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Abstract

Ionomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In
this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species’ native
range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family
from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common
gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrome-
try (ICP-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions
(QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and be-
tween switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under
some genetic control, and 77 QTL were detected for these elements. Seventy-four percent of QTL colocalized multiple elements, half of
QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects
across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environ-
ments.

Keywords: allelic effects; antagonistic pleiotropy; bioenergy; conditional neutrality; differential sensitivity; GxE; ionome; QTLxE; reaction
norm; switchgrass

Introduction
Plants take up most of the elements of the ionome from soil,
which is highly heterogeneousacross multiple spatial scales
(Huang and Salt 2016). Studies in many plant species have exam-
ined the genetic architecture of the ionome and discovered strong
genetic effects underlying elemental composition, and many
quantitative trait loci (QTL) in genetic mapping experiments
(Buescher et al. 2010; Lowry et al. 2012; Zhang et al. 2014; Shakoor
et al. 2016). Studies in Arabidopsis thaliana, where transgenic ma-
nipulation is possible, have identified several causal genes con-
trolling elemental variations (Rus et al. 2006; Morrissey et al. 2009;
Chao et al. 2014). Recent work in A. thaliana has also shown sig-
nals of local adaptation to soil salinity, which could be driven by
genetic loci that affect the ionome (Busoms et al. 2015).
Regardless of plant species, studying genetic variation in the ion-
ome can provide insights into how plants adapt to the highly var-
iable soils that comprise the natural landscape, and can lead to
the discovery of genes involved in elemental accumulation, in-
cluding transporters, transcription factors, and metal-binding
proteins (Rus et al. 2006; Baxter et al. 2008, 2010; Baxter and Dilkes
2012). However, previous work has provided limited insights into

how the ionome varies in natural environments. The ionome of
an individual depends not only on its genetic makeup, but also
on the environment it experiences. Genetic variation in the
makeup of the ionome between environments is a type of geno-
type-by-environment interaction (GxE).

The pattern of phenotypic expression of a single genotype
across a range of environments is known as a reaction norm.
Reaction norms make two important points about GxE explicit:
first, that the phenotype expressed by a given genotype depends
on the environmental context, and second, that the phenotypic
effect in a given environment depends on the genotype in ques-
tion (Gomulkiewicz and Kirkpatrick 1992). The reaction norm of a
particular genotype and its underlying genetic architecture is
heritable properties of the genome and can evolve. Alleles of a
gene that affect a reaction norm can do so, and thus exhibit GxE,
in multiple ways (Des Marais et al. 2013). For continuous pheno-
types like elemental abundances, which have a given mean and
standard deviation in two environments for a reference allele,
the alternate allele of that gene can affect the magnitude or
the sign of the phenotypic effect in one environment relative to
the second. Differential sensitivity occurs when the magnitude of
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the phenotypic effect of an allele depends on the environment.
Conditional neutrality is the most extreme case of differential sensi-
tivity, which occurs when an allele affects the magnitude of the
phenotype in one environment and not in another (Des Marais
et al. 2013; El-Soda et al. 2014). Antagonistic pleiotropy occurs when
the sign of the phenotypic effect of an allele depends on the envi-
ronment (Kawecki and Ebert 2004; Des Marais et al. 2013; El-Soda
et al. 2014). Studies of several biological systems in their natural
environments have found that local adaptation is more often
caused by conditional neutrality than antagonistic pleiotropy at
the level of the QTL (Des Marais et al. 2013; Wadgymar et al. 2017).

To date, there has been limited progress in identifying the mo-
lecular mechanisms causing GxE in the plant ionome. GxE could
not be examined in the many previous studies that identified
ionomic QTL in a single environment (Loudet et al. 2007; Norton
et al. 2010; Baxter et al. 2014; Zhang et al. 2014; Gu et al. 2015).
These studies have largely focused on characterizing the elemen-
tal accumulation of various plant tissues or species, and though
they have led to valuable knowledge on the genetic control of ele-
ment accumulation in plants, they offer limited insights into how
the ionome interacts with environment. More recently, studies
have begun to identify GxE and QTL-by-environment interactions
(QTLxE) for the plant ionome (Phuke et al. 2017; Veley et al. 2017;
Ziegler et al. 2017; Fikas et al. 2019). These studies have been lim-
ited to biparental crosses or diversity panels with limited num-
bers of genotypes, particularly in short-lived, inbred crop species
such as rice (Oryza sativa) and maize (Zea mays). Studies of GxE in
the ionome in outbred, perennial systems may reflect different
patterns of GxE, as these plants must cope with heterogeneous
environments, including nonoptimal abundances of essential
and nonessential elements, over their longer lifespans.

Switchgrass (Panicum virgatum) is an outbred, perennial species
with wide environmental adaptation across the eastern half of
North America and high biomass productivity across a large geo-
graphic range (Casler et al. 2007). Switchgrass was selected as a
model bioenergy species by the U.S. Department of Energy in
1991 (Wright and Turhollow 2010), not only because of its high
productivity across environments, but also its ecosystem services
associated with carbon sequestration, soil erosion, and wildlife
biodiversity (McBride et al. 2011). Switchgrass has substantial
morphological diversity over its native range, including highly di-
vergent southern lowland and northern upland ecotypes. The
southern lowland ecotype of switchgrass is typically adapted to
wet and riparian areas of the southern United States and tends to
be more biomass-productive and nutrient-use-efficient than the
northern upland ecotype (Porter 1966; Aspinwall et al. 2013;
Uppalapati et al. 2013; Lowry et al. 2014). In contrast, the northern
upland ecotype is often adapted to dry areas of mid and northern
latitudes, and tends to be more freezing-tolerant (Hultquist et al.
1997; Casler 2012; Peixoto and Sage 2016). Ionomics research in
switchgrass has identified significant differences in elemental
uptake between lowland and upland ecotypes for many elements
(Yang et al. 2009), including lower nutrient concentrations in low-
land ecotypes; however, the genetic basis of this divergence has
yet to be mapped. Nutrient elements are always removed along
with harvested biomass; reduced nutrient removal necessitates
lower fertilizer inputs to maintain plant productivity and thus
promotes sustainable biofuel agriculture. High levels of some ele-
ments, particularly alkali metals, can negatively affect the down-
stream conversion to bioenergy and increase the cost of
bioenergy production (Gouzaye et al. 2014; de Koff and Allison
2015; Serapiglia et al. 2016). However, marginal soils are likely to
vary more in their elemental compositions than traditional

arable land, making understanding GxE in the switchgrass ion-
ome all the more essential to identify genes that can promote nu-
trient-efficient growth in these environments. Understanding the
genetics of ionomic concentration divergence between switch-
grass ecotypes across their native range will help breeders de-
velop switchgrass as a sustainable biofuel species.

