
1. Introduction
Soil is the largest terrestrial reservoir of organic carbon (C), storing about 1,500 Pg C in the top 100  cm 
(Batjes, 2016; Nachtergaele et al., 2012). Any small changes in the magnitude, distribution and forms of terres-
trial soil organic carbon (SOC) may lead to large release of C to the atmosphere (Sulman et al., 2018), with 
significant impact on food security and the global climate system (Lal, 2004). Given that changes in soil organic 
carbon (SOC) represent one of the largest uncertainties in the global C budget (Ciais et al., 2014), accurate quan-
tification of the distribution and forms of soil organic carbon (SOC) can help to constrain the global C budget and 
provide key insights on the underlying processes related to SOC protection and cycling (Stockmann et al., 2013).

Changes in SOC stocks at any given time depend on the balance between organic matter inputs via plant produc-
tion, additions of manure and compost, and outputs via decomposition, erosion and hydrologic leaching of vari-
ous C compounds (Davidson & Janssens,  2006; Jobbágy & Jackson,  2000). Although higher organic matter 
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Plain Language Summary We aim to improve the representation of soil organic carbon (SOC) 
dynamics in the earth system model by matching the conceptual soil pools with carbon fraction data. We 
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inputs to the soil generally correlate with high SOC (Sanderman, Creamer, et al., 2017), the biological stability 
of SOC is ultimately determined by the interactions among the soil physicochemical environment (soil mois-
ture, temperature, pH and aeration), soil mineralogy, and the accessibility of the organic matter to microbes and 
enzymes (Schmidt et al., 2011). Current understanding of the SOC dynamics indicates that the soil physicochem-
ical environment plays an important role in determining the C efflux from soil and that the efflux rates are modi-
fied by substrate availability and the affinities of enzymes for the substrates (Six et al., 2002). However, the extent 
to which different physicochemical characteristics of soil control the stabilization and cycling of SOC is still 
debated (Carvalhais et al., 2014; Doetterl et al., 2015; Rasmussen et al., 2018). Additionally, the complex molecu-
lar structure of C substrates and their sensitivity to climatic and environmental constraints add further complexity 
in understanding SOC dynamics at different spatial and temporal scales (Davidson & Janssens, 2006).

Previous studies have shown that the factors affecting the stabilization/destabilization of SOC are numerous 
and that the changes in SOC over space and time are the result of complex interactions among climatic, biotic 
and edaphic factors (Rasmussen et al., 2018; Stockmann et al., 2013; Torn et al., 1997; Wiesmeier et al., 2019). 
For example, Carvalhais et al. (2014) have shown that climate, particularly temperature, strongly controls SOC 
turnover. Doetterl et al. (2015) found that geochemical characteristics such as base saturation, soil texture, silica 
content and pH also play a dominant role by altering the adsorption and aggregation of SOC. In addition, other 
studies indicate that soil nitrogen (N) availability affects SOC change due to constraints on microbial activity and 
plant productivity (Grandy et al., 2008; Janssens et al., 2010; Sinsabaugh et al., 2005). These findings have led 
to the view that the accumulation and decomposition of organic matter in soil is ultimately determined by the 
interactions among climate, vegetation type, topography and lithology.

Biogeochemical models commonly rely on capturing SOC dynamics by implicitly representing microbial 
processes using soil pools that are conceptual (Hartman et al., 2011). An increasing number of models now explic-
itly represent the turnover of litter and soil pools using distinct microbial functional types (Wieder et al., 2014) 
or measurable carbon fractions (Abramoff et al., 2018). Although the representation of microbial processes using 
measurable soil pools or distinct microbial functional types have gained recognition in recent decades, their 
applicability is still limited at diverse spatial and temporal scales, particularly due to limited data on measurable 
fractions or rate modifiers to represent distinct microbial functional types. There has been recent attempts to 
model SOC dynamics using measurable soil pools, which has been broadly calibrated and tested at regional and 
global scales (Abramoff et al., 2018, 2021; Zhang et al., 2021). However, most of the earth system models still 
simulate SOC dynamics using conceptual soil pools with different turnover rates, particularly when examining 
the response of SOC to global change factors (Tian et al., 2015; Todd-Brown et al., 2014).

The potential turnover rates of conceptual soil pools are modified by climatic factors such as soil moisture and 
temperature, soil chemical factors such as pH and oxygen availability and the mechanism that facilitates C 
protection via organo-mineral interactions and aggregation, often loosely represented by clay content (Trum-
bore, 1997). However, the turnover rates of these conceptual soil pools cannot be directly determined because 
these pools cannot be isolated in the laboratory (Paul et al., 2001). As a result, there is increasing need and effort 
to link the conceptual pools with some measurable data to determine the turnover rates of SOC pools in the 
biogeochemical models.

In current biogeochemical models with conceptual soil pools, SOC dynamics are most commonly represented 
using three dominant pools: an active pool dominated by root exudates and the rapidly decomposable compo-
nents of fresh plant litter, with mean residence time (MRT) ranging from days to years (Hsieh, 1993); a slow pool 
dominated by decomposed organic material, often of microbial origin, with MRT ranging from years to centuries 
(Torn et al., 2013); and a passive pool dominated by stabilized organic matter with MRT of several hundred to 
thousands of years (Czimczik & Masiello, 2007). Changes in the size and relative abundance of these pools are 
strongly influenced by climate, soil type and land use (Sanderman et al., 2021). Therefore, accounting for accu-
rate distribution of SOC into different pools is paramount to quantify the current SOC stocks and examine the 
vulnerability of SOC to future environmental changes.

