 α1þ�xiα2þxi0α3þθi

� �
,

5Specifically, we use a Laplace approximation of the likelihood
function. Estimation is performed using the R package lme4
(Bates et al. 2015).
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we note that the structural estimates are less
robust to distributional assumptions on the
error terms and farm-level random effects.

Data

The core of our data are field-level survey data,
representative at the Crop Reporting District
level, purchased from the market research
company Kynetec in the fall of 2017. These
data contain observations on chemical and
mechanical weed control practices of 22,151
farmers from 1998 through 2016 in thirty-one
soybean-growing states6 across the United
States with more intensive sampling in regions
where soybeans are more widely grown, for a
total of 93,345 field-level observations (not
including fields observed in 1998, which form
the initial condition, or t¼ 0, for our panel).
Sample lists for each year are constructed from
the previous year’s list and supplemented with
federal subsidy payment recipient lists from
the United States Department of Agriculture,
agricultural publication subscription lists, and
themembership lists of state and regional agri-
cultural associations. Survey data were col-
lected via computer assisted telephone
interviews. Non-respondents were re-
contacted a minimum of eight times to reduce
non-response error and up to twenty-five
times in areas where response rates were low.
Respondents were compensated monetarily
upon completion of the interview. All inter-
views were recorded for verification purposes,
and data was crosschecked against established
ranges for prices, application rates, and consis-
tency with other reported practices.

The raw data are structured as application-
level units, with chemical, seed, tillage, and
application area information provided. Field-
level observations are constructed by aggre-
gating application observations which share
distinct application area for each uniquely
identified respondent within in each year.
Many farms provide data for multiple fields
per year and responses in multiple years, giv-
ing the data an unbalanced panel structure
and allowing us to estimate the preceding

empirical model. Tillage decisions, non-
glyphosate herbicide use, herbicide prices,
and farm size variables are all sourced from
this dataset. Note that because farmers some-
times come and go from the panel, the lagged
tillage variable and initial conditions variables
are relative to the most recent available year
and the first year the farmer appears in the
sample, respectively.
The Kynetec survey data include three

levels of tillage intensity: conventional, con-
servation, and no-till. Following Perry,
Moschini, and Hennessy (2016b), where a
shorter duration subset of these data is used,
we define two distinct but related binary tillage
decision variables: a conservation tillage indi-
cator equal to one whenever either conserva-
tion or no-till is used, and a no-till indicator
equal to one whenever no-till is used, grouping
other conservation tillage practices along with
conventional tillage. Because the effect of
GRWs on no-till use is of particular interest,
we estimate our empirical model twice, once
with each of our two definitions of tillage prac-
tices as the dependent variable. The propor-
tion of fields in the sample classified as no-till
and conservation tillage is presented in
figure 1.
The data on farming practices also identify

the herbicide products applied over each field
in each year.We identify the active ingredients
in each of these products and define a binary
variable equal to one whenever the field is
treated with a product containing a non-
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Figure 1. Percentage of fields in sample under
no-till and conservation tillage over time

Note: Conservation tillage includes no-till fields as well as other forms of
reduced tillage.

6The states sampled are Alabama, Arkansas, Delaware, Flor-
ida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana,
Maryland, Michigan, Minnesota, Mississippi, Missouri, Nebraska,
New Jersey, New York, North Carolina, North Dakota, Ohio,
Oklahoma, Pennsylvania, South Carolina, South Dakota, Tennes-
see, Texas, Virginia, West Virginia, and Wisconsin.
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glyphosate active ingredient.7 The proportions
of fields in the sample treated with glyphosate
and non-glyphosate herbicides is presented in
figure 2. Early in the sample period, the use
of glyphosate became increasingly common,
and the use of non-glyphosate products fell
rapidly, likely due to the advent of
glyphosate-tolerant soybean seed. Starting in
2006, this trend reversed, and non-glyphosate
products were used more commonly. Glypho-
sate use reached near saturation in the same
year and continued to be used on over 90%
of fields through 2016.
We use the practice data to compute price

indices for both glyphosate and non-
glyphosate herbicides. For glyphosate prices,
we calculate the mean price paid in dollars
per pound of active ingredient each year.
Because non-glyphosate herbicides represent
a basket of several related products, we con-
struct Laspeyres indices of prices and quanti-
ties for all non-glyphosate herbicide products
used throughout the sample period, with the
mean dollar per pound and volume shares
from across the full sample used as the base.
These indices are scaled so that both equal
one in 1999, the first year of our sample. These
input price indices enter the empirical model
as relative prices and are therefore differenced

as pGH�NGH
t ¼ pGH

t �pNGH
t , or the glyphosate

price premium. These price indices are pre-
sented in figure 3.

Glyphosate prices dropped significantly fol-
lowing the expiration of Monsanto’s patent in
2000, whereas non-glyphosate prices
remained steady, so the price premium
pGH�NGH
t is negative in all years. During

2007–2009, glyphosate prices spiked relative
to non-glyphosate prices when a global pro-
duction slump, resulting from a shortage of
the input phosphate rock (Alewell
et al. 2020), coincided with rising demand
due to higher crop prices. Because pGH�NGH

t
is driven primarily by patent law and global
demand trends, we argue that this variable is
uncorrelated with omitted variables in the
structural function and therefore satisfies con-
dition (2) of the exclusion restriction. We
address condition (3) in the results
section that follows.

The field-level practice dataset categorizes
farm size into five classes based on soybean
acres operated: less than 100 acres, 100–249
acres, 250–499 acres, 500–999 acres, and
1,000 acres or more. These are included as a
series of binary variables in the empirical
model, with the less than 100 acres category
excluded as the baseline.

We supplement the field-level practice data
with annual state-level data on the number of
reported glyphosate-resistant weed species at
the beginning of the growing season, as
reported by the International Survey of
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Figure 2. Percentage of fields in sample
treated with glyphosate and non-glyphosate
herbicides over time

0.00

0.25

0.50

0.75

1.00

1.25

2000 2005 2010 2015

Year

P
ri

ce
 I

n
d

ex

Herbicide Glyphosate Non−Glyphosate

Figure 3. Price indices for glyphosate and non-
glyphosate herbicides over time

Note: Both prices normalized to 1 in 1999.