In this study, we expand the scope of GxE research in ionomics
by evaluating the genetic architecture and reaction norms of the
ionome in switchgrass. We use an outbred mapping population
derived from a four-parent cross of lowland and upland ecotypes
(Milano et al. 2016). We clonally propagated and planted the four
parents, the two hybrid F1 genotypes, and approximately 750 F2

individuals at three common gardens, then quantified the accu-
mulation of 18 elements. The 18 elements included macronu-
trients (Mg, P, K, and Ca), micronutrients (B, Mn, Fe, Co, Cu, Zn,
Se, and Mo), analogs of macronutrients (Rb and Sr), and others
that can be harmful to plant growth (Al, As, Cd) and that can be
harmful or beneficial to plant growth (Na) (Marschner 2012).
With these data, we evaluated the reaction norms of particular
QTL for elements in the ionome. Our results allow us to address
the following questions: (1) What is the genomic basis for varia-
tion in elemental abundances in the switchgrass ionome? (2)
What fraction of QTL for distinct elements colocalize, suggesting
possible common genetic architectures underlying their abun-
dances? (3) How frequently do ionomic QTL show GxE? and (4)
Which QTL colocalize with candidate genes, suggesting avenues
for future molecular characterization of the switchgrass ionome?

Materials and methods
Experimental design and phenotyping
The details of the creation of the mapping population can be
found in Milano et al. (2016). In brief, the genetic mapping popula-
tion was produced from two initial crosses of two pairs of highly
divergent southern lowland and northern upland ecotypes: low-
land AP13 (A) � upland DAC6 (B), and lowland WBC3 (C) � upland
VS16 (D). The F1 hybrids (A � B, C � D) were then intercrossed
reciprocally to create a large full sib family that we utilize as a
four-way linkage mapping population (F2).

The details of the experimental design are described in Lowry
et al. (2019). Briefly, the grandparents, F1 hybrids, and the F2 prog-
eny were propagated clonally in 3.8-L pots at the Brackenridge
Field Laboratory, Austin, TX in 2013–2015, and then transported
to and planted at the three field sites (Austin, Texas, hereafter
TX; Columbia, Missouri, hereafter MO; and Hickory Corners,
Michigan, hereafter MI) in May–July of 2015. Woven ground cover
(Sunbelt 3.2 OZ, Dewitt Company) was used to suppress weeds,
and holes were cut in a honeycomb fashion for planting of the ex-
perimental plants. Edge effects were prevented with a row of bor-
der plants. Plants were hand-watered as needed through the
summer of 2015 to facilitate establishment, with no further sup-
plemental irrigation after this point. Multiple replicates of the
grandparent clones were grown at each site. However, our experi-
mental design was unreplicated at the local field site level in
terms of progeny; that is, we grew one single-spaced plant repre-
senting each progeny from the cross at each of the three common
gardens, and these progeny were randomly arrayed across each
common garden. The three common garden locations have dis-
tinct soil and climatic conditions. TX site (30.384�N, �97.73�W)
has clay soil, MO (38.897�N, �92.22�W) common garden is located
on a silt loam soil, and MI (42.420�N, �85.37�W) site has a loam
soil. The concentrations of mineral P, K, Ca, Mg, Fe, Zn, Mg, Cu,
Bo, and Na at each of the three sites were measured on a soil

2 | G3, 2021, Vol. 11, No. 7

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/7/jkab144/6259145 by guest on 20 January 2022



sample consisting of equally mixed proportions of soil samples
(0–15 cm depth) from three locations spanning the entire garden
on the diagonal. Soil samples were analyzed by the Soil, Water,
and Forage Testing Laboratory at Texas A&M University (http://
soiltesting.tamu.edu), and measurements of these minerals are
presented in Table 2. The average temperatures in 2016 for TX,
MO, and MI sites were 21.9, 13.6, 10.4�C, respectively. The annual
precipitation in 2016 for TX, MO, and MI sites were 829, 928, and
975 mm, respectively.

Samples of developmentally staged phytomers (post-anthesis
tillers) from the canopy of single-spaced plants (i.e., approxi-
mately 700 plants) were collected at each of the three sites at the
end of the 2016 growing season, after approximately two years of
growth in natural soils in each of the common garden. These till-
ers were dried and ground, then the ground tissue was sampled
for ionomic analyses. Specifically, tiller samples were first ground
with a knife mill (Wiley Model 4, Thomas Scientific) to pass
through a screen size of 2 mm and subsequently ground with an
inducted air abrasion mill (Cyclone Mill, UDY corporation) to
pass through a 1 mm screen. The milled samples were homoge-
nized and aliquots were sent to the Donald Danforth Plant
Science Center to determine tissue concentrations of 18 elements
(P, K, Ca, Mg, Rb, Sr, Mn, Zn, Cu, Co, Fe, Mo, B, Se, Al, Na, Cd, and
As). Details of the process can be found in Ziegler et al. (2013).
Briefly, tissue samples were weighed and digested in nitric acid at
room temperature overnight, and then heated at 100�C for
3 hours. Elemental concentrations were measured by ICP-MS
(Perkin Elmer NexION 350 D). Measurements were corrected for
potential variation in sample preparation and instrument drift
using both internal standards and matrix matched controls as
described in Ziegler et al. (2013). Outliers and negative values
yielded due to machine error were further excluded from analy-
sis. Comparisons of elemental concentrations among the four
grandparents at each common garden and comparisons of ele-
mental concentrations of the F2 progeny among the three envi-
ronments were performed using Welch one-way tests with a
significance level of a¼ 0.05.

Genotyping and map construction
Details on the genetic map construction can be accessed on
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbjv
(Lovell et al. 2020) and in Bragg et al. (2020). In brief, Illumina frag-
ment paired end libraries from each of the four grandparents
were aligned to the P. virgatum reference genome v5 via bwa mem
(Li and Durbin 2009) and used for single-nucleotide polymor-
phism (SNP) calling. Then a kmer-based approach was used to
capture multiple variant and distinguish each grandparent when
genotyping the progeny. The resulting genotype matrix was pol-
ished via sliding windows across the physical V5 switchgrass ge-
nome position and markers were re-ordered within linkage
groups (Lowry et al. 2019; Lovell et al. 2020). Genotypes for progeny
were based on grandparental haplotypes and thus are fully infor-
mative. For computational efficiency in GxE analysis, the genetic
map was reduced to 738 markers, with an average distance of
2cM between markers.

