
1814  |   	﻿�  GCB Bioenergy. 2021;13:1814–1830.wileyonlinelibrary.com/journal/gcbb

Received: 7 July 2021  |  Accepted: 21 August 2021

DOI: 10.1111/gcbb.12893  

O R I G I N A L  R E S E A R C H

Temporal dynamics of free-living nitrogen fixation in the 
switchgrass rhizosphere

Darian N. Smercina1,2   |   Sarah E. Evans3   |   Maren L. Friesen4,5   |    
Lisa K. Tiemann2

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2021 The Authors. GCB Bioenergy published by John Wiley & Sons Ltd.

1Biological Sciences Division, Earth 
and Biological Sciences Directorate, 
Pacific Northwest National Laboratory, 
Richland, Washington, USA
2Department of Plant, Soil and 
Microbial Sciences, Michigan State 
University, East Lansing, Michigan, 
USA
3W.K. Kellogg Biological Station, 
Department of Integrative Biology, 
Michigan State University, Hickory 
Corners, Michigan, USA
4Department of Plant Pathology, 
Washington State University, Pullman, 
Washington, USA
5Department of Crop and Soil Sciences, 
Washington State University, Pullman, 
Washington, USA

Correspondence
Lisa K. Tiemann, 1066 Bogue St. A286 
East Lansing, MI 48824, USA.
Email: ltiemann@msu.edu

Funding information
U.S. Department of Energy, Grant/
Award Number: DE-FC02-07ER64494, 
DE-SC0014108 and DE-SC0018409; 
National Science Foundation Long-
term Ecological Research Program, 
Grant/Award Number: DEB 
1832042; Michigan State University 
AgBioResearch

Abstract
Free-living nitrogen fixation (FLNF) represents an important terrestrial N 
source and is gaining interest for its potential to contribute plant available N 
to bioenergy cropping systems. Switchgrass, a cellulosic bioenergy crop, may 
be particularly reliant on FLNF when grown on low N systems, like marginal 
lands. However, the potential contributions of FLNF to switchgrass as well as 
the controls on this process are not well understood. In this study, we evalu-
ated drivers of FLNF rates and N-fixing microbial (diazotrophic) community 
composition in field-grown switchgrass systems over two growing seasons 
with high temporal sampling. We found that climate variables are strong driv-
ers of FLNF rates in switchgrass systems, compared to other environmental 
and biological factors including soil nutrients and diazotrophic community 
composition. Increased soil moisture availability generally promoted FLNF 
rates, but extreme rainfall events were detrimental. These climate-related re-
sponses suggest a potential for loss of FLNF-derived N contributions under 
projected climate shifts. We found a significant, but weak correlation between 
diazotrophic community composition and FLNF rates. We also observed a sig-
nificant shift in the diazotrophic community composition between 2017 and 
2018 and similarly measured a significant difference in FLNF rates between 
growing seasons. Lastly, we found that seasonal FLNF N contributions, based 
on measurement with high temporal resolution, has the potential to meet up to 
80% of switchgrass N demands suggesting that FLNF measurements extrapo-
lated from fewer time points or locations may underestimate these potential N 
contributions.
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1   |   INTRODUCTION

Perennial grasses are a key facet of sustainable biofuel 
production, envisioned to provide net-zero carbon energy 
with potential for climate mitigation via belowground 
carbon sequestration (Robertson et al., 2017). Switchgrass 
(Panicum virgatum), a North American native C4 peren-
nial grass, is a promising bioenergy crop with high bio-
mass yields even when grown on marginal lands with 
minimal inputs of fertilizer nitrogen (N; Gelfand et al., 
2013; Mehmood et al., 2017; Robertson et al., 2017) po-
tentially due to N contributions from free-living nitrogen 
fixation (FLNF).

Free-living nitrogen fixation, here defined as N fixa-
tion occurring in soils and the rhizosphere (in and around 
roots) without direct plant symbiosis, is increasingly rec-
ognized for its importance as an N input to both natural 
and managed systems (Bloch et al., 2020; Davies-Barnard 
& Friedlingstein, 2020; Reed et al., 2011). Recent evidence 
suggests that FLNF may be a significant N source for 
cellulosic bioenergy cropping systems, like miscanthus 
(Miscanthus × giganteus; Davis et al., 2010) and switch-
grass (Panicum virgatum; Roley et al., 2018; Smercina 
et al., 2019b) providing an alternative to fertilizer N ad-
ditions and potentially increasingly the sustainability of 
such cropping systems. The apparent reliance of switch-
grass on FLNF to support plant N demands has garnered 
much interest in recent years; however, little is still known 
about the controls on FLNF and the conditions which pro-
mote FLNF in switchgrass systems.

Free-living nitrogen fixation is an energy-intensive 
process, transforming dinitrogen (N2) gas into biologically 
available ammonia, that occurs readily in the rhizospheres 
of many grasses where roots exude easily accessible car-
bon (C; Chalk, 2016; Roley et al., 2018; Smercina et al., 
2019b). FLNF in the rhizosphere is carried out by a diverse 
community of N-fixing organisms (diazotrophs) under 
complex and dynamic conditions (Smercina et al., 2019b). 
These complex conditions make understanding and pre-
dicting FLNF difficult, and, to date, this process has re-
mained poorly understood.

Past work has identified several broad controls on 
FLNF including carbon (C) availability, macro- and micro-
nutrient availability (e.g., N, phosphorus, and metals), and 
climate (Roley et al., 2018; Smercina et al., 2019b). Given 
the high-energy and therefore high C demands of FLNF, it 
is generally accepted that FLNF is constrained to regions 
of the soil where C is readily accessible, such as the rhi-
zosphere (Cleveland et al., 1999; Smercina et al., 2019b). 
Because of these high-energy demands, FLNF is not likely 
to be a competitive N-acquisition strategy when external 
N is available and thus is downregulated as diazotrophs 
access external N in favor of fixed N (Norman & Friesen, 

2017; Reed et al., 2011). Phosphorus and metal availability 
also influences FLNF with increased availability of these 
nutrients generally supporting more FLNF, yet these con-
trols are not well studied in the rhizosphere (Smercina 
et al., 2019b). Lastly, only weak connections have been es-
tablished between climate variables and FLNF, with lim-
ited evidence of any strong interactions between climate 
variables and FLNF rates to date (Cleveland et al., 1999; 
Davies-Barnard & Friedlingstein, 2020; Reed et al., 2011). 
While these past studies may speak to ecosystem-scale 
patterns, little mechanistic work at fine spatial and tem-
poral scales has been carried out to untangle the controls 
on FLNF, particularly in the rhizosphere.

In this study, we used biogeochemical, plant, climate, 
and molecular data, collected with high temporal fre-
quency over 2 years to explore biological and environmen-
tal controls on FLNF. We examined the impact of various 
soil characteristics, climate conditions, plant metrics, and 
diazotroph community structure on FLNF process rates. 
We hypothesized that over the growing season, climate 
variables and plant metrics would be major drivers of 
FLNF. Specifically, increased soil moisture and increased 
plant productivity would result in increased FLNF rates. 
We also hypothesized that soil N availability and di-
azotroph community composition would be major drivers 
of FLNF whereby increased soil N availability would re-
duce FLNF rates and there would be diazotroph commu-
nity members directly associated with greater FLNF.