Relating these conceptual pools with SOC partitioned into laboratory defined fractions, such as particulate-, 
mineral associated- and pyrogenic-forms of C (POC, MOAC, and PyC, respectively), can help to constrain the 
turnover rate of different pools in biogeochemical models. For example, Skjemstad et al. (2004) related POC, 
MOAC and PyC approximated using a combination of physical size fractionation and solid-state  13C-NMR 
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spectroscopy with resistant plant material, humic and inert organic material pools in the Rothamsted carbon 
(RothC) model to predict changes in SOC in response to changes in soil type, climate and management. However, 
RothC does not explicitly simulate plant growth and plant response to dynamic changes in climate and other envi-
ronmental factors (Zimmermann et al., 2007). In addition, the plant material is loosely partitioned into decompos-
able and resistant forms with large uncertainties in their respective sizes (Cagnarini et al., 2019). Unlike RothC, 
ecosystem models such as Century, DeNitrification-DeComposition and Agricultural Production Systems sIMu-
lator integrate the effects of climate, land use change and land management practices by simulating plant physi-
ology and soil biogeochemistry, and explicitly consider the effects of climate, land use and land management on 
three conceptual soil C pools with different turnover rates (Hartman et al., 2011; Ogle et al., 2010).

In this study, we modified, calibrated and evaluated the version 4.5 of the Daily Century model (hereafter, 
DAYCENT) to improve the representation of SOC dynamics by linking conceptual pools of active, slow and 
passive SOC against estimates of the measurable POC, MOAC, and PyC fractions, respectively. We then simu-
lated the response of SOC to climate and land use change during the historical and future period using the default/
SOC-only-constrained (hereafter, DCdef) and fraction-constrained (hereafter, DCfrac) DAYCENT model in the US 
Great Plains ecoregion. The objectives of this study were to (a) constrain the DCdef model to link active, slow and 
passive pools of organic C to soil C fractions by tuning the decomposition parameters; (b) calibrate and evaluate 
DCfrac and DCdef performance by comparing the distribution of C in active, slow and passive pools against C 
fractions predicted at seven long-term research sites; (c) evaluate the differences between the DCfrac and DCdef in 
simulating contemporary SOC stocks and their distribution by comparing against other existing data products in 
the US Great Plains region; and (d) project the SOC change in response to climate and land cover change through 
2100. We hypothesize that (a) tuning the potential decomposition rates of the conceptual pools to C fraction 
data in the DAYCENT model leads to more accurate initialization of equilibrium pool structure (Skjemstad 
et al., 2004), thereby allowing a better comparison of measured and simulated SOC in response to climate, land 
use and management (Basso et al., 2011); (b) conversion of native vegetation to any agricultural use significantly 
alters the distribution of SOC among the various soil pools (Guo & Gifford, 2002), but the rate and extent of 
SOC change depend on the intensity of agricultural use (Lal, 2018; Page et al., 2014), with larger losses from 
models that allocate more C to active and slow pools; and (c) land use under a warming climate would result in 
larger absolute and relative losses of SOC from the model that derive more SOC from the active pool due to rapid 
decomposition of fresh organic matter induced by warming (Crowther et al., 2016).

2. Materials and Methods
2.1. The DAYCENT Model

The DAYCENT Version 4.5 is a daily time step version of the Century biogeochemical model that simulates the 
dynamics of C and N of both managed and natural ecosystems (Del Grosso et al., 2002; Parton et al., 1998). The 
exchange of C and N among the atmosphere, vegetation and soil is a function of climate, land use, land manage-
ment and other environmental factors. The vegetation pool simulates potential plant growth at a weekly time step 
limited by water, light, and nutrients. The DAYCENT model consists of multiple pools of SOM and simulates 
turnover as a function of the amount and quality of residue returned to the soil, the size of different soil pools and 
a series of environmental limitations. The type and timing of management events including tillage, fertilization, 
irrigation, harvest and grazing activities can affect plant production and SOM retention.

The DAYCENT model was originally developed from the monthly CENTURY model version 4.0. The 
CENTURY 4.0 is a general FORTRAN model of the plant-soil ecosystem that simulates carbon and nutrient 
dynamics of different types of terrestrial ecosystems (grasslands, forest, crops and savannas). CENTURY 4.0 
primarily focused on simulation of soil organic matter dynamics of agro-ecosystems (Metherell et al., 1994). 
Earlier development of the CENTURY focused on simulation of soil organic matter dynamics of grasslands, 
forest and savanna ecosystems (Parton et al., 1988; Sanford Jr et al., 1991).

The first DAYCENT model was developed in FORTRAN 77 and C from CENTURY 4.0 to simulate the exchanges 
of C, water, nutrients, and gases (CO2, CH4, N2O, NOx, N2) among the atmosphere, soil and plants at a daily 
time step (Del Grosso et al., 2001; Kelly et al., 2000; Parton et al., 1988). The submodels used in DAYCENT 
are described in detail by Del Grosso et al. (2001), which includes submodels for plant productivity, soil organic 
matter decomposition, soil water and temperature dynamics, and trace gas fluxes. Other model developments 
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while transitioning from CENTURY 4.0 to DAYCENT included dynamic carbon allocation and changes in grow-
ing degree days routine that triggers the start and end of growing season based on phenology (soil surface temper-
ature, air temperature, and thermal units).