Heritability estimates and genetic correlation
We estimated quantitative genetic variation for the measured
ionomic features within our full sib family using marker-based
realized relationship matrices and linear mixed models imple-
mented in the Sommer package (Covarrubias-Pazaran 2016) in R
Core Team (2020). Due to potentially high correlation between
the additive and dominance relationship matrices in a full sib

family, it was not feasible to cleanly partition additive from non-
additive components of variance (Hill 2013). As such, our analy-
ses based on the additive kinship matrix alone could be biased
upwards by any dominance variance which occurs. We thus re-
port our estimates from the additive kinship matrix as genetic
variance (Vg), and our heritabilities as broad-sense heritability
(H2), which was calculated as Vg/Vp, where Vp is the total pheno-
typic variance. For genetic correlation estimates, combinations of
phenotypic data from the three sites were used as response varia-
bles in the multivariate model for each ionomic trait.

We further tested for GxE on the trait level using the
same mixed model approach (Covarrubias-Pazaran 2016, https://
cran.r-project.org/web/packages/sommer/vignettes/v4.sommer.
gxe.pdf, last accessed in Aug, 2020). In other words, we tested
whether Vg differed by site for each element. Specifically, we
used a likelihood-ratio test to compete two models. The first
model (i.e., main effect model) assumed that there is no GxE and
that the inclusion of two parameters, the genetic variance plus
the fixed effect for environment, was sufficient for modeling the
data. The alternative model (i.e., unstructured model) also
accounts for GxE, and additionally freely estimates a unique ge-
netic variance and covariance (a 3 � 3 unstructured variance-co-
variance matrix) within and across environments. Significance of
the likelihood-ratio test for GxE was assessed at the level of
a¼ 0.05.

Multi-environment QTL mapping
Details of the mapping procedures and implementation for the
four-way population using Genstat are described in Malosetti
et al. (2013), Lowry et al. (2019), and Bragg et al. (2020). Specifically,
we used the “single trait under multiple environments” multi-en-
vironment mixed model for each ionomic element for a cross-
pollinated (CP) families as implemented in Genstat v.19 (VSN
International 2020). Our experimental population contained four
possible QTL alleles: those designated A and B corresponded to
marker alleles of the first pair of grandparents (AP13 and DAC),
and those designated C and D corresponded to marker alleles of
the second pair of grandparents (WBC and VS16). The initial step
for QTL mapping using Genstat was to identify the best variance-
covariance matrix model for the phenotypic data (Malosetti, et al.
2013). Subsequently, simple interval mapping (SIM) was per-
formed for a preliminary scan of the genome using the 738
markers (genetic predictors). The identified QTL were then used
as cofactors in a follow-up composite interval mapping (CIM)
scan. QTL scanning was performed with a window size of 5 cM
and 50 cM was used as the minimum cofactor distance in the
CIM scans. CIM was performed three times consecutively to en-
sure the stability of identified QTL in our study.

QTL identified through CIM were simultaneously incorporated
into a mixed effect model with the variance-covariance matrix
selected for the trait of the form:

trait ¼ lþ Eþ
X

QTLþ
X

QTLxEð Þ þ e (1)

where l represents the population mean; E represents the envi-
ronment effect;

P
QTL ¼

P
aa1 þ aa2 þ adð Þ, represents the total

effect from the additive effect from the first grandparent [i.e., the
difference between A (AP13) and B (DAC) alleles], aa1, the second
grandparent [i.e., the difference between C (WBC) and D (VS16)
alleles], aa2, and the dominance effect [i.e., the intralocus interac-
tion], ad;

P
QTLxEð Þrepresents the QTL � environment interac-

tions; and e represents the error term. QTL significance was
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assessed using the Wald test statistic, and the final model was
selected using a backward selection procedure based on the
Akaike’s Information Criterion (AIC, Akaike 1974). Genome-wide
QTL and QTL � E significance were assessed at a ¼ 0.05 with a
Bonferroni correction (Li and Ji 2005). QTL were localized based
on a 1.5 LOD statistic drop from the highest LOD score, and used
the flanking markers associated with a 1.5 LOD statistic drop
from the peak as the confidence interval for the QTL peak.

Candidate gene search and GO enrichment
analyses
We consider the genes located in the 1.5-LOD confidence inter-
vals around the detected significant QTL as candidate genes. We
then determined if homologs from rice (v7), A. thaliana (TAIR 10),
and a curated list of genes that affect the plant ionome (Whitt
et al. 2020) were overrepresented in our QTL regions. The annota-
tion file for switchgrass was accessed on JGI (Joint Genome
Institute) Phytozome 13 website: https://njp-spin.jgi.doe.gov/
(last accessed in Aug, 2020). The Gene Ontology (GO) enrichment
analysis was conducted using Fisher’s exact test for each GO
term via R package “topGO” (Alexa and Rahnenfuhrer 2020). GOs
with adjusted P< 0.05 were considered significant.

Data availability
The supplemental materials are available at figshare: https://
doi.org/10.25387/g3.14479185.

Results
The genetic basis of elemental concentration
variation and covariation at three common
gardens
To understand the genetic component of ionomic variation in
switchgrass, we determined concentrations of 18 elements for
both the F0 “grandparent” genotypes and for the outbred F2 geno-
types at three common gardens. Average concentration varied
over six orders of magnitude among elements across environ-
ments: Co, Se, Mo, and Cd had the lowest concentrations (�1 �
10�2mg g�1 dry weight) and K had the highest concentration (�1 �
104 mg g�1 dry weight). After correction for multiple testing, con-
centrations of 11 of the 18 elements differed significantly be-
tween the four grandparents (AP13, DAC6, WBC, and VS16) at one
or more gardens (Welch one-way test, Table 1). Concentrations of
three elements (Ca, P, and Na) differed significantly between the
four grandparents at every garden after correction for multiple
testing, and Sr and Mg concentrations also differed at every gar-
den before this correction (Welch one-way test, Table 1).
Interestingly, there were just as many significant differences in
element*garden concentrations (16) between the two lowland
genotypes, AP13 and WBC, as there were between the upland and
lowland parents. In contrast, there were only two significant dif-
ferences in element*garden concentrations between the two up-
land parents (data not shown).

In the F2 genotypes, variation in the concentration of each ele-
ment followed a continuous, unimodal distribution within each
garden (Figure 1A). Within gardens, the majority of the element
concentrations were not strongly phenotypically correlated
(r< 0.5); fewer than 3% of element pairs had positive correlations
greater than 0.5 (Supplementary Table S1). Among these, Ca con-
centration was positively correlated with Sr concentration at
each site (0.8–0.9), and Al concentration was positively correlated
with Fe concentration at MI (0.8) and TX (0.5).