2   |   METHODS

2.1  |  Field site and weather data

Samples were collected from Great Lakes Bioenergy 
Research Center (GLBRC; https://www.glbrc.org/) 
Marginal Land Experiment (MLE) at Lux Arbor (LUX; 
42.476365, −85.451887) in southern Michigan. Soils at the 
LUX site are classified as Typic Hapludalfs (Alfisol) with 
a Loam texture (Kasmerchak & Schaetzl, 2018). Soils have 
a pH of 5.8, 0.77% total C, 0.06% total N, and 12 ppm in-
organic phosphorus (Kasmerchak & Schaetzl, 2018). The 
site contains four multitreatment experimental blocks 
that include plots of monoculture switchgrass (Panicum 
virgatum L.; cv. Cave-in-Rock), which are split into annu-
ally fertilized (+56 kg urea-N ha−1 year−1) and unfertilized 
(no added N) halves. Experimental plots were established 
in 2013 with switchgrass planted from seed. Continuous 
weather data are collected via a site-based weather station 
as part of the GLBRC MLE. Average annual precipitation 
at the site is 842 mm and average annual temperature is 
9.0°C based on 30-year averages (Kasmerchak & Schaetzl, 
2018).

https://www.glbrc.org/
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2.2  |  Field sampling

Soil and plant samples were collected every 2  weeks 
over two growing seasons (2017 and 2018) from pre-
emergence to post-harvest. Samples were collected from 
March 27 to November 13 in 2017 and from March 19 
to November 15 in 2018. Fertilizer N as urea (SUPERU, 
Koch Industries, Inc.) was applied on May 8 in 2017 
and 2018. At each sampling date, three pseudorepli-
cate soil cores (5  cm wide, 10  cm deep) were collected 
from each split-plot in all four experimental blocks for 
a total of 24 soils per sampling date. Sampling locations 
within each spilt-plot were randomly selected and analy-
ses performed on the separate pseudoreplicate samples. 
Soils were placed in a cooler, returned to the lab, and 
processed within 3 days of collection by passing through 
a 4-mm mesh sieve. During processing and until analy-
ses were done, soils were stored at 4°C. A subset of each 
sieved soil was frozen at −80°C for extracellular enzyme 
activities and microbial community analyses (described 
below). Soil moisture content was determined by drying 
5 g of processed, field moist soil at 60°C for 48 h.

On each sampling date, we also identified three switch-
grass plants that corresponded to the pseudoreplicate lo-
cations for soil sampling. At each sampling, we measured 
plant height, metrics including rates of photosynthesis 
and C assimilation, leaf and root C:N ratios, specific stem 
density, and specific and top leaf area. Plant height was 
measured in the field to the nearest millimeter using a 
standard meterstick as the distance from the ground to 
the tallest point on the plant. Photosynthesis parame-
ters including Phi2 (e.g., quantum yield of photosystem 
II) and relative chlorophyll were measured in field using 
a MultiSpeQ (Photosnyq, Inc.) at three locations on the 
plant (low, mid, and upper canopy). Reported values for 
photosynthesis parameters are averages across canopy 
samplings for each plant.

Leaf and root C and N were measured on an ECS 
4010 elemental analyzer (Costech Analytical). Washed 
roots collected during soil sieving and plant leaves 
were first dried and ground before elemental analysis. 
Specific stem density was measured on the tallest stem 
for each sampled plant. The tallest stem was first clipped 
from each measured plant. A 10-cm subset of stem, with 
leaves removed, was then weighed, dried at 50°C for 
4–7  days, and then weighed again. Specific stem den-
sity is calculated as g dry stem g−1 wet stem. Specific 
leaf area was determined by scanning leaves from the 
clipped stem at 2400 and 1200 dpi using a flatbed scan-
ner. Leaf area was calculated using ImageJ software. 
Specific leaf area was determined by dividing leaf area 
(cm2) by leaf dry mass (g).

2.3  |  Free-living nitrogen fixation

Free-living nitrogen fixation rates were measured on in-
tact soil cores collected from each pseudoreplicate loca-
tion per split-plot as described by Smercina et al. (2019a). 
Briefly, we added a C cocktail solution containing equal 
parts glucose, sucrose, citrate, and malate at a rate of 
4 mg C g−1 dry soil. Volume and concentration of the C 
solution added varied by sample date such that all samples 
were adjusted to 60% water holding capacity while achiev-
ing the target 4 mg C g−1 dry soil addition rate. After C 
addition, vials were sealed and evacuated. Vial headspace 
was replaced with 1 ml of 15N2 (Sigma-Aldrich, Inc.), 10% 
Ultra High Purity (UHP) oxygen, and balanced with UHP 
Helium. Reference samples received UHP-N2 in place of 
15N2. Vials were incubated for 3 days at room temperature. 
Vials were then uncapped and samples were dried at 60°C 
for 48  h before grinding and weighing for 15N analysis. 
Tinned samples were analyzed following standard pro-
cedures at Washington State University's Stable Isotope 
Core Laboratory. FLNF rates were calculated in µg N fixed 
g−1 dry soil day−1 as:

where AEi represents atom percent access of sample against 
an unenriched reference sample, TNi represents total nitro-
gen content in sample, AEatm represents atom percent ex-
cess in the vial atmosphere (98 atom% in our case), and t 
is incubation time in days (Roley et al., 2018; Warembourg, 
1993).

2.4  |  Inorganic N, dissolved organic 
C and N, and N mineralization

We measured soil inorganic N pools, dissolved organic C 
and N pools, and net rates of N mineralization. First, we 
generated soil extracts by shaking 6 g of field moist soil in 
30 ml of 0.5 M potassium sulfate (K2SO4) at 200 rpm for 
1  h. Extracts were filtered through Whatman grade 202 
filter paper to remove soil. The resulting filtrate was used 
to measure soil inorganic N (NH4 and NO3), dissolved or-
ganic C (DOC), and dissolved total N (TN). Soil NH4 and 
NO3 concentrations were determined via 96-well high-
throughput colorimetric analyses following methods de-
scribed by Rhine et al. (1998) and Campbell et al. (2006), 
respectively. Soil extracts were analyzed on a Vario TOC 
cube (Elementar) to determine DOC and TN concentra-
tion. Concentrations of inorganic N, DOC, and TN were 
corrected for extract volume and soil moisture content. 

AEi × TNi

AEatm × t
,
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DON was determined by subtracting inorganic N from 
TN.