The first formal version DAYCENT 4.5 (Hartman et al., 2011) was developed from Del Grosso et al. (2002), with 
a focus on simulation of trace gas fluxes for major crop types in the US Great Plains region. Hartman et al. (2011) 
focused on calibrating and validating crop yield and trace gas fluxes for all the major crop types in 21 represent-
ative counties in the US Great Plains region.

The SOM sub-model consists of active, slow and passive pools with different turnover times (Motavalli 
et al., 1994; Parton et al., 1987). The active pool has a short (1–5 years) turnover time and possibly composed of 
live microbes and microbial products. The slow pool has an intermediate turn over time (20–50 years) and possi-
bly contains physically protected organic matter and stabilized microbial products. The passive pool has a long 
turnover time (400–2000 years) that may be physically and chemically stabilized. In DAYCENT, the turnover of 
the active, slow and passive pools is simulated as a function of potential decomposition rates of respective pools 
modified by soil temperature, moisture, clay content, pH and cultivation effects. Changes in SOC are simulated 
for the top 20 cm of the soil.

In this study, we used the DAYCENT to optimize and calibrate the size of the conceptual soil pools by compar-
ing it with carbon fraction data at long term research sites. First, we developed measurable carbon fraction data 
using a combination of diffuse reflectance spectroscopy and a machine learning model (Section 2.2). Second, we 
developed input data sets including climate, land use, cropping systems and land management data as required 
by DAYCENT model for point and regional simulations (Section 2.3). Third, we parameterized the fraction-con-
strained DAYCENT (DCfrac) by tuning the potential decomposition rates (k) such that the size of the active, slow and 
passive soil pools matches with the POC, MAOC and PyC, respectively at the long-term research  sites (Section 2.4). 
Fourth, we calibrated both the DCdef and DCfrac DAYCENT using input data developed in Section 2.3 (climate, land 
use, and management) against observed total SOC for specific plant function types (PFTs; Section 2.5), followed by 
model validation (Section 2.6) and historical and future simulations (Section 2.7).

2.2. Development of Carbon Fraction Data Sets to Match With Soil Carbon Pools

To link the SOC pools in DAYCENT with measurable C fractions, we used seven long-term research sites located 
in the United States (Cavigelli et  al.,  2008; Gollany,  2016; Ingram et  al.,  2008; Liebig et  al.,  2010; Schmer 
et  al., 2014; Sindelar et  al., 2015; Syswerda et  al., 2011), which span a range of climatic, land use and land 
management gradients (Table 1). Six of seven research sites are part of Long-Term Agroecosystem Research 

Site name Sampling location Lon Lat Tavg (°C) Annual precip. (mm) Elev (m) Land use Data avail. Reference

Lower Chesa. Bay Beltsville, MD −76.9 39.1 12.8 1,110 41 CS 1996–2016 Cavigelli 
et al. (2008)

CPCRC-NTLTE Pendleton, OR −118.4 45.4 10.6 437 456 WW-FA 2005–2014 Gollany (2016)

Cent. Plains Exp. Ran. Cheyenne, WY −104.9 41.2 8.6 425 1,930 C3-C4 Gra. 2004–2013 Ingram 
et al. (2008)

Northern Plains Mandan, ND −100.9 46.8 4 416 593 C3-C4 Gra. 1959–2014 Liebig 
et al. (2010)

Platte/High Plains Aq. Lincoln, NE −96.5 40.9 11 728 369 CC,CS 1998–2011 Sindelar 
et al. (2015)

Platte/High Plains Aq. Mead, NE −96.0 41.0 9.8 740 349 CC 2001–2015 Schmer 
et al. (2014)

Kellogg Bio. Station H. Corners, MI −85.4 42.4 9.7 920 288 CSW-Gra. 1989–2017 Syswerda 
et al. (2011)  a

Note. CS: Corn-Soya; WW: Winter Wheat; FA: Fallow; CC: Continuous Corn, SC: Soya-Corn, CSW: Corn-Soya-Wheat, Gra.: Grass.
 aH. Corners, MI is a LTER & LTAR site; CPCRC-NTLTE: Columbia Plateau Conservation Research Center No-Till Long-Term Experiment.