All element concentrations had low to moderate broad sense
heritabilities (0<H2 < 0.6, Figure 1B). The majority of the ele-
ments (K, Ca, Mg, P, Mn, Fe, Zn, Cu, Mo, Se, Sr, Rb, Na, Al, and Cd)
had moderate heritabilities (0.2<H2 < 0.6) for at least one garden,
while B, Co, and As had low heritabilities (H2 < 0.2) everywhere.
There were moderate heritabilities for 8 elements in the TX gar-
den (none unique to TX), 12 elements at the MO garden (Na and
Al concentration were moderately heritable only at MO), and 15
elements at the MI garden (K, Zn, Se, and Cd concentration were
moderately heritable only at MI). The low heritabilities of some
elements at certain sites (B, K, Co, As, and Se) were due to both
the large error variance (Ve) and the near zero genetic
variance (Vg) for the concentrations of these elements
(Supplementary Table S2). Likelihood-ratio tests between models
with genetic effects only and models with genetic and GxE effects
indicated that GxE existed for 16 of the 18 elements (all but B and
Se) at the trait level (P< 0.05). Thus, switchgrass exerted genetic
control of elemental accumulation in an environmentally sensi-
tive fashion for the majority of the elements of the ionome.

The distributions of all 18 element concentrations also differed
significantly among gardens (all P< 0.002, Welch one-way tests,
Table 2). These distinct phenotypic distributions were undoubtedly
affected by soil element concentrations and availability, which var-
ied in ways that affected plant element concentrations in both in-
tuitive (Ca and K) and nonintuitive (Mg, P, and Na) fashions (Table
2). They were also underlain by moderate to strong positive genetic
correlations for the majority of the elements among gardens
(Supplementary Table S3). Positive genetic correlations less than
one indicate the presence of GxE at the trait level, and likely mag-
nitude-changing instead of sign-changing patterns of GxE at the
level of QTL across the common gardens for the elemental concen-
trations. Only one negative genetic correlation was observed, for B
concentration in the TX and MO gardens (�0.46). Negative correla-
tions indicate a possible trade-off in loci controlling B concentra-
tion. It should be noted, however, that B concentration
heritabilities were low at both of these gardens, reducing our power
to identify QTL. The genetic correlations for two elements (As and
Se) could not be determined because the concentrations of these
elements had close to zero genetic variance.

We next identified QTL and QTLxE interactions using indepen-
dent multi-environment mixed models for each of the 18 ele-
ments. We detected 77 significant QTL with LOD thresholds
above 3.5 for concentrations of 14 elements (Figure 2a, by
category; Supplementary Figure S1, within category and
Supplementary Table S4 for QTL position, LOD statistics, and
so on). Thirty-eight (49%) of these QTL exhibited QTLxE
(Supplementary Table S4). No significant QTL were detected for
B, As, Co, and Se, almost certainly because of the low heritabil-
ities of the tissue concentrations of these four elements (Figure
1B). The remaining elements had between two (Na, Fe, Mo, Cd)
and 14 (P) significant QTL. We determined if the number of QTL
we identified varied by element type by dividing the 18 elements
into four types: macronutrients, micronutrients, nonessential
analogs to nutrients, and other nonessential elements. The pres-
ence of more elemental QTL in a category than expected indi-
cates ecotype-specific genetic divergence, while the presence of
fewer than expected might indicate that purifying selection has
removed genetic variation for these elements. If QTL had been
equally distributed across the elements, we would have expected
17, 34, 8, and 17 QTL in these classes, respectively. However,
there were more QTL than expected for both macronutrients
(2.05x, binomial test P< 0.001) and nonessential analogs (1.99x,
binomial test P¼ 0.002), and fewer QTL than expected for
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micronutrients (0.50x, binomial test P< 0.001) and other nones-
sential elements (0.47x, binomial test P¼ 0.013).

QTL colocalization across elements of the ionome
Using our 77 QTL, we next identified QTL where distinct elements
colocalized. Co-localization suggests either linked genes affecting
element accumulation, or may indicate co-transport of elements
using the same channel. The latter is more plausible for elements
that are most commonly bioavailable in the soil as similar ions.
We considered QTL colocalizing if there was any overlap in the

genomic region with LODs within 1.5-LOD of the maximum LOD
score. Twenty-one sets of QTL colocalized, and 20 QTL (26.0%)
did not overlap another ionomic QTL, and hence were singletons
(Figure 2B). Mg was the only element with a majority of singleton
QTL, with both more noncolocalizing and fewer colocalizing QTL
than expected (chi-square test, P¼ 0.005). P had the most colocal-
izing QTL. Colocalizing P QTL always colocalized with elements
which are most abundant in soil as cations with 1þ or 2þ charge.
Ca QTL always colocalized, either with P (2 QTL) or with elements
most abundant in soil as 2þ or 3þ cations (3 QTL). Al QTL is also

Table 1 Element concentration (mg g�1) means, standard errors, and comparisons by Welch one-way test of the four F0 “grandparent”
individuals at the TX, MO, and MI gardens

Element Site AP13 DAC VS16 WBC P-valuea

macronutrient MI 72,581 6 3741 46,184 6 1711 31,615 6 3024 66,643 6 12,666 <0.0001*
K MO 54,865 6 5417 44,609 6 11,478 24,143 6 8032 83,190 6 10,820 0.0419

TX 54,414 6 5221 59,728 6 13,856 39,167 6 5242 67,527 6 7067 0.0525
MI 1614 6 48 2046 6 102 1163 6 48 1454 6 123 <0.0001*

Ca MO 1445 6 47 1395 6 80 1101 6 24 1736 6 155 0.0002*
TX 2947 6 149 5293 6 362 3953 6 156 2168 6 82 <0.0001*
MI 1367 6 50 1011 6 73 1059 6 50 1686 6 112 <0.0001*

Mg MO 857 6 25 767 6 47 784 6 50 1497 6 117 0.0175
TX 949 6 55 1333 6 101 1154 6 42 1027 6 52 0.0182
MI 296 6 10 391 6 21 386 6 18 441 6 24 <0.0001*

P MO 615 6 41 378 6 43 346 6 5 851 6 39 <0.0001*
TX 316 6 12 758 6 53 650 6 41 300 6 16 <0.0001*

micronutrient MI 47.3 6 2.14 52.22 6 3.88 53.39 6 3.76 33.605 6 2.882 0.0009
Mn MO 67.04 6 3.74 70.9 6 7.88 101.45 6 24.06 76.523 6 7.952 0.5783