7The five most common non-glyphosate herbicide active ingre-
dients that appear in our sample are, in order, atrazine, acetochlor,
metolachlor-S, 2,4-D, and mesotrione.
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Herbicide Resistant Weeds (ISHRW) (Heap
2020).8 The number of species resistant to
glyphosate in each state in our sample in
selected years is presented graphically in fig-
ure 4, demonstrating the rapid spread of
GRWs throughout the study region over the
panel period.

To the best of our knowledge, the ISHRW is
the best available measure for this variable,
providing consistent reporting on the develop-
ment of herbicide resistance by mode of action
across the full timeframe and the geographic
region of our panel. As the primary contribu-
tors to the ISHRW data are university exten-
sion weed scientists who confirm reports
from farmers with laboratory dose–response
experiments, the data represent species con-
firmed to demonstrate herbicide resistance.
We assume that these counts represent the
knowledge available to a typical farmer when
making tillage decisions through an extension
weed control guide (e.g., Sprague and
Burns 2018).

Though the ISHRW measure is an imper-
fect measure of the spread of GRWs, it is par-
ticularly useful in the present setting.
Glyphosate resistance can vary both in (a)
the degree of resistance and (b) the speed it
spread throughout a regional or local weed
population, and the ISHRW data can distin-
guish neither of these specific trends. How-
ever, the ISHRW variable remains a useful
proxy for the spread ofGRWs for two reasons.
First, it is available consistently over time
across a broad geographic region, allowing its
use throughout the full period and region of
our farmer panel. Second, it closely tracks with
other potential measures of the spread of
GRWs, including infested acres data available
over only the last seven years of our nineteen-
year panel (Supplementary Material 1, figure
S1.1). Although the ISHRW measure does
not allow for nuanced examination of
response to incremental resistance or precise
knowledge of the species resistant to glypho-
sate on a given field, it still holds valuable
information on the likelihood a farmer expects
to experience resistance in each year and how
that likelihood varies across the wide geo-
graphic range of our panel.
We rely on NASS annual price indices for

diesel fuel (US Department of Agriculture,
National Agricultural Statistics Service 2018).
As conservation tillage typically requires ligh-
ter field implements, or in the case of no-till no
field passes at all, and therefore less fuel, we
expect its use to be more frequent when fuel
prices are higher (Lal 2004). We also rely on
NASS soybean prices, measured annually at
the state level in September of the
previous year.
Finally, we include a pair of variables to con-

trol for a field’s soil conditions. Previous stud-
ies have shown that conservation tillage
systems are more likely to be adopted on
highly erodible lands (Uri 1999; Soule,
Tegene, and Wiebe 2000). Past research has
also found that the use of conservation tillage
(but not no-till) is more likely in years follow-
ing drought conditions (Ding, Schoengold,
and Tadesse 2009). Therefore, for each farm
we include the proportion of the land in the
farm’s county classified as highly erodible
(US Department of Agriculture, National
Resource Conservation Service 2018). We
also include the Palmer’s Z-index as ameasure
of moisture conditions. This value is measured
at the climate division level in the September
of the prior year, where a more negative
Z-index score indicates drier conditions

2012 2016

2004 2008

GRWs
0 1 2 3 4 5 6 7 8 9 10

Figure 4. Number of glyphosate-resistant
weeds species (GRWs) by state for selected
years

Notes: States presented are states represented in the analyzed data.
Underlying data presented in Supplementary table S1.1.

8These data were provided to us through personal communica-
tion with Ian Heap, via email, as a custom report on herbicide
resistance in the United States generated from the ISHRW data-
base. These data are consistently updated and can be viewed pub-
licly on the ISHRW website (http://www.weedscience.org/).
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(US Department of Commerce, National
Environmental Satellite, Data, and Informa-
tion Service 2018).
In all, we bring together variables from sev-

eral sources measured at disparate geographic
scales. Brief descriptions of each of the vari-
ables ultimately included in the empirical
model are presented in table 1, along with
the scale at which they are measured and their
original source. Summary statistics for each
variable are available in Supplementary Mate-
rial 2 (tables S2.1 and S2.2).

Results and Discussion

Our empirical results reveal that rising num-
bers of GRWs cause soybean farmers to shift
toward non-glyphosate herbicides and—even
after accounting for that change—toward less
use of conservation tillage practices. Based
on these results, we estimate the degree to
which rising numbers of GRW species have
depressed the probability of farmers adopting
conservation tillage and no-till farming.
Finally, so as to get a sense of the degree of
environmental damages induced by GRWs
through farmers’ tillage responses, we apply
our tillage decision model to simulate a

counterfactual scenario in which no weed spe-
cies adapt to resist glyphosate, enabling an
estimate of environmental damages induced
by GRWs through farmers’ tillage responses.

Reduced Form Tillage Models

Coefficient estimates from reduced form till-
age decision probit models, for both no-till
and all forms of conservation tillage as the
dependent variable, are presented in table 2.
The coefficients on the linear GRW term are
statistically insignificant, whereas the qua-
dratic terms are negative and statistically sig-
nificant for both models. These results
support the primary conclusion of our concep-
tual model: that decreasing effectiveness of
glyphosate is associated with increased pres-
sure to adopt more intensive mechanical weed
control, and this pressure is weak at low num-
bers of GRW species but grows stronger as
additional species are identified as GRWs.