Table 1 
General Attributes of the LTAR, LTER, and CPCRC-LTE Sites Used for DAYCENT Parameterization and Calibration
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(LTAR) network focused on sustainable intensification of agricultural production. The remaining site is part 
of Columbia Plateau Conservation Research Center (CPCRC) Long-Term Experiment (LTE). At each site, we 
predicted the POC, MAOC and PyC fractions using a diffuse reflectance mid-infrared (MIR) spectroscopy-based 
model as detailed in Sanderman et al. (2021). The predictive models for the C fractions were developed from a 
database of fully fractionated soil samples using a combination of physical size separation and solid-state  13C 
NMR spectroscopy (Baldock, Sanderman, et  al.,  2013) of Australian (Baldock, Hawke, et  al.,  2013) and US 
origin (Sanderman et al., 2021). All samples for model development were scanned using a Thermo Nicolet 6700 
FTIR spectrometer with Pike AutoDiff reflectance accessory located at the Commonwealth Scientific and Indus-
trial Research Organization (CSIRO) in Australia. The soil samples from all the long-term research sites were 
scanned using a Bruker Vertex 70 FTIR equipped with a Pike AutoDiff reflectance accessory located at Wood-
well Climate Research Center in the United States. For all samples, spectra were acquired on dried and finely 
milled soil samples. Since the SOC fraction model and the soil samples were scanned using different instru-
ments, we developed a calibration transfer routine to account for the differences in spectral responses between the 
Commonwealth Scientific and Industrial Research Organization (CSIRO; primary) and Woodwell (secondary) 
instruments by scanning a common set of 285 soil samples. The calibration transfer routine was developed using 
piecewise direct standardization (PDS) as described in Dangal and Sanderman (2020).

For estimating C fractions of the prediction set (i.e., soil spectra of seven long-term research sites), we used a 
local memory based learning (MBL) approach that fits a unique target function corresponding to each sample in 
the prediction set (Dangal et al., 2019; Ramirez-Lopez et al., 2013). The MBL selects spectrally similar neighbors 
for each sample in the prediction sets to build a unique SOC fraction model for each target sample. The MBL 
was optimized by developing a soil C fraction model using a range of spectrally similar neighbors and selecting 
the neighbors that produce the minimum root mean square error based on local cross validation. Before develop-
ing the soil C fraction model, the spectra of both the calibration and prediction sets were baseline transformed. 
Following baseline transformation, spectral outliers were detected using F-ratios (Hicks et al., 2015). The F-ratio 
estimates the probability distribution function of the spectra and picks samples that fall outside the calibration 
space as outliers (Dangal et al., 2019). Observation data used for building the soil C fraction model were square 
root transformed before model development and later back-transformed when estimating the goodness-of-fit. The 
performance of predictive models is shown in Table S1 in Supporting Information S1.

The predicted soil C fractions for the seven long-term research sites were then converted into C fraction stocks 
using the relationship between C fraction (%), bulk density (BD; g/cm 3) and the depth (cm) of soil samples. Since 
the BD data were not available for all long-term research sites for different crop rotation and grazing intensities, 
we predicted BD using methods similar to those described above. The only difference was that the samples 
used to develop the BD model were based on a much larger database of soil spectra scanned at the Kellogg 
Soil Survey Laboratory (KSSL) in Lincoln, USA (Dangal et al., 2019). Before predicting BD, the calibration 
transfer, as documented in Dangal and Sanderman (2020), between the Kellogg Soil Survey Laboratory (KSSL) 
and Woodwell soil spectra were developed and the local modeling approach (i.e., MBL) was used to make final 
prediction for samples with missing laboratory BD. Calibration transfer between the spectrometers at the Wood-
well (secondary instrument) and Kellogg Soil Survey Laboratory (KSSL) (primary instrument) laboratory was 
necessary to improve prediction of BD (R 2 = 0.46 – 0.64 and RMSE = 0.26 – 0.50; Dangal & Sanderman, 2020).

One of the technical challenges associated with the comparison of simulated pool sizes against diffuse reflectance 
spectroscopy-based predictions of POC, MOAC and PyC at long-term research sites was the absence of labora-
tory data on C fractions to validate the MIR based predictions. To address this shortcoming, we first compared the 
sum of the MIR based predictions of POC, MOAC and PyC against observation of total SOC available at these 
sites (Figure S1 in Supporting Information S1). When comparing the total SOC against MIR based predictions, 
we did not limit the comparison to 20 cm, but allowed it across the full soil depth profile based on the availability 
of SOC data at the seven long-term research sites. The MIR based predictions of the sum of POC, MAOC and 
PyC are in close agreement with laboratory based SOC content for both croplands (R 2 = 0.79; RMSE = 0.28%) 
and grasslands (R 2 = 0.88; RMSE = 0.52%; Figure S1 in Supporting Information S1). Additionally, the labo-
ratory data used for model comparison were available at multiple depths of up to 60 cm often without a direct 
measurement for the 0–20 cm depth necessitating an approximation of the 0–20 cm stock. For example, when 
soils were collected from 0–15 to 15–30 cm, we estimated the 20 cm SOC stock by adding 1/3 of the 15–30 cm 
SOC stock to the entire 0–15 cm SOC stock.
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2.3. Input Data Sets for Driving the DAYCENT Model