Nitrogen mineralization rates (NH4 and NO3) were 
measured via field deployed ion exchange membranes 
following standard protocols of the Kellogg Biological 
Station Long-term Ecological Research station (KBS-
LTER; lter.kbs.msu.edu). The exchange capacity and 
ion affinity of these membrane mimics that of plant 
roots, allowing an approximation of total plant avail-
able inorganic N over the period of deployment, as well 
as calculation of net rates of mineralization. Briefly, 
10  cm  ×  2.5  cm strips of cation and anion exchange 
membranes (Membrane International, Inc.) were cut 
and activated with washes of 0.5  M hydrochloric acid 
and 0.5 M sodium bicarbonate. Membrane strips were 
rinsed and stored with DI water until field deployment. 
Cation and anion membranes’ strip pairs were deployed 
at each split-plot pseudoreplicate location and collected 
at 2-week intervals during the 2017 and 2018  growing 
seasons. Harvested membranes were collected, rinsed 
of any adhering soil in field with DI water, and then 
stored in DI water until extraction. Ammonium and ni-
trate collected on membranes were extracted by shaking 
cation and anion membranes’ pairs in 1  M potassium 
chloride for 24  h. Ammonium and nitrate concentra-
tions were then analyzed using high-throughput colori-
metric methods as above (Campbell et al., 2006; Rhine 
et al., 1998).

2.5  |  Soil extracellular enzyme activities

Activities of 10 extracellular enzymes including ala-
nine aminopeptidase (ALA), arginine aminopeptidase 
(ARG), β-1,4-glucosidase (BG), β-D-1,4-cellobiosidase 
(CBH), glutamine aminopeptidase (GLU), N-acetyl-β-D-
glucosaminidase (NAG), leucine aminopeptidase (LAP), 
acid phosphatase (PHOS), tyrosine aminopeptidase 
(TYR), and urease (UREA) were measured via high-
throughput microplate assays (Saiya-Cork et al., 2002; 
Weintraub et al., 2007). Assays were carried out under 
optimal conditions with excess substrate to ensure activ-
ities were not limited by substrate availability; therefore, 
activity rates are a measure of enzyme potential and 
not absolute activity. Soil slurries for each sample were 
made by homogenizing 1 g of soil in 125 ml of distilled 
water with a hand blender (Cuisinart®) for 30 s. Slurries 
were found to match soil sample pH and did not require 
buffer. Slurries were stirred constantly while 200 µl was 
pipetted into 24 replicate wells of a 96-well microplate. 
For the fluorescent assays (ALA, ARG, BG, CBH, GLU, 
NAG, LAP, PHOS, TYR), 16 replicate wells of each sam-
ple received 50  µl of fluorogenic substrate associated 

with the target enzyme. The remaining eight replicate 
wells were used to determine quench coefficients by 
adding 50  µl of fluorogenic standard corresponding to 
the fluorescent molecule attached to the substrate, ei-
ther 4-methylumbelliferone (MUB) for BG, CBH, NAG, 
and PHOS or 7-amino-4-methylcoumarin (MC) for 
ALA, ARG, GLU, LAP, and TYR. For colorimetric as-
says (UREA), 16 replicate wells of each samples received 
10 µl of urea. The remaining eight replicates were used 
to assess background absorbance and received 10 µl of 
DI water. Both fluorescent and colorimetric assays in-
cluded eight replicates each of blanks (200 µl slurry plus 
50 µl DI water) and negative controls (200 µl substrate 
plus 50 µl DI water). All plates were incubated for 18–
24 h and then read on a Syngery H1 plate reader (BioTek 
Instruments, Inc.). Fluorometric assays were read at ex-
citation of 370  nm and emission of 455  nm for MUB-
labeled substrates and excitation of 350 nm and emission 
of 430 nm for MC-labeled substrates. Urea plates were 
analyzed for ammonium production via the Berthelot 
method (Rhine et al., 1998) and read at absorbance of 
610  nm. 100  µl from all wells of the urea plates was 
transferred to fresh 96-well clear plates before reading 
to reduce interference of soil particles. Enzyme activities 
were corrected for slurry volume and soil moisture con-
tent and reported as nmol activity g−1 dry soil h−1.

2.6  |  Soil diazotroph community 
composition

Soil DNA was extracted from 0.25  g soil via recom-
mended procedures of the Qiagen DNeasy PowerSoil kit 
(QIAGEN). Soil diazotroph communities were character-
ized by sequencing the nifH functional gene that was am-
plified using the IGK3 (5′-GCIWTHTAYGGIAARGGIGG
IATHGGIAA-3′) forward primer and DVV (5′-ATIGCRA
AICCICCRCAIACIACRTC-3′) reverse primer. The IGK3/
DVV primer pair has been identified as an optimal primer 
set for capturing the widest diversity of diazotrophs (Gaby 
& Buckley, 2012).

PCR reactions to amplify nifH were carried out in 
two stages to first amplify nifH genes (Stage 1) and then 
to attach linker sequences (Stage 2). Reaction mixtures 
and PCR programs were as follows. Stage 1 was a 15-µl 
reaction with 0.9  µl of DNA extract, 1X AmpliTaq Gold 
360 Master Mix (Applied Biosciences), and 1 µM concen-
trations of both the forward and reverse primers. Stage 1 
PCR reactions were carried out as follows: 95°C start for 
10 min, 34 cycles of denaturation at 95°C for 30 s, anneal-
ing at 54°C for 45 s, and extension at 72°C for 40 s, final 
extension at 72°C for 7 min. Amplification of target gene 
was confirmed via gel electrophoresis (1.5% gel agar, 90 V, 

http://lter.kbs.msu.edu


1818  |      SMERCINA et al.

45  min) before proceeding to Stage 2 reactions. Stage 2 
was a 20-µl reaction with 1.2 µl of Stage 1 PCR product, 
1X AmpliTaq Gold 360 Master Mix (Applied Biosciences), 
and 1 µM concentrations of both the forward and reverse 
primers. An IGK3/DVV primer pair with linker sequences 
was used for Stage 2 reactions. Stage 2 was carried out as 
follows: 95°C start for 10 min, four cycles of denaturation 
at 95°C for 30  s, annealing at 56°C for 45  s, and exten-
sion at 72°C for 40  s, final extension at 72°C for 7  min. 
Successful amplification and the absence of non-target 
products after Stage 2 were confirmed via gel electropho-
resis (1.5% gel agar, 90 V, 45 min).

Stage 2 PCR products were submitted for sequenc-
ing after first quantifying product concentrations via 
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher 
Scientific). Products were normalized to 180–200 ng µl−1 
DNA before library prep. Samples were submitted to the 
Michigan State University RTSF Genomics Core Facility 
for library prep and sequencing on the Illumina MiSeq 
platform (Illumina) with MiSeq standard reagent kit v.2 
and 2 × 250 bp paired-end reads.