In the reduced form, the glyphosate price
premium term is positive and statistically sig-
nificant in both models, suggesting that in
years where glyphosate is more expensive rel-
ative to non-glyphosate herbicides, reduced
tillage is more common. We interpret this
result as a preference for specialized non-
glyphosate herbicides under such conditions,

Table 1. Descriptions of Variables Included in Empirical Model

Variable Description
Geographic

scale Source

Tillage decision,
no-till

Binary indicator of use of a no-till system Field Kynetec

Tillage decision,
conservation till

Binary indicator of use of a conservation tillage system
(including no-till)

Field Kynetec

Non-glyphosate
herbicide use

Binary indicator of use of a herbicide other than
glyphosate

Field Kynetec

GRWs Count of glyphosate resistant weeds at the start of the
year

State ISHRW

Glyphosate price Average price of glyphosate in dollars per gallon,
normalized to 1 in 1999

National Kynetec

Non-glyphosate
price

Laspeyres index of non-glyphosate herbicide prices,
normalized to 1 in 1999

National Kynetec

Fuel price Index of diesel fuel prices, normalized to 1 in 1999 National NASS
Soybean price Index of soybean prices in Sept. of the previous year,

normalized to 1 in 1999
State NASS

Palmer’s Z-Index Index of anomalous moisture conditions, where negative
values indicate drier conditions than usual, measured in
September of the prior year

Climate
division

NOAA

Soil Erodibility
Index

Proportion of farmland classified as highly erodible County NRCS

Farm size Acres of soybeans operated by farm, categorized into five
bins

Farm Kynetec
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crowding out the need for the broad-spectrum
effectiveness of glyphosate or intensive tillage.
Fuel price has a statistically significant coeffi-
cient of the expected sign in both models.
The positive coefficients on fuel price likely
stem from the fact that conservation tillage
systems require less fuel than conventional till-
age and are therefore more likely to be
selected when fuel is costly (Lal 2004; Perry,
Moschini, and Hennessy 2016b). Soybean
prices are negatively associated with no-till
adoption but not with conservation tillage
adoption, a result consistent with farmer per-
ceptions of yield drag associated with no-till
(Reimer, Weinkauf, and Prokopy 2012). Use
of no-till or conservation tillage in previous
seasons is positively associated with use in
future seasons, indicating that some inertia is
present. This may be in part due to machinery
investments for switching to alternative prac-
tices (Krause and Black 1995) or perhaps
increased familiarity with the system
(Uri 1999).

The remaining coefficients follow their
expected signs. Fields experiencing recent
drought (represented with negative Palmer’s
Z-index values) are more frequently under

conservation tillage, although this parameter
is only statistically significant at the 10% level.
We also find that fields in counties with more
highly erodible land are more likely to be
under conservation tillage systems. These pat-
terns are consistent with results found in the
literature on tillage adoption (Ding, Schoen-
gold, and Tadesse 2009). The positive time
trend may reflect the effects of federal conser-
vation incentives and state-level extension
efforts to promote conservation tillage adop-
tion, as well as increased familiarity with these
practices over time. Medium-sized farms are
slightly more likely to adopt conservation till-
age than the largest (1,000 acres or more)
and smallest farms (less than 100 acres), but
size has no effect on no-till specifically.
Both the no-till and the conservation tillage

models correctly predict the tillage decision
for a field about four-fifths of the time. Fur-
ther, the two models show balanced predictive
power, correctly predicting tillage decisions at
roughly the same rate whether the observed
outcome was adoption or non-adoption. Both
models explain the majority of the variance
in tillage adoption outcomes, as measured by
the pseudo-R2 metrics proposed for

Table 2. Results from Reduced Form, Tillage Decision Probit Models

Variable No-till (reduced form) Conservation tillage (reduced form)

GRWs 0.000242 (0.0136) 0.00238 (0.0132)
GRWs (squared) �0.00668*** (0.00149) �0.00362** (0.00147)
Glyphosate price premium 0.193*** (0.0550) 0.141*** (0.0543)
Fuel price 0.0840*** (0.0122) 0.0606*** (0.0120)
Soybean price �0.0544** (0.0228) �0.00193 (0.0225)
Past no-till/conservation tillage use 0.607*** (0.0133) 0.742*** (0.0130)
Palmer’s Z-Index �0.000978 (0.00293) �0.00538* (0.00285)
Soil Erodibility Index 0.522*** (0.0389) 0.384*** (0.0354)
Soybean acres (100–249 acres) 0.0263 (0.0230) 0.0616*** (0.0218)
Soybean acres (250–499 acres) 0.0351 (0.0244) 0.0730*** (0.0229)
Soybean acres (500–999 acres) 0.0190 (0.0250) 0.0804*** (0.0234)
Soybean acres (1000 acres or more) �0.00125 0.0119 (0.0252)
Year trend 0.0359*** (0.00333) 0.0254*** (0.00323)
Random effects Farm level Farm level
Initial conditions correctiona Yes Yes
Observations 93,345 93,345
Unique farms 22,151 22,151
% Correct (dep. var. = 1) 72.4% 82.2%
% Correct (dep. var. = 0) 81.1% 75.1%
% Correct (all obs.) 77.2% 80.1%
Marginal R-squared 0.395 0.362
Conditional R-squared 0.630 0.565

Note: Standard errors in parentheses.
*p < 0.1,
**p < 0.05,
***p < 0.01.
aIncludes initial period value and cross-period means for explanatory variables, and initial period value of dependent variable.
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generalized linear mixed-effect models by
Nakagawa and Schielzeth (2013). Marginal
R2 measures the variance explained by the
observed independent variables, whereas con-
ditional R2 measures the variance explained
by the full model, including random effects.
These measures are preferred to alternatives
such as the commonly used McFadden’s
pseudo-R2 because they can (a) be interpreted
on the same unit scale as the usual R2 com-
monly reported for ordinary least-square
models, and (b) separately identify the contri-
butions of fixed and random effects. For both
models, around two-thirds of the total
explained variance is accounted for via the
observed variables, and allowing a random
intercept for each farm to account for unob-
served heterogeneity improves model fit
substantially.

First-Stage Non-Glyphosate Herbicide Use
Models

We present reduced form estimates for our
models of non-glyphosate herbicide use in
table 3. The estimates with no-till and

conservation tillage lags, and associated initial
condition corrections, are nearly identical but
separately estimated for use as first-stage
models in the structural tillage model esti-
mates in the following section.

GRWs have positive and statistically signifi-
cant coefficients for both the linear and qua-
dratic terms, suggesting a strong association
between the adoption of additional herbicides
and the development of glyphosate resistance
among additional species. Unlike the effect
observed in the tillage models, this effect is
immediate in that an increase in the probabil-
ity of non-glyphosate use is detected even
when only a single species with glyphosate
resistance is identified within the state.