The US Great Plains region was delineated using the Level I ecoregions map (Omernik & Griffith, 2014) avail-
able through the Environmental Protection Agency (https://www.epa.gov/eco-research/ecoregions-north-amer-
ica). The data sets for driving the DAYCENT were divided into two parts: (a) dynamic data sets that include 
time series of daily climate (precipitation, maximum and minimum temperature), annual land cover land use 
change (LCLUC) and land management practices (irrigation, fertilization and cropping system, tillage intensity) 
and (b) static data sets that include information on soil properties (soil texture, pH, and bulk density; Sander-
man et al., 2021), and topography maps (Jarvis et al., 2008). For the historical period (1895–2005), we used a 
combination of VEMAP and PRISM (1895–1979) and DAYMET (1980–2005; Daly & Bryant,  2013; Kittel 
et al., 2004; Thornton et al., 2012). The VEMAP data sets are available at a daily time step and a coarser spatial 
resolution (0.5° × 0.5°), while the PRISM data sets are available at a monthly time step and a finer spatial resolu-
tion (10 × 10 km). We interpolated the PRISM data at a daily time step by using the daily trend from the VEMAP 
data sets such that the monthly precipitation totals and monthly average temperature matches the monthly climate 
from the PRISM data. For the future (2006–2100), we used the Intergovernmental Panel on Climate Change 
(IPCC) fifth assessment report (AR5) RCP4.5 and RCP8.5 climate scenarios available at a spatial resolution 
of 1/16° × 1/16°. We chose the second-generation Canadian earth system model (CanESM2) developed by the 
Canadian Centre for Climate Modeling and Analysis (Barker et al., 2008) to downscale the daily climate varia-
bles at a spatial resolution of 1/16° × 1/16° using the localized reconstructed analogs (LOCA) method (Pierce 
et al., 2014). While we also examined other downscaled product, outputs from the CanESM2 better match with 
historical change in climate variables during 1950–2005.

For annual LCLUC, we used spatially explicit data sets available at a resolution of 250 × 250m for the historical 
(1938–2005) and future (2006–2100) periods under the IPCC fourth assessment report (AR4) A2 scenario (Sohl 
et al., 2012). We used only the A2 land cover scenario because there was not much difference in the trajectories 
of land cover change through 2100. For the period 1895–1937, we backcasted the proportional distribution of 
croplands and grasslands by integrating the Sohl et  al.  (2012) data with HYDE v3.2 data (Klein Goldewijk 
et al., 2017). We estimated the fractional distribution of croplands and grasslands by calculating the total number 
of pixels dominated by each land cover type at 250m resolution within each 1/16° grid cell (Figure S2a in 
Supporting Information S1). Irrigation and fertilization data are based on census of agriculture statistics (Falcone 
& LaMotte, 2016). All data sets were interpolated/aggregated to a common resolution of 1/16° × 1/16° (approx-
imately 7 × 7 km at the equator).

Cropping systems and crop rotation are based on county level data for the US Great Plains region available 
through Hartman et al. (2011), which were merged with tillage type and intensity data (Baker, 2011) to write 24 
unique schedule files that describe grid-specific cropping system and crop management practices. The 24 unique 
schedule files include sequences of time blocks, with each block describing a unique set of crop types, crop rota-
tion, tillage type, tillage intensity, fertilization, irrigation and residue removal (Hartman et al., 2011). Using these 
schedule files, we developed an unsupervised classification algorithm (K-means) to create 24 unique clusters as 
a function of long-term average climate (precipitation, minimum- and maximum-temperatures), land forms, land 
cover type and elevation. We then assigned all the grid cells to one of the 24 unique clusters to create a spatially 
explicit data set on cropping system and crop rotation. While developing the unsupervised classification algo-
rithm, the eastern part of the US Great Plains region dominated by corn (Zea mays L.)—soybean (Glycine max 
(L.) Merr.) rotation was underrepresented. To address this shortcoming, we used randomly selected grid points 
from the CropScape data (https://nassgeodata.gmu.edu/CropScape/) available through the USDA National Agri-
cultural Statistics Service in the unsupervised classification algorithm. Additionally, cropping systems classified 
using the unsupervised algorithm was verified against current CropScape data allowing for realistic representa-
tion of cropping systems. During the verification, we retained 30% of the samples as independent sets. Appli-
cation of the model against independent sets show that the unsupervised algorithm can predict crop rotation for 
all crop types with an accuracy of >70% (Figure S3 in Supporting Information S1). The distribution of schedule 
files representing different crop rotation and crop types used to build the unsupervised classification is shown in 
Figure S2b in Supporting Information S1 and the spatial distribution of crop rotations based on the unsupervised 
classification is shown in Figure S4 in Supporting Information S1.

https://www.epa.gov/eco-research/ecoregions-north-america
https://www.epa.gov/eco-research/ecoregions-north-america
https://nassgeodata.gmu.edu/CropScape/
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2.4. Model Parameterization to Link DAYCENT Conceptual Pools With C Fractions

The SOC dynamics in the DAYCENT consists of the first-order kinetic exchanges among conceptual pools 
(active, slow, and passive) defined by empirical turnover rates (Parton et al., 1987). However, a major impetus 
for quantifying these pools comes from the fact that the size and distribution of SOC in the different pools cannot 
be directly linked with experimental data. Here, we developed a methodology to link the conceptual active, slow 
and passive pools to spectroscopy-based estimates of POC, MAOC, and PyC fractions. The rate of decomposi-
tion across POC, MAOC, and PyC are consistent with the potential turnover rates assigned to the active, slow, 
and passive pools in some SOC models (Baldock, Sanderman, et al., 2013). For DAYCENT, there is conceptual 
agreement between the active and slow pools and the POC and MAOC fractions, respectively; however, we 
recognize (and discussion in Section  3.5) that the passive pool and PyC fraction are not necessarily aligned 
conceptually due to different modes of formation.

Here, we optimized the potential turnover rates in the DAYCENT model such that the absolute difference between 
the simulated SOC and predicted C fractions was minimized (see Section 2.5 below). When matching the soil 
pools with C fraction data, we compared the sum of belowground structural, metabolic and active pool SOC to 
POC, slow pool SOC to MAOC, and passive pool SOC to PyC. Details on matching the conceptual pools with C 
fraction data are provided in Figure S5 in Supporting Information S1.