Sequence processing was performed following a mod-
ified version of the NifMAP pipeline (Angel et al., 2018). 
Forward and reverse reads were merged via USEARCH 
v. 10.0.240 fastq_mergepairs resulting in 12,384,888 se-
quences. Sequences were quality and length filtered to 
maximum expected errors of 1 and minimum length 
of 380 bp via USEARCH v. 10.0.240 fastq_filter, filtered 
for non-nifH reads using four Hidden-Markov Models 
(HMM), and then frameshift corrected and translated to 
protein sequences using Framebot (Wang et al., 2013). 
Frameshift-corrected sequences were then filtered again 
for homologs using HMM as described in Angel et al. 
(2018). Filtered sequences (6,120,550) were then derep-
licated using USEARCH v. 10.0.240 fastx_uniques and 
clustered using USEARCH v. 10.0.240  cluster_otus 
which also filters chimeras. In total, 6534 reference 
OTUs were identified. Sequences were then mapped 
back to reference OTUs using USEARCH v. 10.0.240 
usearch_global at 97% similarity. 95.7% of filtered and 
dereplicated sequences successfully mapped to reference 
OTUs. Taxonomy was assigned to reference OTUs using 
Blast+v. 2.7.1 blastn command, queried against the Gaby 
and Buckley (2014) nifH sequence database. Taxonomy 
was assigned according to percent similarity using em-
pirically derived cutoffs of 75% similarity for family, 
88.1% for genus, and 91.9% for species (Gaby et al., 2018). 
All other taxonomic assignments matching at <75% sim-
ilarity were only assigned at the order level. Finally, a 
phylogenetic tree was constructed by first aligning se-
quences to an amino acid reference alignment (Angel 
et al., 2018) using MAFFT v. 7.305 and then generating a 
tree via FastTree v. 2.1.9.

2.7  |  Statistical analysis

Prior to statistical analysis, pseudoreplicate data from 
within each split-plot, in each block were averaged, so 
that the 24 total individual soil samples became eight 
samples (four replicates per fertilizer treatment). A total 
of 240 samples were collected over the two growing sea-
sons (120 samples per growing season). FLNF rates were 
analyzed using a repeated measures ANOVA with Tukey's 
adjustment for multiple comparisons using the lmerTest R 
package with year, sampling date, fertilizer N treatment, 
and their interactions as fixed effects and fertilizer N treat-
ment nested within field replicate as a random effect were 
considered significant at p ≤ 0.05.

nifH OTU counts were first rarefied to an even sam-
pling depth of 500 using rarefy_even_depth in the R phy-
loseq package. This was chosen based on the rarefaction 
curves which indicated that a reasonable amount of diver-
sity was captured within this sample size, while limiting 
loss of samples due to low OTU counts. However, 30 sam-
ples were still removed from downstream analysis due 
to too few OTU counts. Interestingly, these tended to be 
from early season sampling dates (March–May) surround-
ing fertilizer addition. For example, in 2017, all four fertil-
ized replicates sampled on May 15, the first sampling data 
following fertilizer application, were removed because of 
low OTU counts.

We used Bray–Curtis dissimilarity to generate distance 
matrices for evaluating beta diversity using the distance 
function in R phyloseq and then ordinated via principal 
coordinate analysis (PCoA) using the ordinate function in 
R phyloseq. We used adonis in the R vegan package to con-
duct PERMANOVA of the Bray–Curtis distance matrices 
by year and month of sample collection, fertilizer treat-
ment, and field replicate with field replicate as a repeated 
measure. Differences between years, months, fertilizer 
treatment, and field replicates were considered significant 
at p ≤  0.05. We examined differences in alpha diversity 
metrics and relative abundance of diazotroph community 
classes by year using repeated measures ANOVAs followed 
by Tukey's post hoc test with year, fertilizer, and their in-
teraction as fixed effects and fertilizer nested within field 
replicate as a random effect. Additionally, we examined 
differences in alpha diversity metrics and relative abun-
dance of diazotroph community classes by sampling date 
using a repeated measures ANOVAs followed by Tukey's 
post hoc test with sampling date, fertilizer, and their in-
teraction as fixed effects and fertilizer nested within field 
replicate as a random effect. Differences in relative abun-
dance of diazotroph community classes by sampling date 
were examined within each year, respectively. For all re-
peated measures ANOVAs, results were considered signif-
icant at p ≤ .05.
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Lastly, we explored diazotroph community data for 
OTUs whose abundance is potentially associated with 
high FLNF rates using the indicspecies package in R. This 
function identifies indicator species based on both abun-
dance (specificity) and presence/absence (fidelity) in a 
category (Dufrêne & Legendre, 1997). Specificity, fidelity, 
and indicator values calculated as specificity*fidelity*100 
are reported (Dufrêne & Legendre, 1997). FLNF rates 
were first binned into three categories: <0.5, 0.5–1, and 
>1 µg N fixed g−1 dry soil day−1. We then looked for OTUs 
associated with samples in the >1 FLNF rate bin of which 
only three samples were placed.

Environmental and biological controls on FLNF were 
evaluated using a random forest regression algorithm via the 
randomForest package in R using the following parameters: 
ntree = 5000, mtry = 11 (default), NA values replaced with 
the median (numeric predictors) or the mode (categorical 
predictors). Regressions were performed using all available 
data for each sampling date. Two regression analyses were 
carried out. Regression #1 was carried out using the full 
available dataset including all environmental and biological 
data as well as temporal and site-specific categorical metrics 
(e.g., sampling date, field replicate, and fertilizer treatment). 
Regression #2 examined the full dataset without inclusion 
of temporal and site data. Regression #1 was intended to 
identify spatial and temporal controls on FLNF in our study 
system, while regression #2 was intended to explore gener-
alizable environmental controls on FLNF.

3   |   RESULTS

3.1  |  Free-living nitrogen fixation rates

FLNF rates were significantly greater in 2018 than in 2017 
(F = 159.6, p < .001). Fertilizer treatment was overall not 

a significant predictor of FLNF (F = 2.15, p = 0.14; Figure 
1a). Sampling date was a significant predictor of FLNF 
rates (F = 33.35; p < 0.001; Figure 1b) and there was a sig-
nificant interaction between sampling date and fertilizer 
treatment (F = 1.91, p = 0.007) where on a few sampling 
dates early in the 2017 season, a significant fertilizer treat-
ment was observed. In particular, FLNF rates were much 
more variable across the growing season during 2017, but 
surprisingly consistent during the 2018 growing season.

3.2  |  Diazotroph community 
composition

Alpha diversity of diazotroph communities measured as 
Chao1 and Inverse Simpson differed significantly by year, 
but fertilizer treatment was not significant overall (Table 
S1). Shannon diversity was not significantly different by 
year or fertilizer treatment (Table S1). All three indices 
indicated that alpha diversity of samples was generally 
greater in 2018 than in 2017 as was observed for FLNF 
rates. We also found that alpha diversity, for all three indi-
ces, differed significantly by sampling date, but found no 
significant interaction with fertilizer treatment (Table S2).