The coefficient estimates on the price differ-
ential between glyphosate and non-glyphosate
herbicides are positive and statistically signifi-
cant for both models. As expected, in years
when glyphosate is expensive relative to alter-
natives, non-glyphosate herbicides are more
likely to be used. The statistical significance
of this coefficient has been proposed as a test
of condition (3) for the exclusion restriction
(Wooldridge 2014). Given that the coefficient
is statistically significant, we conclude that this

Table 3. Results from First-Stage Non-Glyphosate Herbicide Use Probit Models

Non-glyphosate use
(reduced form)

Non-glyphosate use
(reduced form)

GRWs 0.142*** (0.0127) 0.143*** (0.0127)
GRWs (squared) 0.0146*** (0.00148) 0.0145*** (0.00147)
Glyphosate price premium 0.122** (0.0506) 0.122** (0.0506)
Fuel price �0.277*** (0.0123) �0.277*** (0.0123)
Soybean price �0.0271 (0.0228) �0.0269 (0.0228)
Past no-till use 0.0210 (0.0138) —

Past conservation tillage use — 0.00816 (0.0138)
Palmer’s Z-Index �0.0361*** (0.00287) �0.0361*** (0.00287)
Soil Erodibility Index 0.0201 (0.0255) 0.0228 (0.0254)
Soybean acres (100–249 acres) 0.0691*** (0.0186) 0.0693*** (0.0186)
Soybean acres (250–499 acres) 0.0541*** (0.0187) 0.0545*** (0.0187)
Soybean acres (500–999 acres) 0.0576*** (0.0190) 0.0580*** (0.0189)
Soybean acres (1000 acres or
more)

0.0613*** (0.0201) 0.0613*** (0.0201)

Year trend 0.0321*** (0.00293) 0.0321*** (0.00293)
Random effects Farm level Farm level
Initial conditions correctiona Yes Yes
Observations 93,345 93,345
Unique farms 22,151 22,151
% Correct (dep. var. = 1) 83.7% 83.7%
% Correct (dep. var. = 0) 82.5% 82.5%
% Correct (all obs.) 83.1% 83.1%

Note: Standard errors, computed via the delta-method and accounting for the variance of the first-stage estimator, in parentheses.
*p < 0.1
**p < 0.05,
***p < 0.01.
aIncludes initial period value and cross-period means for explanatory variables, and initial period value of dependent variable.
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condition is met, and therefore all three condi-
tions for the exclusion restriction are met and
the price differential serves as a valid candi-
date for exclusion in the second-stage, struc-
tural models presented in the following
subsection.

The coefficients on past no-till or conserva-
tion tillage use are statistically insignificant in
both cases, and therefore we fail to reject the
null hypothesis that previous tillage choices
have no influence on current herbicide deci-
sions. Wetter conditions, indicated by a posi-
tive Palmer’s Z-index, are associated with
less frequent non-glyphosate herbicide use,
possibly because of reduced days with condi-
tions suitable for spraying. Soil erodibility has
an insignificant coefficient estimate, whereas
larger and mid-sized farms are more likely to
use non-glyphosate herbicides than those that
grow the least acres of soybeans. Finally, the
year trend is positive and statistically signifi-
cant, suggesting a gradual return to these her-
bicides unexplained by other factors.
Regarding model fit, the non-glyphosate
models show similar in-sample predictive per-
formance as the reduced form tillage models,
correctly identifying the adoption of non-

glyphosate herbicides for approximately four-
fifths of observations.

Structural Tillage Models

In table 4, we present structural tillage model
coefficients from second-stage estimates that
incorporate information on non-glyphosate
herbicide use and residuals from first-stage
models presented in the preceding subsection.
For both conservation tillage and no-till, the
results are broadly similar to the reduced form
estimates in terms of parameter signs and sta-
tistical significance. In particular, the signs
and statistical significance of the GRWparam-
eters remain the same as in the reduced form,
further supporting the implications of our con-
ceptual model.
The statistical significance of the residuals

from the first-stage, non-glyphosate herbicide
use models in the conservation tillage
second-stage model allows us to reject the null
hypothesis that non-glyphosate use is exoge-
nous to these decisions (Wooldridge 2014).
The use of non-glyphosate herbicides is posi-
tively associated with the use of conservation

Table 4. Results from Structural (Second-Stage) Tillage Decision Probit Models

No-till (structural model) Conservation tillage (structural model)

GRWs 0.0163 (0.0143) 0.00337 (0.0140)
GRWs (squared) �0.00715*** (0.00154) �0.00486*** (0.00158)
Non-glyphosate use �0.0396 (0.157) 0.298* (0.153)
Non-glyphosate use (residuals) 0.0247 (0.0646) �0.116* (0.0626)
Fuel price 0.0762*** (0.0145) 0.0719*** (0.0144)
Soybean price �0.0418* (0.0226) 0.00864 (0.0224)
Past no-till/conservation tillage use 0.610*** (0.0133) 0.743*** (0.0130)
Palmer’s Z-Index �0.000739 (0.00313) �0.00297 (0.00304)
Soil Erodibility Index 0.527*** (0.0389) 0.390*** (0.0355)
Soybean acres (100–249 acres) 0.0202 (0.0231) 0.0510** (0.0219)
Soybean acres (250–499 acres) 0.0217 (0.0245) 0.0562** (0.0231)
Soybean acres (500–999 acres) 0.00134 (0.0252) 0.0595** (0.0237)
Soybean acres (1000 acres or more) �0.0690** (0.0273) �0.0130 (0.0255)
Year trend 0.0247*** (0.00295) 0.0160*** (0.00290)
Random effects Farm level Farm level
Initial conditions correctiona Yes Yes
Observations 93,345 93,345
Unique farms 22,151 22,151
% Correct (dep. var. = 1) 72.4% 82.2%
% Correct (dep. var. = 0) 81.1% 75.1%
% Correct (all obs.) 77.3% 80.1%
Marginal R-squared 0.397 0.363
Conditional R-squared 0.630 0.565