During the parameterization process, we tuned the potential decomposition rates (k) of only the DCfrac, while the 
default value available from Hartman et al. (2011) were used for the DCdef. The DAYCENT version used by Hart-
man et al. (2011) has been widely applied to study the impacts of climate and land use on SOC stocks and green-
house gas fluxes for major crop types in 21 representative counties in the US Great Plains agricultural region. 
When tuning the parameter of DCfrac, we determined the upper (+60%) and lower (−60%) bounds of k using 
default value (Table 1). We then tuned the k value of each pool by running the DAYCENT at seven long-term 
research sites (Figure 1; Table 2), and comparing the simulated SOC in active, slow, and passive pools with the 
POC, MAOC and PyC fractions, respectively. The DCfrac and DCdef models were then reran during model calibra-
tion (Section 2.5), evaluation (Section 2.6), as well as during the historical and future simulations (Section 2.7).

In the current DAYCENT model, total SOC is defined as follows:

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝐿𝐿𝐿𝐿𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑠𝑠𝑡𝑡𝐿𝐿𝑎𝑎𝑚𝑚 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑡𝑡𝑠𝑠𝑠𝑠𝐿𝐿𝑎𝑎𝑚𝑚 (1)

where,

Litstrc = structural litter pool

Litmetab = metabolic litter pool

SOCactive = active SOC pool

SOCslow = slow SOC pool

SOCpassive = passive SOC pool

Each of the above SOC pool has a specific potential decomposition rates that determines the time (ranging 
from years to centuries) until decomposition. Plant material is transferred to the active, slow and passive pools 
from aboveground and belowground litter pools and three dead pools. Total C flow (CFact) out of the active 
pool is a function of potential decomposition rates modified by the effect of moisture, temperature, pH, and 
soil texture.

𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑎𝑎 × 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑎𝑎𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑒𝑒 × 𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑𝑎𝑎 × 𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒𝑒𝑒 × 𝑑𝑑𝑎𝑎𝑑𝑑 (2)

where,

CFact = the total amount of C flow out of the active pool (g C m −2)

kact = intrinsic decomposition rate of the active pool (yr −1)

SOCact = SOC in the active pool (g C m −2).

bgdec = the effect of moisture and temperature on the decomposition rate (0–1)
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cltact = the effect of cultivation on the decomposition rate for crops (0–1) for the active pool

textef = the effect of soil texture on the decomposition rate (0–1)

anerbdec = the effect of anaerobic conditions on the decomposition rate (0–1)

pHeff = the effect of pH on the decomposition rate (0–1)

dtm = the time step (fraction of year)

The respiratory loss when the active pool decomposes is calculated as:

CO2(𝑎𝑎𝑎𝑎𝑎𝑎) = 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑝𝑝1CO2 (3)

where,

CO2(act) = respiratory loss from the SOCact pool (g C m −2)

p1CO2 = scalar that control respiratory CO2 loss computed as a function of 
intercept and slope parameters modified by soil texture.

The C flow from active to passive pool is then computed as:

𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎2𝑝𝑝𝑎𝑎𝑝𝑝 = 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑓𝑓𝑝𝑝𝑝𝑝1𝑝𝑝3 × (1 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 × (1 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) (4)

where,

CFact2pas = C flow from the active to the passive pool (g C m −2)

fps1s3 = impact of soil texture on the C flow (0–1)

Pools

DCdef DCfrack (yr −1)

k(yr −1)
Parameter 

range N Optimized
Absolute 
change

Relative 
change 

(%)

Active 7.30 (3,12) 301 3.50 −3.80 −52

Slow 0.20 (0.10,0.30) 201 0.14 −0.06 −30

Passive 0.0045 (0.001,0.0085) 351 0.0075 0.003 +67

Note. The absolute and relative column refers to magnitude and percent 
difference in k values between default and optimized parameters.

Table 2 
Default/SOC-Only-Constrained (DCdef) and Fraction-Constrained (DCfrac) 
Decomposition (k) Parameters Used in the DAYCENT to Simulate the Size 
of Different Carbon Pools

Figure 1. Parameterization of kactive, kslow and kpassive using carbon fractions predicted across long-term research sites. Each 
colored curve represents the change in soil organic carbon (SOC) stocks as a function of potential decomposition rates at 
seven long-term research sites. The dashed black line represents the potential decomposition rates (k) that is optimized 
when the absolute difference between the fraction-constrained (DCfrac) simulated SOC in different pools and the predicted C 
fractions is minimum. The dashed green line represents the size of different soil SOC pools using the default k value based 
on default/SOC-only-constrained (DCdef) model. The dashed gray line is the average particulate-, mineral associated- and 
pyrogenic-forms of C (POC [i.e., active], MAOC [i.e., slow], and PyC [i.e., passive]) predicted using the combination of 
diffuse reflectance spectroscopy and machine learning at seven long term research sites.
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animpt = the slope term that controls the effect of soil anaerobic condition on C flows from active to passive 
pool (0–1)

anerb = effect of anaerobic condition on decomposition computed as a function of soil available water and poten-
tial evapotranspiration rates

The C flow from active to the slow pool is then computed as the difference between total C flow out of the active 
pool, respiratory CO2 loss, C flow from active to passive pool and C lost due to leaching. Mathematically,

𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎2𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 − CO2(𝑎𝑎𝑎𝑎𝑎𝑎) − 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎2𝑝𝑝𝑎𝑎𝑠𝑠 − 𝐶𝐶𝑠𝑠𝑙𝑙𝑎𝑎𝑎𝑎𝑙 (5)

where,

Cleach = C lost due to leaching calculated as a function of leaching intensity (0–1) and soil texture

Likewise, total C flow (CFslo) out of the slow pool is a function of potential decomposition rates modified by the 
effect of moisture, temperature, pH, and soil texture.

𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑆𝑆𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑑𝑑𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒𝑒𝑒 × 𝑑𝑑𝑐𝑐𝑑𝑑 (6)

kslo = intrinsic decomposition rate of the slow pool (yr −1)

SOCslo = SOC in the slow pool (g C m −2)

cltslo = the effect of cultivation on the decomposition rate for crops (0–1) for the slow pool

The respiratory loss when the slow pool decomposes is calculated as:

𝐶𝐶𝐶𝐶2(𝑠𝑠𝑠𝑠𝑠𝑠) = 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑝𝑝2𝐶𝐶𝐶𝐶2 (7)

where,

CO2(slo) = respiratory loss from the SOCslo pool (g C m −2)

P2CO2 = parameter that controls decomposition rates of the slow pool (0–1)

The C flow from slow to passive pool is then computed as:

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠2𝑝𝑝𝑝𝑝𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑓𝑓𝑝𝑝𝑠𝑠2𝑠𝑠3 × (1 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 × (1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) (8)

where,

fps2s3 = impact of soil texture on decomposition (0–1)

The C flow from slow to active pool is then computed as a difference between total C flow out of the slow pool, 
respiratory CO2 loss and total C flow from slow to passive pool. Mathematically,

𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 − CO2(𝑠𝑠𝑠𝑠𝑠𝑠) − 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠2𝑝𝑝𝑎𝑎𝑠𝑠 (9)

Likewise, total C flow (CFpas) out of the passive pool is a function of potential decomposition rates modified by 
the effect of moisture, temperature and pH.

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑆𝑆𝑆𝑆𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑑𝑑𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒𝑒𝑒 × 𝑑𝑑𝑐𝑐𝑑𝑑 (10)

where,

kpas = intrinsic decomposition rate of the passive pool (yr −1)

SOCpas = SOC in the slow pool (g C m −2)

cltpas = the effect of cultivation on the decomposition rate for crops (0–1) for the passive pool

The CFpas is either lost through respiratory processes or transferred to the active pool using the following equation:

CO2(𝑝𝑝𝑝𝑝𝑝𝑝) = 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝3𝑐𝑐𝑐𝑐2 (11)

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝2𝑝𝑝𝑎𝑎𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × (1 − 𝑝𝑝3𝑎𝑎𝑐𝑐2)) (12)
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where,

CO2(pas) = respiratory loss from the passive SOC pool (g C m −2)

p3co2 = parameter that control decomposition rates of passive pool (0–1)

CFpas2act = C flow from passive to active pool (g C m −2)

The rate modifiers used in Equations 2, 6 and 10 are explained in Text S1 in Supporting Information S1. Since 
DAYCENT is a donor-controlled model and changes in organic matter are primarily driven by a top down 
approach, we first parameterize the active soil pool by comparing the simulated SOC in the active pool against 
POC predicted using diffuse reflectance spectroscopy. During the parameterization process, we varied the poten-
tial decomposition rates (kactive) by running the model to equilibrium under native vegetation for 2,000 years. We 
then used site history at seven long-term research sites to create schedule files and simulate the effects of histori-
cal cropping systems, land use change, land management and grazing practices on the active SOC.

We repeated the above process for parameterizing the slow- and passive-carbon pools by comparing it with 
MOAC and PyC, respectively. Similar to the active pool, we tuned the existing parameters based on the default/
SOC-only-constrained model that controls the potential decomposition rates (kslowand kpassive) of the slow- and 
passive-pools. The active, slow, and passive pools were optimized sequentially. When optimizing the decom-
position rates of the slow pool, we used the kactive value and reran the model to determine the optimized kslow 
value. Likewise, for the passive pool, we repeated the same process but with optimized kactive and kslow values. 
The parameters were optimized when the averaged absolute difference between the SOC stocks of the respective 
pools across all the sites were minimum. During the optimization process, we ran the model iteratively within 
60% (upper and lower bounds) of the DCdef to determine the optimized parameters (Table 2).

2.5. Model Calibration and Simulation Procedure

The DAYCENT model has been well calibrated across a range of climatic, environmental, and land use gradi-
ents for different crop and grassland types. Details of the recommended calibration procedure can be found in 
Hartman et al. (2011). The calibration procedure explained here applied to both the DCdef and DCfrac models. 
Briefly, adjustment of key model parameters that control plant growth and SOM changes were made by changing 
the schedule files at each point in time. For example, transitioning to higher yielding corn varieties occurred 
in 1936, while the short and semi-dwarf wheat varieties were introduced in the 1960s. During the calibration 
process, model parameters that control the maximum photosynthetic rate and grain to stalk ratio were adjusted 
within realistic limits to account for improvement in crop varieties. The upper and lower bounds of the calibration 
parameters were determined from literature and the model parameter were adjusted within these bounds, such 
that the simulated C stocks and fluxes matches with the observation. Additionally, adjustments in the schedule 
files were made to account for residue removal in early years, while residues were retained in later years, thereby 
increasing nutrient input to the soils. These calibration strategies have allowed to better capture crop dynamics in 
the US Great Plains region (Hartman et al., 2011).