We assessed beta diversity of soil diazotroph com-
munities via ordination of Bray–Cutis dissimilarity and 
PERMANOVA (Table S3). Diazotroph communities dif-
fered significantly by field replicate, reflecting spatial 
distribution of replicates plots in the field (Figure 2a). 
Therefore, field replicate was included as a random ef-
fect in PERMANOVA analysis of diazotroph community 
beta diversity. Although diazotroph community compo-
sition was found to differ significantly by both sampling 
date and fertilizer, these effects only explained a small 
amount of the spatial distribution observed in the princi-
pal coordinates analysis (PCoA; 0.95% and 1.5% variance 

F I G U R E  1   Free-living nitrogen fixation (FLNF) rates reported in µg N g−1 dry soil day−1 during the 2017 and 2018 growing seasons at 
the Lux Arbor field site. Samples were collected every 2 weeks from pre-emergence to post-harvest. This corresponded to sample collection 
from March 27 to October 23, 2017 and March 19 to November 15, 2018. (a) Average FLNF by year and fertilizer treatment ± standard 
error. Lowercase letters indicate significant difference at p < 0.05. (b) FLNF rates for each sampling data and fertilizer treatment. Each point 
represents average FLNF across four replicate field blocks ± standard error. Lowercase letters indicate significant differences by sampling 
date. Asterisks indicate significant difference by fertilizer treatment on associated sampling date
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explained for sampling date and field N treatment, re-
spectively). Diazotroph community composition also dif-
fered significantly by year, accounting for ~6.3% of the 
variance (Figure 2b). To better understand the commu-
nity members driving these temporal shifts in commu-
nity composition, we also examined relative abundances 
of diazotroph classes across sampling dates (Figure S1A) 
and by year (Figure S1B). Community shifts from 2017 
to 2018  showed increased abundance of Actinobacteria 
(F  =  39.65, p  <  0.001), Betaproteobacteria (F  =  62.02, 
p < 0.001), Gammaproteobacteria (F = 47.87, p < 0.001), 
and Nostocales (F = 21.49, p < 0.001) and decreased abun-
dance of Clostridia (F = 7.35, p = 0.006) and Delta/Epsilon 
proteobacteria (F = 7.05, p = 0.007). Given the large shifts in 
community composition between years, we only examined 
differences between collection date within their respec-
tive growing seasons. Differences in Alphaproteobacteria 
(F  =  3.37, p  <  0.001), Betaproteobacteria (F  =  3.75, 
p < 0.001), Clostridia (F = 2.69, p = 0.001), and Nostocales 
(F = 5.133, p < 0.001) abundances were observed across 
the 2017  season. Differences in Gammaproteobacteria 

(F  =  2.42, p  =  0.002), Alphaproteobacteria (F  =  2.23, 
p = 0.005), Bacilli (F = 1.85, p = 0.027), Betaproteobacteria 
(F = 6.89, p < 0.001), Nostocales (F = 5.54, p < 0.001), and 
Oscillatoriophycideae (F  =  2.69, p  <  0.001) abundances 
were observed across the 2018 season. There were no clear 
seasonal trends in these shifts, and in general, differences 
were the result of just a few individual dates (Figure S1A). 
Neither sampling date*fertilizer treatment nor year*fertil-
izer treatment interactions were found to have a signifi-
cant impact on diazotroph community composition.

Bray–Curtis dissimilarity correlated significantly 
with several environmental variables including FLNF 
and several metrics of soil N availability (Figure 2b; 
Table S4). Dissimilarity also significantly correlated with 
metrics of plant productivity, including Phi2 and rela-
tive chlorophyll. Lastly, we identified 21 taxa potentially 
indicative of FLNF at the highest measured rates (>1 µg 
N fixed g−1 dry soil day; Table 1). All but two of these in-
dicator taxa were identified as Proteobacteria and nearly 
half of these were members of the Bradyrhizobium 
genus.

F I G U R E  2   Principal coordinate 
analysis (PCoA) of soil diazotroph 
communities based on Bray–Curtis 
dissimilarly of relative abundances for 
each sample date. (a) PCoA ordination 
with 95% confidence ellipses representing 
each field replicate. Points are colored 
by sample date. Inset image shows 
distribution of field replicates at the 
field site. (b) PCoA ordination with 95% 
confidence ellipses representing growing 
season year and overlaid vectors of 
significantly correlated environmental 
factors (p < 0.05). Points are colored 
by growing season year. Diazotroph 
community composition is based on nifH 
amplicon sequencing.
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3.3  |  Random forest regression

We used random forest analysis to investigate potential 
environmental and biological controls on FLNF. Two 
analyses were conducted, the first to assess controls on 
FLNF specific to our study system by including temporal 
and site-specific variables (e.g., field replicate, fertilizer, 
year, and month of sampling) and the second to assess 
generalized controls on FLNF in which we did not include 
temporal or site-specific variables. Biological controls 
were represented by relative abundance of nifH phyla and 
classes. Environmental controls included measured soil 
and plant metrics and climate variables.

Random forest regression #1 revealed temporal vari-
ables as top predictors with year and month of sample 
identified as significant predictors of FLNF in our sys-
tem (Table 2). Climate was also identified as a dominant 
control on FLNF rates with metrics of water availability 
(e.g., rainfall, soil moisture) and temperature representing 
the remaining significant predictors (Figure 3a). Overall, 
seven significant predictor variables (p < 0.05) were iden-
tified. Together these variables explained over 68% of the 
variance in FLNF and were able to very closely predict 
measured FLNF rates (Figure 3b).

Random forest regression #2  similarly identified sev-
eral climate variables as significant, generalizable pre-
dictors of FLNF including soil moisture, rainfall, and 
air temperature (Figure 3c; Table 3). We also find that, 
generalized across temporal dynamics, metrics of plant 
productivity and microbial C and nutrient availabil-
ity become top predictors (Figure 3c). Interestingly, the 
only significant biological control on FLNF identified 
was Gammaproteobacteria abundance, but only when 
generalized across temporal dynamics. Together, the top 
ten predictors from regression #2 explained ~53% of the 
variance in FLNF (Figure 3d). However, regression #2 did 
a relatively poor job at accurately predicting measured 
FLNF rates compared to regression #1  suggesting that 
temporal dynamics represent key controls on FLNF.

Random forest does not provide directionality nor does 
it account for covariance of predictors. Therefore, we ex-
plored correlations between FLNF rates and the top 10 
predictors identified from regression #2 (Figure S2). We 
found FLNF correlated significantly and positively with 
soil moisture and TYR activity, but significantly and nega-
tively with PHOS activity, Phi2, and microbial C:N. While 
not significant, there was a negative trend of FLNF with 
increasing air and soil temperature. Interestingly, though 
soil moisture and FLNF were positively correlated, we 
observed a negative trend between FLNF and rainfall. 
This appeared to be driven by outlying values suggest-
ing extreme rainfall events are detrimental to FLNF ac-
tivity. Lastly, we see a significant and positive correlation 

between Gammaproteobacteria and FLNF. However, this 
also appeared to be strongly influenced by outliers and is 
likely not a strong relationship.