Note: Standard errors, computed via the delta-method and accounting for the variance of the first-stage estimator, in parentheses.
*p < 0.1,
**p < 0.05,
***p < 0.01.
aIncludes initial period value and cross-period means for explanatory variables, and initial period value of dependent variable.
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tillage. When farmers use conservation tillage
practices, they give up a broad-spectrum weed
control tool and must supplement lost
weed control through other means. As glypho-
sate is used on nearly all fields in our sample
regardless of tillage system, this means supple-
menting with non-glyphosate herbicides or
reverting intensive tillage. The positive rela-
tionship between non-glyphosate herbicides
and no-till suggests that as farmers turn to
non-glyphosate herbicides to combat GRWs,
they face reduced pressure to supplement
their weed control with intensive tillage.
However, the same cannot be said for no-

till, where neither non-glyphosate use nor the
first-stage residual coefficients are statistically
significant. This result suggests that even as

farmers adopt non-glyphosate herbicides to
adapt to GRWs, doing so does not delay the
switch from no-till to more intensive tillage
practices. Note that because in our definition
of no-till alternatives includes all forms of till-
age, much of this initial switch away from no-
till may be to reduced tillage methods such as
chisel plowing or field cultivation rather than
intensive methods such as disc or rotary
tillage.

Effects of GRWs on Tillage and Herbicide
Decisions

In both the reduced-form and structural
models for both conservation tillage and no-
till, the coefficient on the squared number of
GRWs is negative and statistically significant.
This key result indicates that GRWs have a
negative effect on conservation tillage use,
and the emergence of additional GRWs has
increasing impact. The predicted effects of
GRWs on tillage and non-glyphosate herbi-
cide use are shown in figure 5, both using
reduced-form and, for tillage methods, struc-
tural estimates that separate direct GRW
effects on tillage from indirect GRW effects
through the impact of non-glyphosate herbi-
cide use on the tillage decision.

Both the reduced-form and structural
curves show the increasingly negative impact
of GRWs on the use of conservation tillage
practices, especially no-till, while holding con-
stant at their means all variables other than
GRWs (and non-glyphosate herbicides in
figure 5B). An inverse response is observed
in the first stage, reduced form non-glyphosate
herbicide usemodel, whereGRWs have a pos-
itive association with non-glyphosate use over
the entire observed range of GRW counts, ris-
ing from 42.4% adoption when no GRWs
have been identified to as high as 92.4% adop-
tion when ten GRWs have been identified
(figure 5A). The predicted adoption probabil-
ities across the full observed range of GRWs
are nearly identical in both the reduced-form
(figure 5A) and structural form estimates
when both the direct and indirect effects are
included (figure 5B). We therefore interpret
the curves computed from the structural
model for both no-till and conservation tillage
(figure 5B), noting that the implications from
the robust reduced-form estimates are
identical.

These findings confirm the expectations
from the conceptual model that redundancies
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Figure 5. Mean predicted adoption of no-till
(NT), conservation tillage (CT) and non-
glyphosate herbicides (NG) by the number of
glyphosate resistant weed species from
(A) reduced-form estimates and (B) structural
estimates

Notes: The shaded region indicates a 95% confidence interval, computed via
the delta method. Dashed line in (B) shows direct effect predictions from
structural model, excluding indirect effect from updated herbicide response.
Non-glyphosate herbicide predictions are based on the model using no-till
lags; results using estimates from the conservation tillage lag model are nearly
identical and therefore omitted for clarity.
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in weed control will cause small numbers of
GRWs to have negligible effect as farmers rely
on non-glyphosate herbicides to control the
initial onset of GRWs before turning to
mechanical methods. We find that through
the first two glyphosate resistant weed species,
the predicted rate of no-till use remains statis-
tically indistinguishable from the rate at zero
GRWs (44.4% adoption). However, by the
eighth GRW, the predicted rate of no-till
adoption falls by 7.6 percentage points, a
17.1% reduction among no-till users.

The impact of GRWs on conservation till-
age is similar, though less severe. Through
the first two GRWs, conservation tillage is
adopted at rates not statistically different
from when zero GRWs are identified
(65.4% adoption). But by the eighth reported
GRW, conservation tillage adoption rates fall
by 3.9 percentage points, a 5.9% reduction.
The predicted reduction in conservation till-
age use is 6.7 percentage points if the indirect
effect from increased adoption of non-
glyphosate herbicides under high numbers
of GRWs is not accounted for, demonstrating
the importance of additional chemical weed
control options in delaying the return to
intensive tillage.

In effect, the advent of GRWs is undoing
the stimulus to adopt conservation tillage that
was prompted by the introduction of
glyphosate-tolerant crop varieties. The reduc-
tion in conservation tillage and no-till use at
eight identified GRWs corresponds with
over half that of the increase in use
attributed to the introduction of glyphosate-
resistant soybean seeds (Perry, Moschini, and
Hennessy 2016b).

Tillage Results under Alternative Assumptions

We examine the robustness of our results by
considering a set of models estimated under
alternative assumptions. Our primary focus in
this exercise is the stability of the GRW
parameters and the resulting predicted value
curves. The full results for each of the alterna-
tive specifications discussed in this section are
available in Supplementary Material 3.

Overall, the negative effect of GRWs on
conservation tillage and no-till adoption is
quite robust to alternative specifications.
When we loosen the functional restriction
imposed by the quadratic form by treating
each number of GRW species as an indicator

variable, the same response of initial inaction
followed by a shift toward more intensive till-
age is observed. (Supplementary table S3.2
and Supplementary figure S3.2). Table 5 pre-
sents estimated coefficients for the linear and
quadratic GRW terms for both no-till and
conservation tillage structural models esti-
mated with an additional eight alternative
covariate structures or subsamples of the
panel. In all cases, the first-stage herbicide
choice models were re-estimated with the
same covariate or sample modifications, and
then new residuals were computed for use as
the control function in the second-stage,
structural tillage models.
In the first alternative specification shown

in table 5, we exclude the quadratic GRW
term; the resulting linear coefficient estimate
is negative and statistically significant, cor-
roborating that GRWs have a negative effect
overall on no-till and conservation tillage
adoption. In our second specification, we esti-
mate the model with state-level fixed effects
as a vector of indicator variables to account
for possible time-invariant state-level unob-
served effects that may be correlated with
the GRW variable; the resulting GRW esti-
mates are nearly identical in magnitude, sign,
and statistical significance. Next, we estimate
both the first- and second-stage models using
a linear probability model, ignoring the
binary nature of our dependent variables
and loosening the accompanying structural
assumptions on the error terms. Doing so
results in qualitatively identically
conclusions.
We examine the effects of including poten-