TX 25.56 6 1.49 39.85 6 3.61 38.86 6 3.17 14.212 6 1.221 <0.0001*
MI 32.33 6 1.21 41.7 6 3.58 34.27 6 1.84 30.199 6 1.448 0.0458

Fe MO 39.64 6 2.4 83.06 6 52.69 32.4 6 1.78 45.761 6 6.237 0.1069
TX 51.5 6 2.75 78.42 6 12.89 50.78 6 7 44.089 6 4.489 0.1662
MI 7.51 6 0.934 7.54 6 0.406 11.39 6 2.796 8.136 6 1.636 0.6080

Zn MO 22.43 6 3.802 11.36 6 0.912 11.58 6 0.898 28.504 6 10.996 0.0754
TX 49.34 6 13.966 110.91 6 86.947 15.75 6 2.458 18.849 6 1.185 0.1489
MI 3.223 6 0.144 5.333 6 0.261 4.919 6 0.125 3.332 6 0.164 <0.0001*

Cu MO 8.715 6 0.538 12.848 6 4.019 8.03 6 0.291 9.919 6 0.836 0.1985
TX 4.205 6 0.229 6.152 6 0.727 4.141 6 0.403 5.094 6 0.378 0.0729
MI 3.417 6 0.247 4.12 6 1.188 3.294 6 0.431 3.32 6 0.502 0.9330

B MO 3.402 6 0.704 3.196 6 0.673 3.319 6 2.247 2.476 6 0.273 0.6658
TX 4.925 6 0.421 7.211 6 0.432 6.852 6 0.537 4.402 6 0.319 0.0005*
MI 0.046 6 0.002 0.039 6 0.003 0.051 6 0.003 0.041 6 0.003 0.0603

Mo MO 0.087 6 0.004 0.056 6 0.005 0.053 6 0.015 0.122 6 0.009 0.0143
TX 0.092 6 0.011 0.044 6 0.005 0.053 6 0.007 0.117 6 0.018 0.0004*
MI 0.029 6 0.002 0.066 6 0.016 0.046 6 0.007 0.026 6 0.004 0.0356

Co MO 0.219 6 0.057 0.321 6 0.186 0.145 6 0.025 0.168 6 0.036 0.6059
TX 0.082 6 0.008 0.149 6 0.047 0.189 6 0.122 0.11 6 0.033 0.4476
MI 0.01 6 0.004 0.012 6 0.004 0.007 6 0.002 0.041 6 0.003 0.1384

Se MO 0.042 6 0.003 0.05 6 0.017 NA 0.122 6 0.009 0.1384
TX 0.044 6 0.004 0.048 6 0.01 0.038 6 0.006 0.117 6 0.018 0.1384
MI 3.831 6 0.14 5.834 6 0.977 3.258 6 0.201 3.709 6 0.333 0.0418

analog Sr MO 9.093 6 0.575 8.81 6 0.768 6.27 6 0.221 9.684 6 0.899 0.0011
TX 6.362 6 0.263 8.866 6 0.287 9.502 6 0.482 5.601 6 0.231 <0.0001*
MI 1.509 6 0.084 0.966 6 0.112 0.728 6 0.07 3.026 6 0.284 <0.0001*

Rb MO 2.923 6 0.162 1.245 6 0.129 0.94 6 0.036 3.719 6 0.222 <0.0001*
TX 1.565 6 0.123 1.5 6 0.305 1.451 6 0.21 2.079 6 0.203 0.1951
MI 50.5 6 3.48 8.67 6 1.64 12.71 6 4.98 47.892 6 6.147 <0.0001*

Other Na MO 160.83 6 7.53 11.87 6 1.43 10.08 6 1.31 59.685 6 7.239 <0.0001*
TX 122.87 6 12.37 35.46 6 5.04 65.56 6 14.28 124.885 6 15.271 <0.0001*
MI 48.79 6 2.46 69.19 6 14.38 59.73 6 5.04 49.204 6 3.266 0.1845

Al MO 102.17 6 10.24 95.78 6 30.36 77.56 6 10.51 84.231 6 5.996 0.5187
TX 68.36 6 5.2 100.48 6 16.74 77.55 6 7.45 56.923 6 4.699 0.0656
MI 0.01 6 0.001 0.019 6 0.004 0.012 6 0.001 0.011 6 0.001 0.1384

As MO 0.016 6 0.003 0.022 6 0.017 NA 0.022 6 0.003 0.1384
TX 0.011 6 0.001 0.017 6 0.005 0.012 6 0.001 0.01 6 0.001 0.1384
MI 0.016 6 0.001 0.022 6 0.002 0.012 6 0.001 0.013 6 0.002 0.0027

Cd MO 0.03 6 0.011 0.028 6 0.01 0.015 6 0.006 0.017 6 0.002 0.6142
TX 0.002 6 0 0.003 6 0 0.002 6 0 0.002 6 0 0.0216

a Asterisks in this column indicate P-values that are significant after a Bonferroni correction for 54 independent Welch one-way tests.
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Table 2 Element concentration (mg g�1) means 6 standard errors of the outbred F2 mapping population, and comparisons by Welch
one-way test at the three common gardens

Elementa TX garden MO garden MI garden P-valueb

Macronutrient K 60,162 6 882 60,032 6 1010 55,912 6 958 0.002*
Soil K 246 144 63 CL: 125c

Ca 3768 6 35 1420 6 12 1408 6 15 <0.001*
Soil Ca 23,596 3631 1476 CL: 180c

Mg 1530 6 14 1144 6 8 1309 6 11 <0.001*
Soil Mg 262 448 150 CL: 50c

P 421 6 4 485 6 7 294 6 3 <0.001*
Soil P 4 16 28 CL: 50c

Micronutrient Mn 27.46 6 0.31 80.63 6 0.97 48.27 6 0.58 <0.001*
Soil Mn 4.62 19.90 40.32 CL: 1.00c

Fe 43.48 6 0.4 32.88 6 0.41 27.69 6 0.25 <0.001*
Soil Fe 5.55 29.65 21.09 CL: 4.25c

Zn 18.819 6 0.349 10.995 6 0.147 6.509 6 0.096 <0.001*
Soil Zn 0.93 0.48 0.52 CL: 0.27c

Cu 4.926 6 0.058 8.325 6 0.117 3.801 6 0.036 <0.001*
Soil Cu 0.62 0.61 0.36 CL: 0.16c

B 5.565 6 0.059 2.645 6 0.046 3.233 6 0.06 <0.001*
Soil B 1.03 0.31 0.22 CL: 0.60c