4   |   DISCUSSION

In this 2-year field study, we explored the relationships 
between switchgrass-associated FLNF, and various tem-
poral, environmental, climatic, and biological factors. We 
identified several key factors that were strongly associated 
with FLNF rates and may improve our ability to predict 
and harness this important N source. Overall, we find that 
temporal variation, between and across growing seasons, 
water availability, and temperature were the strongest 
predictors of FLNF. Although many studies find no links 
between microbial community structure or functional 
gene abundance and function (Jansson & Hofmockel, 
2018; Rocca et al., 2015), we find weak evidence for a 
link between diazotroph community structure (nifH) and 
FLNF rates.

As hypothesized, climate metrics, and specifically 
those relating to water availability, were key predictors of 
FLNF across both growing seasons. We see this evidenced 
in some of the seasonal patterns of FLNF rates. For exam-
ple, FLNF measured on August 28, 2017 was significantly 
higher than all other sampling dates. This date also cor-
responded to the first significant rainfall event in several 
days, suggesting a sudden influx of moisture stimulated 
FLNF activity. Soil water availability is well known to in-
fluence microbial activity, with greater water availability 
generally increasing process rates (Harris, 1981; Tiemann 
& Billings, 2011; Wilson & Griffin, 1975; Zhang et al., 
2020). FLNF has also been shown to be influenced by 
water availability as well as temperature, whereby FLNF 
is typically greater in warmer and wetter environments 
(Cleveland et al., 1999; Reed et al., 2011). In similar work 
on FLNF, observed episodic fluxes in FLNF process rates 
were thought to be associated with variation in soil mois-
ture (Roley et al., 2019). Our results add to this body of 
work and highlight the need to understand water controls 
on FLNF, particularly in the face of altered precipitation 
regimes resulting from climate change.

Temperature, including air temperature and soil tem-
perature of the top 10 cm of soil, was also a key predictor 
of FLNF identified by random forest regression (Figure 3). 
We found only weak correlations between FLNF and ei-
ther measure of temperature, suggesting that temperature 
alone does not drive FLNF and is likely only significant 
when consider with other environmental and biological 
variables (Figure S2). Previous studies at larger scales 
disagree about the importance of climate variables on 
N-fixation rates. A recent global meta-analysis observed 
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T A B L E  2   Results of randomForest regression #1 including temporal and spatial variables. Predictors are sorted by level of importance 
based on percent increase in mean-squared error (%IncMSE)

Predictor %IncMSE p-value (%IncMSE) INP
p-value 
(INP)

Year*,† ,§  108.57 0.01 2.94 0.01

Month*,† ,§  47.78 0.01 1.29 0.01

Soil moisture*,† ,§  24.52 0.01 0.65 0.04

Air temperature*,† ,§  23.57 0.01 0.40 0.01

Rainfall*,† ,§  23.54 0.01 0.46 0.01

Soil temperature*,† ,§  21.44 0.01 0.30 0.05

Days since last rainfall*,† ,§  18.11 0.01 0.22 0.04

Phi2* 15.77 0.01 0.18 0.81

Gammaproteobacteria* 15.57 0.02 0.45 0.15

NAG activity* 15.21 0.02 0.23 0.97

PHOS activity* 14.68 0.01 0.34 0.34

GLU activity* 11.89 0.03 0.25 0.74

Field replicate*,†  11.57 0.01 0.19 0.09

Plant available ammonium* 10.61 0.04 0.15 1.00

Plant height 10.51 0.09 0.18 0.98

TYR activity 9.84 0.09 0.21 0.95

Microbial C:N 9.41 0.07 0.36 0.26

Specific leaf area 8.62 0.08 0.17 1.00

CBH activity 8.54 0.12 0.14 1.00

Shoot dry weight 8.31 0.20 0.28 0.37

Dissolved organic C 8.03 0.15 0.27 0.85

Soil nitrate 7.40 0.18 0.17 1.00

Soil ammonium 7.35 0.30 0.16 1.00

Alphaproteobacteria 7.29 0.12 0.12 1.00

Relative chlorophyll 7.21 0.08 0.29 0.39

Total N 7.17 0.21 0.33 0.41

Fertilizer treatment*,†  7.03 0.01 0.07 0.05

N mineralization potential 6.69 0.35 0.10 1.00

Microbial biomass C 6.62 0.14 0.20 0.99

LAP activity 6.38 0.27 0.11 1.00

Urease activity 5.98 0.13 0.22 0.99

ALA activity 5.74 0.40 0.10 1.00

Microbial biomass N 5.74 0.23 0.25 0.96

Actinobacteria_Abundance* 5.47 0.05 0.12 0.35

Nitrification potential 5.13 0.36 0.13 1.00

BG activity 5.11 0.41 0.19 1.00

Proteobacteria 5.09 0.24 0.07 1.00

Clostridia 4.58 0.11 0.09 0.68

Soil pH 4.43 0.18 0.08 0.08

pot_inorg 4.07 0.68 0.10 1.00

ARG activity 3.85 0.47 0.07 1.00

Nostocales 3.65 0.43 0.06 1.00
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only weak correlations between N fixation and climate 
variables, including temperature (Davies-Barnard & 
Friedlingstein, 2020). However, other globally focused 
work identified climate-related variables like evapotrans-
piration as drivers of N fixation suggesting global patterns 
of N-fixation and climate variables do not necessarily pre-
dict fine-scale (regional and smaller) measures of N fix-
ation (Cleveland et al., 1999). Our findings suggest that 
climate is an important driver of FLNF when measured 
at fine spatial and temporal scales. Our results highlight 
the need for studies of FLNF that target high spatial and 
temporal resolution as FLNF may predominately be a hot 
spot, hot moment process sensitive to fine-scale patterns 
in environmental conditions (Roley et al., 2019; Smercina 
et al., 2020).

We expected that increasing N availability (fertilizer 
addition) would reduce FLNF rates by making FLNF less 
energetically favorable. It is generally accepted and has 
been demonstrated that increased external N availability 
decreases rates of FLNF (Hobbs & Schimel, 1984; Kox 
et al., 2016; Patra et al., 2007; Reed et al., 2011). Because N 
fixation is energy intensive and diazotrophs are not solely 
reliant on N fixation, it is likely that FLNF is downregu-
lated as diazotrophs access fertilizer N or other high- and 
low-molecular weight N sources, including organic N 
forms (Norman & Friesen, 2017). However, we find little 
evidence of N availability controls on FLNF. For exam-
ple, microbial C:N, a metric that highlights microbial C 
and N status, was negatively correlated with FLNF. This 
contrasts other recent studies that suggest FLNF is signifi-
cantly and positively driven by C:N ratios (Dai et al., 2021; 
Zheng et al., 2019). In our study, N limitation alone did 
not seem to stimulate FLNF. This is similarly evidenced 

in the positive relationship between FLNF and TYR and 
a very weakly negative relationship between FLNF and 
NAG. TYR, an aminopeptidase, and NAG, a chitinase 
are enzymes that acquire both C and N and we hypoth-
esized that such enzyme activities would be negatively 
correlated with FLNF as they increase microbial N avail-
ability. However, our observed relationships suggest that 
these enzymes may have led to predominately C rather 
than N acquisition. Like N availability, C availability alone 
does not seem to drive FLNF. Surprisingly, we found a 
significant, negative correlation between FLNF and Phi2, 
a measure of plant photosynthetic activity and potential 
for belowground C allocation. We hypothesized that in-
creased plant productivity would promote greater FLNF 
through increased C availability. Although increasing Phi2 
does seem to indicate increased microbial C availability as 
evidenced by a significant and positive relationship be-
tween these variables (Figure S3), this increased microbial 
C does not translate to greater FLNF. Overall, our results 
suggest that at a fine spatial and temporal scale, C or N 
availability alone are not good indicators of FLNF as sug-
gested by larger scale studies (Cleveland et al., 1999; Reed 
et al., 2011; Vitousek et al., 2013; Zheng et al., 2019).