tially endogenous herbicide choices in our
structural model with three more alternative
specifications, presented in the fourth through
sixth rows of table 5. First, we estimate the full
structural model where instead of considering
non-glyphosate use as our herbicide variable,
we consider the use of any glyphosate herbi-
cide, using the same glyphosate price premium
variable as our exclusion restriction. For these
specifications, the quadratic GRW parameter
for the no-till model remains almost the same,
whereas for the conservation tillage model the
parameter shrinks towards zero but remains
negative. We estimate the structural model
without accounting for the potential endo-
geneity of herbicide choices by excluding the
control function residuals, for both non-
glyphosate and glyphosate as our herbicide
choice variable. Highlighting the importance
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of accounting for potential endogeneity of the
herbicide choice, we find in both cases that the
quadratic GRW term shrinks toward zero rel-
ative to when the control function residuals
are included, although the estimates remain
near both the structural and reduced-form
counterparts.

Finally, we test the impact of treating our
unbalanced panel of farmers as balanced with
estimates summarized in the final two rows of
table 5. First, we estimate the full models on
the subsample that includes only farmers who
report in consecutive years, dropping farmers
who have gaps in their participation in the
panel, to account for the impact of including
farmers who come and go. Second, we further
reduce this subsample to include only farmers
who report a single field in all years they par-
ticipate in the sample, to account for potential
issues related to the pooling of lagged depen-
dent variables when multiple fields are
reported in the preceding year. In both cases,
the estimated coefficients and the GRW
curves themselves are remarkably stable,
although the standard errors on the models
estimated on the subsamples are considerably
larger as the sample size is reduced by an order
of magnitude (87% reduction, from 93,345 to
roughly 12,000).

Simulation of GRW Effects on Tillage Use

To demonstrate the impact that GRWs have
had on farmers’ tillage decisions over time
and space, we compute the shares of acres
under conservation tillage predicted by the
preferred structural model, given realized
GRW emergence patterns (denoted Ac for
“actual”) and a counterfactual scenario in
which no weed species evolve to resist glypho-
sate, all else equal (denoted Cf for “counter-
factual”). The counterfactual scenario is
simulated by setting the GRW variable zit ¼ 0
for all observations in a counterfactual dataset,
leaving all other variables the same as
observed.

We first simulate farmers’ field-level tillage
decisions in the counterfactual scenario, giving
us for each field in the sample PCf

jit , the coun-
terfactual predicted probability of conserva-
tion tillage use on field j, operated by farmer
i, in year t. We explicitly update both non-
glyphosate herbicide use and lagged tillage
decisions as predicted probabilities from the
first-stage herbicide use and previous period
tillage models so that the simulation conformsT
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to the structure of our empirical model.9 We
then simulate the same predicted probabilities
of conservation tillage use under realized
GRW emergence patterns (i.e., the original
data), denoted for each field as PAc

jit .
The shares of soybean acres in each year

under conservation tillage in both scenarios
(SAc

t and SCft ) are calculated by summing the
predicted probabilities weighted by the num-
ber of acres each field represents in the popu-
lation of soybean acres in a given year,
denoted Ajit:

ð11Þ Snt ¼
PIt

i¼1

PJit
j¼1P

n
jitAjitPIt

i¼1

PJit
j¼1Ajit

,n∈ Ac,Cff g:

As a display of the spatial variation in the
effect of GRWs on tillage decisions over our
sample period, the decrease in the acre shares
under conservation tillage, SCft �SAc

t , are cal-
culated separately for each state and pre-
sented for selected years in figure 6. On the
majority of soybean acres, GRWs have had

negligible impact on tillage practices, with
decreases in conservation tillage adoption
of less than 5%.However, the impact ofGRWs
on tillage decisions is particularly noticeable
where GRWs are most prevalent:
southern states such as Mississippi, Missouri,
Arkansas, and Tennessee, where glyphosate is
commonly used as the primary weed control
tool on glyphosate-resistant cotton in addition
to soybeans and corn. In Mississippi in 2016
for example, conservation tillage would have
been used on 7.5% more soybean acres if
GRWs had been absent.
Estimates of the number of soybean acres

under conservation tillage in both scenarios
are presented in table 6. Nationally, around
1.35 million fewer soybean acres were
under conservation tillage in 2016 than
would have been if glyphosate resistant
weeds had been absent, representing 1.6%
of all planted acres in that year. Across all
years in our sample, 5.9 million more acres
are predicted to be under conservation till-
age in the scenario with no GRWs, a sum
about equivalent to the total annual planted
soybean acres in Missouri or Indiana in
recent years.

Environmental Damages Resulting from
Farmers’ Tillage Responses to GRWs

Relative to conventional tillage, the use of
conservation tillage systems is known to
reduce soil erosion and carbon emissions,
two types of agricultural pollution that impair
water quality and contribute to global climate
change respectively (Uri, Atwood, and Sanab-
ria 1999). Using simple benefits transfer tech-
niques, we develop rough, conservative
estimates of the social costs of decreased con-
servation tillage on two environmental out-
comes: soil erosion and carbon emissions due
to fuel combustion. Our approach, which
follows the methods presented in Perry,
Moschini, and Hennessy (2016b), draws
values from the literature and applies a simple
benefit transfer model to monetize social costs
(Wilson and Hoehn 2006). Tillage practices
have wide-ranging impacts on the environ-
ment (Uri, Atwood, and Sanabria 1999), and
a full accounting of these impacts is outside
the scope of the present study. Further, both
glyphosate and non-glyphosate herbicides also
have potential human health and environmen-
tal impacts of public concern not accounted for
here. However, this exercise demonstrates

2012 2016

2004 2008

0 1 2 3 4 5 6 7 8

% Decrease in Cons. Till Adoption

Figure 6. Decrease in percentage of soybean
acres under conservation tillage attributed
to GRWs

Note: White fill indicates no farms are sampled in that state in the
presented year.