Mo 0.053 6 0.001 0.059 6 0.001 0.032 6 0 <0.001*
Co 0.065 6 0.001 0.14 6 0.004 0.028 6 0 <0.001*
Se 0.047 6 0.001 0.039 6 0.001 0.009 6 0.001 <0.001*

Analog Sr 8.459 6 0.073 8.534 6 0.078 3.846 6 0.04 <0.001*
Rb 1.788 6 0.027 2.436 6 0.026 1.087 6 0.019 <0.001*

Other Na 70.46 6 1.47 25.56 6 0.53 9.72 6 0.17 <0.001*
Soil Na 14 24 8
Al 58.96 6 0.73 76.17 6 0.71 41.06 6 0.5 <0.001*
As 0.01 6 0 0.013 6 0 0.01 6 0 <0.001*
Cd 0.003 6 0 0.024 6 0.001 0.03 6 0.001 <0.001*

a When the element indicated is prefaced by the word “Soil” the row contains average soil elemental concentration at this garden.
b Asterisks in this column indicate p-values that are significant after a Bonferroni correction for 18 independent Welch one-way tests.
c CL: Critical level. The point at which the Soil, Water, and Forage Testing Laboratory of Texas A&M University recommends no additional nutrient input.

Figure 1 The genetic component of phenotypic variation in element concentrations (mg g�1) across three common gardens (TX: orange; MO: green; MI:
blue) (A) Phenotypic variation in element concentrations for the mapping population (F2). (B) Heritability of each element concentration.
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Figure 2 The overlapping genomic distributions of QTL for element concentrations (mg g�1). (A) QTL with 1.5-LOD supportive intervals for each ionomic
trait using the multi-environment QTL model from Genstat. Purple indicates macronutrient QTL, blue micronutrient QTL, green analog QTL, and yellow
other QTL. Further discrimination between QTL for each element within these categories is included in Supplementary Figure S1. (B) UpSet plot showing
patterns in elemental concentration QTL colocalization between elements. Vertical barplot shows the number of QTL that colocalize for each
combination of elements, represented by the filled circles connected by lines when more than one element colocalizes. Horizontal barplot shows the
number of QTL for each element.
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always colocalized, with Sr in 3 of 4 QTL, and with Fe for both Fe
QTL. The partial colocalization of QTL between Ca and Sr, and be-
tween Al and Fe, may underlie some of the high phenotypic cor-
relation in these traits in the F2 genotypes (Supplementary Table
S1). Three QTL sets colocalized four or more elements. One of
these sets was located at 6.63–33.56 Mb on Chr02N with Ca, Zn,
Rb, and Sr QTL, one at 0.97–41.75 Mb on Chr04N that included
Mg, K, Fe, and Al QTL, and the third at 33.91–51.66 Mb on Chr07K
that included Al, Ca, Mn, Fe, Zn, and Sr QTL (Figure 2A).

Ionomic QTLxE frequencies and QTL reaction
norms
We next explored patterns of effect sizes, and types of QTLxE, in
the 77 QTL, particularly the 38 QTL exhibiting QTLxE (Figure 3
and Supplementary Figure S2). The design of the crosses that
generated the four-way population also allowed quantification of
differences in allelic effects for two distinct lowland vs upland
crosses, AP13 vs DAC (A � B) and WBC vs VS16 (C � D). In addition
to looking at patterns of GxE within these crosses, we could also
determine if we had captured variation in effects between these
crosses, for both QTL with and without QTLxE effects. For the 39
QTL without QTLxE, most effects (75%) had the same effect direc-
tion in both lowland vs upland contrasts (Supplementary Figure
S2). Thus, most QTL without QTLxE exhibited differences in QTL
effects between the upland and lowland sets of parents, and few
exhibited differences in QTL effects between the two upland or
the two lowland parents. Of the 10 QTL without QTLxE but with
within-ecotype variation, two QTL were singletons, and four colo-
calized with elements which had no significant QTLxE. The
remaining four QTL colocalized with elements which did have
QTLxE. These four QTL may well be caused by multiple linked
loci; however, if these four colocalizing QTL are due to single loci
that affect the concentration of multiple elements, then these

QTL represent an interesting case of GxE caused by changes in
pleiotropy at a single locus.

For the 38 QTL, and 76 allelic contrasts with QTLxE, 35 con-
trasts (46%) had differential sensitivity in their reaction norm
across gardens, and 15 of these contrasts were statistically signif-
icant after a multiple testing correction (Bonferroni t-test,
P< 0.000198, Supplementary Figure S2). These differentially sen-
sitive effects were observed in either one or both lowland vs up-
land allelic contrasts for the same QTL. For instance, the effect of
QTL 2N@24.04 for the macronutrient Ca was differentially sensi-
tive in both allelic contrasts (Figure 3A), while the effect of QTL
2N@10.06 for the micronutrient Mn was differentially sensitive
only in the A � B contrast (Figure 3B). The other 41 allelic con-
trasts (54%) exhibited antagonistic pleiotropic effects (i.e., a sign
change) across gardens, and 13 of these contrasts were statisti-
cally significant after a multiple testing correction (t-test,
P< 0.000198, Supplementary Figure S2). The majority of the an-
tagonistic effects were present in only one allelic contrast. For ex-
ample, the effects of QTL 3K@36.09 for the micronutrient Zn were
antagonistic for the C � D contrast, but not the A � B contrast
(Figure 3C). Overall, QTL for the same element with QTLxE did
not have similar patterns across environments. For example, the
QTL 2N@78.05 and 3K@26.18 for the macronutrient P had the
largest effects in TX, while the other two QTL 3N@56.03 and
4K@6.08 for P had the largest effect in MO (Figure 3D).