Lastly, we examined the relationships between the di-
azotrophic microbial community and FLNF rates. Overall 
diazotroph community composition correlated with FLNF 
as well as a variety of metrics relating to C and N availabil-
ity. Random forest analysis indicates that this relationship 
may be driven by shifts in Gammaproteobacteria abun-
dance; however, there is only a weak correlation between 
FLNF and Gammaproteobacteria. As with temperature 
above, this suggests that Gammaproteobacteria abundance 
alone does not drive FLNF but may be important when 

Predictor %IncMSE p-value (%IncMSE) INP
p-value 
(INP)

Actinobacteria (class) 3.60 0.10 0.11 0.44

Cyanobacteria 2.98 0.50 0.06 1.00

Betaproteobacteria 2.54 0.36 0.13 1.00

Firmicutes 2.20 0.24 0.16 0.44

Oscillatoriophycideae 2.16 0.26 0.01 1.00

Bacilli 2.09 0.24 0.23 0.13

Chlorobi 0.40 0.46 0.01 1.00

Spirochaetia −0.02 0.38 0.00 0.98

Chlorobia −0.06 0.51 0.01 1.00

Spirochaetes −1.54 0.77 0.00 1.00

Delta/Epsilon −7.44 0.98 0.33 0.17

*Denotes significant predictors at p < 0.05 based on percent increase in mean-squared error (%IncMSE).
†Denotes significant predictors at p < 0.05 based on increase in node purity (INP).
§Denotes significant predictors based on %IncMSE and INP significance.

T A B L E  2   (Continued)
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considered with other influential factors. Additionally, 
there were no obvious patterns in diazotroph community 
composition along the FLNF correlation vector and no ob-
vious shifts in community composition corresponding to 
patterns in FLNF rates.

There is a clear shift in diazotroph community com-
position between growing seasons like the significant 
difference in FLNF between years. Examining relative 
abundance of diazotroph classes between years (Figure 
S1B) suggests these shifts were driven by increased 
abundance of Actinobacteria, Betaproteobacteria, 
Gammaproteobacteria, and Nostocales in 2018 relative to 

2017. Members of these classes may also play a role in the 
increased FLNF observed in 2018. Indeed, as noted above, 
Gammaproteobacteria abundance was identified as a key 
predictor of FLNF. These community differences provide 
evidence that community membership can impact rates of 
function and in the case of FLNF may suggest a lack of func-
tional redundancy for this process. We also identify several 
potential indicator taxa associated with greater FLNF rates. 
These taxa were predominately Alphaproteobacteria of 
the order Rhizobiales, including several Bradyrhizobium. 
Interestingly, Alphaproteobacteria abundance did not dif-
fer significantly by year, suggesting that individual taxa 

F I G U R E  3   Results of random forest regression analysis for regression #1 (temporally and spatially explicit) and regression #2 (general). 
(a) Important predictors of FLNF identified by regression #1. Asterisks show predictors found to be significant by two metrics, percent 
increase in mean square error (%IncMSE; shown on figure) and increase in node purity. (b) Regression #1 model predicted versus measured 
FLNF rates. Points are colored by collection date. Dashed line represents 1:1 fit line. Solid line shows linear regression of predicted versus 
measured line with 95% confidence bands. (c) Top 10 environmental and biological predictors of FLNF identified by regression #2. Asterisks 
show predictors found to be significant by two metrics, percent increase in mean square error (%IncMSE; shown on figure) and increase in 
node purity. (d) Regression #2 model predicted versus measured FLNF rates. Points are colored by collection date. Dashed line represents 
1:1 fit line. Solid line shows linear regression of predicted versus measured line with 95% confidence bands. Soil moisture, measured in the 
top 10 cm of soil, is reported in percent moisture by mass. Air and soil temperature, measured in the top 10 cm of soil, is reported in °C. 
Rainfall is report in mm. Gammaproteobacteria were reported as relative abundances. NAG, PHOS, and TYR activity is measured in nmol 
activity g−1 dry soil h−1
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T A B L E  3   Results of randomForest regression #2. Predictors are sorted by level of importance based on percent increase in mean-
squared error (%IncMSE)

Predictor %IncMSE p-value (%IncMSE) INP
p-value 
(INP)