9That is, P̂r yCTjit�1 ¼ 1
� �

and P̂r yNGH
jit ¼ 1

� �
are used in place of

yCTjit�1 and yNGH
jit to account for dynamic tillage and indirect herbi-

cide effects on current year tillage decisions, respectively.
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that the spread of GRWs is a problem not just
for farmers but for the public through
increases in environmental externalities.
To quantify the soil erosion impact of

decreased use of conservation tillage, we rely
on median erosion rates for soils under con-
ventional and conservation tillage, as reported
in a review of 495 studies (Montgomery 2007).
For conventional tillage, the reported median
erosion rate is 1.54 mm per acre per year. For
conservation tillage, the median erosion rate
is 0.08 mm per acre per year. Assuming a soil
density of 1,200 kg/m3, this implies a 6.8
ton/acre-year reduction in soil erosion in
fields under conservation tillage when com-
pared to a conventional tillage baseline
(Montgomery 2007).

Conventional tillage leads to increases in
carbon emissions over conservation tillage,
both through increased fuel consumption and
by reducing the capacity of the soil to retain
carbon. However, given that the potential car-
bon sequestration ability of soil is highly vari-
able and dependent on the sustained practice
of conservation tillage over time, we choose
to focus only on carbon emissions from fuel
consumption (Uri, Atwood, and Sanab-
ria 1999). Lal (2004) synthesizes the literature
on fuel consumption required for various till-
age operations, reporting the results as mean
kilograms CO2-equivalent emissions
(CE) per hectare. We convert these means to
metric tons CE/acre. The resulting mean
increase in carbon emissions from fuel

Table 7. Estimated Social and Environmental Damages Resulting from Increased Use of
Intensive Tillage in Response to GRWs

Environmental damages Social costs

Soil erosiona

(metric tons)
Carbon emissionsb (metric

tons CE)
Current

valuec (USD)
Present valued

(USD 2016)

2008 350,000 1,000 1,900,000 2,400,000
2009 1,390,000 5,000 7,500,000 9,200,000
2010 1,810,000 6,000 9,900,000 11,900,000
2011 3,540,000 12,000 19,900,000 23,000,000
2012 4,300,000 15,000 24,700,000 27,800,000
2013 5,160,000 18,000 30,100,000 32,900,000
2014 6,950,000 24,000 41,100,000 43,600,000
2015 7,790,000 27,000 46,000,000 47,400,000
2016 9,200,000 32,000 54,700,000 54,700,000
Total 39,270,000 135,000 229,800,000 244,500,000

Note: Prior to 2008, GRWs had yet to reach impactful levels in any state.
aAssuming a 6.8 ton/acre reduction in soil erosion from conservation tillage use (Montgomery 2007).
bAccounts only for reduced fuel consumption; assuming a 0.0234 tons/acre reduction in emissions from conservation tillage use (Lal 2004).
cSoil erosion priced at $4.93/ton in 2009 dollars, adjusted to current year prices with CPI (National Resource Conservation Service 2009); carbon emissions priced
following Social Cost of Carbon of $125 (Carleton and Greenstone 2021).
dComputed with a 3% annual discount rate.

Table 6. Predicted Soybean Acreage under Conservation Tillage

Predicted conservation tillage adoption (acres)

Total acres No GRWs Actual GRWs Difference

2008 74,339,000 51,007,000 50,955,000 �52,000
2009 76,232,000 51,839,000 51,634,000 �205,000
2010 76,477,000 52,170,000 51,904,000 �267,000
2011 73,655,000 50,763,000 50,242,000 �520,000
2012 76,010,000 52,524,000 51,891,000 �632,000
2013 76,113,000 51,502,000 50,744,000 �759,000
2014 82,425,000 57,100,000 56,079,000 �1,022,000
2015 81,574,000 54,585,000 53,439,000 �1,146,000
2016 82,543,000 55,113,000 53,760,000 �1,353,000

Note: Total acreage based on reports from the National Agricultural Statistics Service (2018).
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consumption when switching from conserva-
tion to conventional tillage is 0.0234 metric
tons CE/acre.

To monetize the effects of these environ-
mental impacts, we use prices previously used
by federal policymakers for benefit–cost anal-
ysis. The National Resource Conservation
Service estimates the costs of increased soil
erosion at $4.93 per ton in water quality dam-
age (US Department of Agriculture, National
Resource Conservation Service 2009). For
carbon emissions from fuel, we rely on the
global Social Cost of Carbon (SSC), using an
updated version of the cost reported by the
United States Government (Carleton and
Greenstone 2021). This most recent work, a
variation of which is widely expected to be
used in federal policymaking in coming years,
estimates the social costs of a metric ton of
CO2 released into the atmosphere at $125.
The environmental damage and social cost
coefficients are applied to the difference in
conservation tillage acres between scenarios,
providing an estimate for the value of damages
to water quality and the climate. Annual envi-
ronmental damages and associated social costs
are presented in table 7. Social damages are
presented as lost value in current year price
levels and as present values measured in 2016
dollars.

We estimate that the cumulative net pre-
sent value of water quality and climate dam-
age from farmer’s tillage operation fuel
consumption responses to GRWs in
U.S. soybean fields during 2008–2016 is
approximately $244.5 million. This social cost
has been growing annually, exceeding $54
million in 2016, the last year of our panel.
Water quality damage will be greatest in
regions where GRWs are most prevalent,
such as the southern region of the Mississippi
Basin, whereas the climate damage will be
realized globally. Note that these social cost
estimates omit the lost value of any long-term
yield gains from no-till (Deines, Wang, and
Lobell 2019; Cusser et al. 2020), as well as
the lost value of carbon sequestration in
untilled soil and any change in human health
and environmental costs from increased use
of non-glyphosate herbicides. If weed species
continue to evolve to resist glyphosate across
the country, and farmers continue increasing
tillage to achieve similar levels of weed con-
trol, we expect the rate at which the damages
modeled here and other possible damage
occur to grow further.