Our QTL mapping strategy allowed us to test for both additive
parental effects and for intralocus interaction (dominance) be-
tween additive effects (Equation 1). Of the 77 detected QTL, 15
(19%) have significant dominance terms, and half of these
showed dominance by environment interactions (Supplementary
Table S5). The majority of the intralocus interaction effects were
complex, with only a few (4) showing clear upland or lowland
dominance patterns. In general, dominance effects were small
relative to additive effects (9.80% on average).
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Figure 3 Representative differentially sensitive and antagonistically pleiotropic reaction norms for element concentrations (mg g�1) additive QTL effects
across three common gardens (TX, MO, and MI). Two allelic contrasts are shown: panels A and B show QTL effects for the lowland AP13 � upland DAC
cross, and panels C � D show QTL effects for the lowland WBC � upland VS16 cross. (A) Ca (macronutrient): 2 N@24.04 shows differential sensitivity in
both allelic contrasts. (B) Mn (micronutrient): 2 N@10.06 shows differential sensitivity in one allelic contrast, (C) Zn (micronutrient): 3 K@36.09 shows
antagonistic pleiotropy in one allelic contrast, and (D) P (macronutrient): has five QTL with QTLxE with distinct reaction norms at each QTL.
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Ionomic QTL colocalization with candidate genes
To explore avenues for future molecular characterization of the
switchgrass ionome, we determined the genetic content of the 77
QTL intervals for genes and gene ontology (GO) terms. We first
examined QTL colocalization with candidate genes from ionomic
mapping studies in other plant species, and found six important
candidate genes (Supplementary Table S6) in the QTL intervals
affecting element concentration in switchgrass. For example,
Pavir.9NG231800, a homolog of MOT1, is located within the
1.5-LOD interval of the largest Mo concentration QTL
(Chr09N@43.81). MOT1, which encodes a molybdate transporter,
is responsible for the natural variation in Mo accumulation in
A. thaliana and in rice (Baxter et al. 2008; Huang et al. 2019), and
may play an important role in adaptation to acidic soils
(Poormohammad Kiani et al. 2012). Pavir.7kg416470, a homolog of
HKT1, was a candidate gene in the QTL interval on Chr07K which
colocalized for six elements. HKT1 encodes a Na transporter, and
is responsible for the variation of Na content in A. thaliana (Rus
et al. 2006; Baxter et al. 2010), rice (Ren et al. 2005), and wheat
(Munns et al. 2012). Interestingly, this candidate gene was in the
QTL interval for Al, Ca, Fe, Mn, Sr, and Zn, and did not contain a
QTL for Na concentration in our mapping population. Candidate
genes for heavy metal-associated ATPases, which are homologs
of HMA in A. thaliana and rice, were found in Cu (Chr01K@14.42
and Chr07K@26.27), Cd (Chr02N@85.72), and Zn (Chr02N@71.96)
QTL intervals. These genes are responsible for Cu, Cd, and Zn
transport. A sixth candidate gene, Pavir.9KG014451, was associ-
ated with the homolog of A. thaliana MYB36. MYB36 is a MYB do-
main transcription factor that regulates the expression of genes
involved in the formation of the Casparian strip. The absence of
the Casparian strip results in changes in leaf concentrations of
Na, Mg, Zn, Ca, Mn, and Fe in A. thaliana (Kamiya et al. 2015). This
candidate gene was in the QTL colocalizing Ca (Chr09K@20.05),
Mg (Chr09K@18.15), and Mn (Chr09K@20.05) concentrations.

To elucidate the cellular pathways associated with ion con-

centrations in switchgrass, we also looked at GO term enrich-

ment based on the gene content in the 77 QTL. We identified 405
unique enriched GO terms across the ionomic traits (P< 0.05).

Overall, these QTL regions were enriched for GO terms of

DNA-binding transcription factor activity, heme binding, and oxi-

doreductase activity (Supplementary Table S7). Among the mac-
ronutrients and analogs of macronutrients, the QTL regions of

Mg were significantly enriched for GO terms of carbohydrate

binding, protein transport, cell wall biogenesis, and signal peptide

processing, among the 34 ontologies. Mg is involved in protein
synthesis (approximately 75% of leaf Mg), is associated with chlo-

rophyll (15–20% of total Mg), and functions as a cofactor for a se-

ries of enzymes involved in photosynthetic carbon fixation and
metabolism (Cakmak and Kirkby 2008; White and Broadley 2009).

K QTL regions were significantly enriched for GO ontologies of ox-

idoreductase activity, calcium and iron ion binding, and in partic-

ular, antioxidant activity. K has a regulatory function in several
biochemical processes related to protein synthesis, carbohydrate

metabolism, and enzyme activation. K can enhance antioxidant

defense in plants, which protects plants from oxidative stress in

adverse environments (Hasanuzzaman et al. 2018).
Among the micronutrients, Mn concentration QTL intervals

were significantly enriched for GO ontologies of photosynthesis,
mitochondria, carbohydrate binding, the photosystem I reaction
center, and electron transfer activity. Mn functions as a major
contributor to various biological systems including photosynthe-
sis, respiration, and nitrogen assimilation in plants among other

functions (Andresen et al. 2018; Alejandro et al. 2020). Cu concen-
tration QTL regions were significantly enriched for GO ontologies
of cell wall macromolecular catabolic process, oxidoreductase ac-
tivity, calcium ion binding, and regulation of transcription among
the 36 ontologies. Cu is an essential cofactor for numerous pro-
teins, an essential player in electron transport. Cu is also involved
in the control of cellular redox state (a major Cu-binding protein
is the Cu/Zn superoxide dismutase) and remodeling of the cell
wall (Cohu and Pilon 2010; Andresen et al. 2018). Among nones-
sential elements, Cd QTL regions were significantly enriched for
GO ontologies of metal ion binding, photosynthesis (light harvest-
ing), and cell growth among others. Cd is one of the most toxic
heavy metals for plants and can displace essential metals (such
as Zn, Fe, and Ca) from a wealth of metalloproteins and disturb
normal physiological processes. It can also cause severe develop-
mental aberrance such as chloroplast structure change, reactive
oxygen species (ROS) production, and cell death (Wan and Zhang
2012).

Discussion
Ionomics is a powerful tool for determining the elemental status
of plants, and can be combined with mapping populations to de-
termine the genetic architecture responsible for variation in ele-
mental composition. Our study not only examined the genetic
basis of the switchgrass ionome, but also how individual ionomic
loci responded to three environments (i.e., expressed GxE) across
the native range of this perennial species. We detected 77 signifi-
cant QTL across the 18 elements, half of which had significant
QTLxE effects. This indicated the importance of the environmen-
tal context in elemental concentration variation at the QTL level.
We observed common QTL colocalization between elements,
which supports a partially shared regulatory network for element
uptake, transportation, or accumulation, as previously suggested
(Baxter et al. 2014; Dhanapal et al. 2018). Understanding the
genetic architecture of elemental accumulation in our outbred
population of divergent switchgrass ecotypes is the first step in
uncovering the potential for ionomic adaptation in switchgrass
across variable environmental conditions.