Soil moisture*,† ,§  37.80 0.01 1.09 0.01

Gammaproteobacteria*,† ,§  28.40 0.01 0.83 0.02

Rainfall*,† ,§  27.75 0.01 0.52 0.01

Air temperature*,† ,§  24.94 0.01 0.36 0.05

PHOS activity* 24.69 0.01 0.65 0.06

Soil temperature* 23.57 0.01 0.33 0.08

Phi2* 22.40 0.01 0.34 0.32

TYR activity* 18.72 0.01 0.46 0.14

Microbial C:N* 18.08 0.02 0.60 0.07

NAG activity* 15.35 0.04 0.29 0.79

Total N* 14.59 0.01 0.49 0.12

Shoot dry weight* 14.04 0.03 0.34 0.31

Soil nitrate* 13.86 0.04 0.32 0.23

Alphaproteobacteria* 12.43 0.05 0.23 0.75

Days since last rainfall* 12.33 0.01 0.15 0.21

Clostridia* 12.28 0.02 0.20 0.12

BG activity* 12.17 0.02 0.30 0.60

Dissolved organic C 11.81 0.06 0.38 0.51

GLU activity 10.87 0.06 0.28 0.61

Actinobacteria (phylum)* 10.25 0.04 0.22 0.09

Plant height 10.10 0.09 0.23 0.73

Nitrification potential 9.50 0.11 0.23 0.95

Mineralization potential 8.63 0.26 0.15 1.00

Proteobacteria 8.12 0.10 0.13 1.00

Actinobacteria (class)* 7.85 0.04 0.22 0.08

Plant available nitrate 7.85 0.11 0.16 1.00

Soil ammonium 7.69 0.33 0.25 0.70

Specific leaf area 7.45 0.15 0.25 0.86

Microbial biomass C 7.34 0.14 0.29 0.62

Microbial biomass N 7.05 0.14 0.31 0.71

Betaproteobacteria 6.47 0.09 0.24 0.75

LAP activity 6.27 0.31 0.18 1.00

ALA activity 6.21 0.35 0.15 1.00

Relative chlorophyll 5.75 0.20 0.30 0.50

Soil pH 5.10 0.15 0.10 0.17

ARG activity 5.10 0.25 0.11 1.00

Urease activity 4.52 0.29 0.35 0.67

Nostocales 4.26 0.37 0.08 1.00

Plant available ammonium 4.08 0.54 0.14 1.00

Firmicutes 4.08 0.10 0.20 0.20

CBH activity 3.10 0.62 0.17 1.00

Cyanobacteria 2.66 0.57 0.08 1.00

(Continues)
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may play a large role in driving FLNF than higher level 
groupings. Previous work has identified Bradyrhizobium 
in the switchgrass rhizosphere, including as indicators of 
greater FLNF rates (Bahulikar et al., 2014; Dai et al., 2021; 
Roley et al., 2019; Smercina et al., 2020) and may suggest an 
important, yet overlooked role for these well-studied sym-
bionts in grassland systems. In general, we find weak, but 
significant links between the diazotroph community and 
FLNF rates. Difficulties establishing mechanistic links be-
tween microbial community structure and process rates, 
even based on functional gene, are a well documented in 
soil microbial ecology (Jansson & Hofmockel, 2018; Rocca 
et al., 2015) and for FLNF in particular (Fürnkranz et al., 
2008; Knief et al., 2012; Smercina et al., 2020). This sug-
gests that FLNF may be controlled by many different taxa 
with different environmental controls, leading to seem-
ingly spurious patterns in the whole community, or that 
rates are governed by short-term changes in activity rather 
than abundance of community members. Our work here 
further highlights the need to better understand the con-
tributions of individual diazotroph community members, 
including those typically considered symbiotic N fixers, to 
switchgrass systems.

4.1  |  Implications for sustainable 
bioenergy production

The results of this work have strong implications for 
switchgrass bioenergy crop management particularly 
in the context of climate change and marginal lands. 
First, using 2-week average FLNF rates from our high-
resolution sampling, we determine that N inputs from 
FLNF have the potential to meet and exceed N deficits in 
switchgrass systems. By extrapolating our results from µg 
N fixed g−1 dry soil day−1 to kg N ha−1 year−1, we estimate 
that FLNF contributed ~36 and ~89 kg N ha−1 in 2017 and 
2018, respectively. Based on our extrapolated rates, FLNF 

has the potential to meet up to 80% of the N demands for 
optimal yields of fully established switchgrass, estimated 
at 109 kg N ha−1 year−1 (Roley et al., 2018). Furthermore, 
these rates can meet ~87% to over 200% of the average N 
removed from unfertilized switchgrass plots at harvest 
(Roley et al., 2018). However, just because N is fixed does 
not mean this N is available or transferred to the plant. 
Previous work on FLNF in association with other grasses 
suggests that FLNF may meet upward of 50% of plant N 
demands (Chalk, 2016; Kuan et al., 2016; Ladha et al., 
2016). A similar estimate for switchgrass was confirmed 
in a recent study which showed potential for switchgrass 
to acquire one-third of its N from FLNF (Wewalwela et al., 
2020). In the context of previous studies, our work further 
highlights FLNF as an important N source to switchgrass 
cropping systems and underscores the potential for suc-
cessful bioenergy production without fertilizer N addition.

Lastly, our results highlight the potential impacts of 
climate change on N inputs from FLNF and, indirectly, 
on the productivity of low-management switchgrass sys-
tems under changing climate conditions. Climate vari-
ables relating to temperature and water availability were 
key predictors of FLNF in our study. Our results suggest 
that FLNF is generally promoted by greater soil moisture 
but may be suppressed under extreme rainfall events. This 
suggests that FLNF within switchgrass systems is partic-
ularly sensitive to oxygen availability and thus may be 
dominated by aerobic and micro-aerobic organisms over 
strict anaerobes. We also observe a slightly negative trend 
in FLNF with increasing air and soil temperature, though 
this was not significant when considered independent of 
other variables (Figure S2). Taken together with predicted 
climate changes of a warmer, more drought-prone world 
punctuated with extreme precipitation events (IPCC et al., 
2018), we can anticipate that climate change will reduce N 
inputs from FLNF. We can see anecdotal evidence of this 
by comparing our growing season years. We measured 
greater FLNF on average during the 2018 growing season 

Predictor %IncMSE p-value (%IncMSE) INP
p-value 
(INP)

Chlorobia 2.07 0.16 0.02 1.00

Chlorobi 1.25 0.23 0.02 1.00

Oscillatoriophycideae 0.84 0.42 0.02 1.00

Spirochaetes −0.44 0.43 0.00 0.88

Spirochaetia −1.11 0.62 0.00 0.82

Bacilli −1.21 0.69 0.27 0.06

Delta/Epsilon a −6.41 0.99 0.46 0.02

*Denotes significant predictors at p < 0.05 based on percent increase in mean-squared error (%IncMSE).
†Denotes significant predictors at p < 0.05 based on increase in node purity (INP).
§Denotes significant predictors based on %IncMSE and INP significance.

T A B L E  3   (Continued)
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which also tended to be cooler and wetter than 2017 
(Figure S4). Shifts in the diazotroph community between 
these growing seasons also suggest that climate change 
will reduce overall diversity and alter who contributes to 
FLNF. For example, lower abundances of cyanobacteria, 
like Nostocales members, in 2017 suggest that contribu-
tions from autotrophic diazotrophs may diminish with a 
changing climate. While we are still learning about the 
potential to harness FLNF for more sustainable crop pro-
duction, contributions from this “free” N source may be 
dwindling under a changing climate. It is therefore vital 
that we investigate FLNF under the projected climate con-
ditions of a warmer world in order to anticipate how we 
may benefit from this important biological process.

5   |   CONCLUSIONS

The results of this study find that climate conditions are 
the most dominant predictors of FLNF activity compared 
to other environmental and biological variables explored 
here. We find precipitation and precipitation events to be 
strong predictors of FLNF rates with potential strong ex-
planatory power for observed increases in FLNF process 
rates. In particular, these associations between climate 
metrics and FLNF suggest that N contributions from 
FLNF are vulnerable to climate change. Our findings also 
indicate that the relationship between soil N and FLNF 
at fine spatial and temporal scales may be more complex 
than previously thought when compared to ecosystem-
scale patterns observed in global and meta-analysis stud-
ies. Thus, altering N fertilization regimes alone may not 
promote greater FLNF. We also find only weak evidence 
that changes in diazotroph community structure are di-
rectly associated with FLNF rates, though identify some 
specific members as potentially important to high rates, 
warranting further investigation. Overall, our work re-
veals the need for studies of FLNF at high spatial and 
temporal resolution. We find that FLNF contributions to 
switchgrass systems may be underestimated and the gen-
eralized controls on FLNF, like climate and soil nitrogen 
availability, are likely site and/or scale dependent.
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