Conclusion

Herbicide resistant weeds in general, and
glyphosate resistant weeds in particular, have
become a widespread problem for farmers
across the United States. This paper provides
new and robust evidence that farmers respond
to the decreasing effectiveness of glyphosate
not only by increasing use of non-glyphosate
herbicides (Perry et al. 2016a) but also by
increasing tillage intensity. We do so
by observing the field-level weed control deci-
sions of thousands of soybean farmers across
the country during the period that GRWs first
emerged and subsequently spread. We find
evidence that in the aggregate, as GRW num-
bers grow, farmers are turning to more inten-
sive tillage at an increasing rate. Predictions
from our statistical model indicate that addi-
tional GRWs have resulted in the reduced
adoption of no-till and conservation tillage on
tens of thousands of acres of soybean since
2008. We use these predictions to provide a
conservative calculation that the cumulative
social value of environmental damages that
GRWs have caused through increased tillage
in soybean fields at nearly $245 million in
2016 dollars.
Our approach represents a novel direction in

the herbicide resistance literature in two ways.
First, we focus on how farmers have changed
their management behavior in response to her-
bicide resistance and highlight the ways that
these responses represent a potential threat to
environmental quality. Other economic studies
focus on how resistance has affected costs,
returns, or yields (Livingston et al. 2015; Lam-
bert et al. 2017; Wechsler, McFadden, and
Smith 2017). Although these studies discuss or
account for practice adaptation, it is not the
focus of their analysis. Second, we quantify
the environmental damages from farmers’
responses to herbicide resistance, which would
not be possible without our focus on practices.
In doing so, we provide evidence of an evolving
technological landscape for farmers, where the
efficacy of a ubiquitous weed control tool is
waning, and additional tools are needed for
supplemental control. The environmental costs
linked to use of these additional tools, which
are partially accounted for here, imply that
weed susceptibility to herbicides is a resource
that provides value not only to farmers but to
the public as well.
Although this paper focuses on tillage prac-

tices, it also finds that farmers have markedly
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increased and diversified herbicide use in
response to the proliferation of glyphosate-
resistant weeds. Future research should
explore how the spread of GRWs affect that
non-glyphosate herbicides farmers choose
beyond the binary adoption decision between
exclusive and non-exclusive glyphosate use
modelled here and what those choices imply
for environmental quality.
Resistance in weeds to non-glyphosate her-

bicides, in addition to glyphosate, may be
among the other factors contributing to shift-
ing herbicide choices across all crops. Parallel
rising herbicide use trends in rice and wheat,
for which glyphosate-tolerant seeds do not
exist, suggest the spread of other herbicide
resistant weeds may drive changes in weed
control practices in other crops (Kniss 2017).
Our empirical results find that spreading
GRWs are indeed a significant driver in both
tillage decisions and herbicide choices, at least
in soybeans, when accounting for other
observed and unobserved factors. The spread
of GRWs, and weeds resistant to other active
ingredients, likely affect weed control choices
in other crops besides soybeans as well.
Future studies on the effects of GRWs and

herbicide resistant weeds more generally
would benefit from the availability of data on
the presence of these biotypes at a finer grain
scale than the state-level variables we use. As
farmers turn to additional herbicides to com-
bat GRWs, efforts should be made to track
the emergence of resistance in conjunction
with farmer’s practice and product choices
across major crops. Gathering information on
these two sets of variables jointly would allow
examinations of more nuanced responses to
herbicide resistance, including own- and
cross-resistance elasticities across herbicide
modes of action (i.e. the effect of resistance
to one herbicide on the use of another
herbicide).
Meanwhile, agrochemical companies have

responded to GRWs by developing new crop
seed genetics resistant to other herbicides
(Mortensen et al. 2012; Green 2014;
Bonny 2016). Farmers remain optimistic that
agrochemical companies will develop new
solutions that will maintain the simplicity of
glyphosate-based weed management
(Dentzman and Jussaume 2017), and indeed
a revival of interest in pesticide research has
led to recent mode-of-action discoveries
(Kahlau et al. 2020). However, university
weed scientists have questioned whether this

path forward is sustainable, as weeds will con-
tinue to evolve resistance to still-effective bio-
chemical modes of action (Duke 2011;
Mortensen et al. 2012). Davis and
Frisvold (2017) suggest that the current domi-
nant weed control regime, based on specific
herbicides paired with herbicide-tolerant
crops, may come to an end within the foresee-
able future if action is not taken.

Numerous possible solutions have been pro-
posed to alleviate the threat posed by GRWs
and weed resistance to other herbicides.
Mortensen et al. (2012) call for increased pub-
lic investment in research and promotion of
integrated weed management systems, which
rely on a more diverse suite of weed manage-
ment practices in order to delay the onset of
resistance of any specific method. A recent
simulation study suggests that this approach
can be profit maximizing for farmers with lon-
ger time horizons (Frisvold, Bagavathiannan,
and Norsworthy 2017). Davis and Fris-
vold (2017) suggest adapting current federal
subsidies of crop insurance and other conser-
vation programs such as the Environmental
Quality Incentive Program to create incen-
tives for the adoption of integrated weed man-
agement and other resistance management
strategies. Ervin and Frisvold (2016), noting
the common pool resource nature of herbicide
resistance, envision community-based
approaches for encouraging resistance man-
agement, modelled after drainage districts
and insect eradication programs. Further
research into policies to delay the onset of
resistance is needed. Such studies should con-
sider not only the private benefits to farmers
from the delayed onset of resistance but also
the societal value of delaying environmental
damage to the wider public.

Finally, our findings demonstrate a close link
between tillage practices and farmers weed
control needs. Researchers frequently suggest
policymakers consider models and policies
related to tillage practices and soil carbon
sequestration that account for the costs farmers
incur when changing practices (Murray 2015;
Stevens 2018). The increasing prevalence of
herbicide resistant weeds will increase costs
for programs seeking to encourage voluntary
adoption of conservation tillage and no-till
practices, as decreasing effectiveness of herbi-
cides represents an increase in the relative
weed control value of tillage. Therefore, both
researchers and policymakers are encouraged
to consider farmers’ present and future weed
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control needs when considering models and
programs related to tillage practices.

Supplementary Material

Supplementary material are available atAmer-
ican Journal of Agricultural Economics online.
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