Genotype by environment interactions are common across
many different species, phenotypes, and environments. Previous
work has found that GxE is often caused by differential sensitivity
in response to the environment, and that antagonistic pleiotropy
(or trade-offs) at the individual gene level are relatively rare or
weak (Des Marais et al. 2013; Wadgymar et al. 2017; Lowry et al.
2019). Our study found not only differentially sensitive effects,
but also substantial antagonistic pleiotropy (54%) across the
ionomic QTL with QTLxE, indicating that alleles commonly had
opposing effects on element concentrations in different environ-
ments. This result suggests that the plant ionome may play an
important role in local adaptation, as both model and empirical
work have suggested that there should be strong trade-offs in-
volved in local adaptation at the level of QTL (Felsenstein, 1976;
Bradshaw and Schemske 2003; Kawecki and Ebert 2004). Our
cross design also allowed us to compare allelic effects for two dis-
tinct lowland vs upland crosses and determine if there was varia-
tion in effects between these crosses. Interestingly, some ionomic
QTL showed differential sensitivity in one cross but antagonistic
pleiotropy in the other. This suggests that the same set of loci
may not be consistently responsible for divergence between low-
land and upland switchgrass ecotypes, and implies that substan-
tial ionomic variation also exists within upland and lowland
ecotypes. In essence, these results suggest that different loci
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contribute to ionomic variation across the range of the species,
and that ionomic divergence among ecotypes was not based on
fixed differences between the ecotypes.

QTL for multiple elements typically colocalized in our study.
This may not be surprising, as maintaining ion homeostasis
requires a network of ion uptake, transportation, trafficking, and
sequestration mechanisms, and not all genes in this regulatory
network will be ion-specific (Clemens 2001). We found substan-
tial colocalization of P QTL with cation QTL, always with ele-
ments most abundant in soil as cations with 1þ or 2þ charge. P is
a component of key molecules of plants such as ATP, nucleic
acids, and the form of P most readily accessed by plants, inor-
ganic P, is likely co-transported with positively charged ions
(Schachtman et al. 1998). Colocalization of P QTL with cation QTL
in our study might thus reflect co-transport of P and cations at
the gene level. Indeed, we found a few cation transporters anno-
tated for A. thaliana in the P QTL intervals, including high-affinity
Kþ transporter, ZIP metal ion transporter family, and Ctr copper
transporter family. P QTL colocalized with K and/or Ca QTL at
three positions (8 K@10.7, 9 K@60.9, and 9 N@2.4). P, K, and Ca are
all macronutrients, which plants need in large quantities.
Although different populations may have adapted to soil types
with different quantities of these elements, the need for these
macronutrients in large quantities could have facilitated the evo-
lution of similar or shared mechanisms or networks to take up
these elements from soils, thus yielding colocalizing QTL.
Alternatively, colocalization could be coincidental and/or simply
due to multiple linked genes. In support of this view, P also had
many QTL that were singletons (5 noncolocalizing QTL out of 14),
as did the macronutrient Mg (6 noncolocalizing QTL out of 9).
P and Mg deficiencies in soils are often widespread (Maathuis
2009); thus, a potential adaptive scenario is that switchgrass
plants were under stronger selection to increase uptake or toler-
ate lower levels of accumulation of these two macronutrients,
the segregation of which drove the increase in variation for con-
centrations of these elements and led to ion-specific QTL. Indeed,
our study identified significantly more QTL for macronutrients
than expected (2.05x enrichment, binomial test P< 0.001).
Identification of these QTL and their reaction norms is the
first step in testing hypotheses of local adaptation in natural
environments.

We detected fewer QTL than expected for micronutrients
(0.5x, binomial test P< 0.001), and most micronutrient QTL colo-
calized with QTL of other elements. Taken together, these results
suggest that there may have been only weak selection on accu-
mulation of micronutrients in switchgrass populations. It is pos-
sible that switchgrass obtains sufficient quantities of these
micronutrients from any soil. This may be consistent with a re-
cent study of the influence of Mn availability on switchgrass bio-
mass production, showing that even low shoot tissue Mn allows
switchgrass to maintain biomass production (Guo and Fritschi
2021). We also found little variation in concentration of poten-
tially harmful elements (Al, As, and Cd), and fewer QTL than
expected for these elements (0.47x, binomial test P¼ 0.013). It
may be that harmful elements impose such strong selection that
beneficial alleles have been fixed, and deleterious alleles purged,
at least in the populations from which the four grandparents
were sampled. Alternatively, harmful elements may not be pre-
sent in sufficient quantities in the commonly encountered soils
and in the three common garden soils for the four grandparents,
and thus there may have been only weak selection against spe-
cific or nonspecific accumulation of these elements. We also
found more QTL than expected for nonessential analogs (1.99�,

binomial test P¼ 0.002). The nonessential analog Sr was pheno-
typically correlated with its chemical analog Ca at every garden,
and they shared colocalized QTL at the two large clusters on
Chr02N (at the top) and Chr07K in our cross. Strong correlations
between Sr and Ca have been reported in other species (Broadley
and White, 2012; Shakoor et al. 2016). The colocalization of QTL of
Sr with other elements also likely reflects its nonessential nature,
in that it is seldom the target of uptake by plants, and instead
only accumulates via nonion-specific mechanisms.

We found multiple candidate genes within our QTL regions
which may affect element concentrations. These candidate
genes provide targets for future fine-mapping research in
switchgrass. Among these, we found a homolog of HKT1,
Pavir.7kg416470, in the QTL on Chr07K. This candidate gene was
in the QTL interval for the six elements, Al, Ca, Fe, Mn, Sr, and
Zn, but not in either of the two Na accumulation QTL intervals.
HKT1, which encodes Na transporter, was responsible for the
variation in Na accumulation in A. thaliana (Rus et al. 2006;
Baxter et al. 2010), rice (Ren et al. 2005; Kobayashi et al. 2017),
wheat (Munns et al. 2012), and maize (Zhang et al. 2018).
However, Na accumulation in these studies were assayed in
plant leaves, while Na accumulation in our study was assayed
from whole tillers, which included both leaves and shoots. It
seems likely that different tissues could accumulate elements
at different levels, but our data represents a composite picture
of several tissues. In addition, soil Na was not particularly vari-
able in our gardens (i.e., 11, 12, and 10 ppm for TX, MO, and MI,
respectively), and some of these elements do compete with Na
uptake from soil (Mass et al. 1972; Cramer et al. 1989; Tuna et al.
2007). It is also possible that the lack of variability of soil Na rel-
ative to these other elements masked a QTL effect for Na but
allowed detection of this QTL for other elements.

Overall, our results suggest that ionomic variation, and iono-
mic variation across environments, are common in switchgrass.
This variation, controlled by a combination of genes and the envi-
ronment, offers critical material for adaptation of switchgrass
metabolism and development across different environments.
The identification of loci that affect nutrient concentration in
these environments will facilitate the development of switch-
grass varieties with high nutrient-use efficiency for sustainable
biofuel production. When combined with harvested biomass,
plant elemental concentrations can be linked to nutrient removal
from the soil and impact biofuel conversion efficiency and future
soil fertility.
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