Model simulation begins with the equilibrium run starting from year zero to year 1894 by repeating daily climate 
data from 1895 to 2005 and native vegetation without disturbance or land use change. Following the equilibrium 
run, we performed a historical simulation to quantify the effects of land use history, land management practices, 
and climate change on the evolution of SOC during 1895–2005. Finally, we performed future simulations using 
two climate scenarios (RCP4.5 and RCP8.5) and A2 LCLUC, with land management practices (i.e., irrigation, 
fertilization, tillage practices, and crop rotation) held at 2005 levels during 2006–2100.

2.6. Model Validation at Site and Regional Scales

The performance of the calibrated model was assessed by comparing simulated SOC in the active, slow, and 
passive pools against predictions of POC, MAOC, and PyC, respectively, at the seven long-term research sites. 
Model calibration was performed for specific PFTs (crops, C3 and C4 grass), while validation was carried out 
at a given site, both under changing climate, land use and management. In the validation procedure, we ran the 
model at these sites using plant growth and soil parameters determined from model calibration, but with changing 
climate, environmental, and land use data based on the land use history of the respective sites. For all the sites, 
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we compared the distribution of SOC in different pools and evaluated model performance using linear regression 
and the goodness-of-fit statistics (bias, R 2, RMSE).

We also compared the distribution of SOC simulated using DAYCENT against the machine learning model-based 
predictions of POC, MAOC, and PyC for the US Great Plains ecoregion (Sanderman et al., 2021). Additionally, 
we compared simulated total SOC against two other SOC maps for the contemporary period (Hengl et al., 2017; 
Ramcharan et al., 2018).

2.7. Historical and Future Changes in SOC Stocks

To quantify the effect of the new parameterization scheme linking measurable soil C pools with conceptual 
active, slow, and passive pools from the DAYCENT, we designed two scenarios. In the first scenario, we ran 
the model using the DCdef and the DCfrac model that links conceptual pools with C fraction during the historical 
period (1895–2005) to quantify the differences in SOC across different pools associated with different parame-
terization. We used daily climate data developed by merging PRISM, VEMAP and DAYMET climate products. 
For historical LCLUC, we used Sohl et al. (2012) during 1938–2005 and HYDE v3.2 during 1895–1937 (see 
Section 2.3 above). In the second scenario, we performed future simulations to understand if the different model 
structures (DCdef vs. DCfrac) result in different effects of climate and LCLUC on SOC stocks. We used the IPCC 
AR5 RCP8.5 and RCP4.5 climate scenarios and the IPCC AR4 A2 LCLUC scenarios to quantify the effects of 
future climate and LCLUC change on SOC stocks. The RCP8.5 corresponds to the pathway that tracks current 
global trajectories of cumulative CO2 emissions (CO2 levels reaching 960 ppm by 2100) with the assumption 
of high population growth and modest rates of technological change and energy intensity improvements (Riahi 
et al., 2011; Schwalm et al., 2020). The RCP4.5 is a modest emission scenario with CO2 levels reaching 540 ppm 
by 2100 under the assumption of shift toward low emission technologies and the deployment of carbon capture 
and geologic storage technology (Thomson et al., 2011). The A2 land cover scenario emphasizes rapid population 
growth and economic development, and resembles closely to the RCP8.5 scenario. We used the AR4 for LCLUC 
because Sohl et al. (2012) data were available at high resolution and allowed for smoother transition between land 
cover types when moving from historical to future A2 LCLUC scenarios. The purpose of the second scenario is 
to better understand the response of SOC to future climate and LCLUC and examine the effect of the constraining 
conceptual soil pools with C fractions on the projected change in total SOC through 2100.

3. Results and Discussion
By quantifying the size and distribution of conceptual SOC pools of ecosystem models using a combination 
of diffuse reflectance spectroscopy and machine learning, we were able to modify DAYCENT by relating 
the conceptual active, slow and passive pools with measurable POC, MAOC and PyC fractions (Section 3.1). 
Model constrained by C fractions led to more accurate representation of the magnitude and distribution of SOC 
(Section 3.2) and was necessary to accurately quantify the legacy effect of previous land use under a changing 
climate and reproduce current SOC stocks compared to the default model (Section 3.3). Projection of future SOC 
change show that the DCdef underestimates the SOC loss in response to climate and land cover change by 31% and 
29% for croplands and grasslands, respectively (Section 3.4). Overall, our results demonstrate that relating the 
pools sizes from the ecosystem model with C fraction data is necessary to better initialize SOC pool and simulate 
SOC response to climate and land use into the future.

3.1. Model Evaluation of Total SOC and the Distribution of SOC at Long-Term Research Sites

The DCfrac model linking conceptual soil pools to measurable C fractions showed better representation of the 
distribution of C stocks across different pools compared to the DCdef model (Figures 2 and 3). When the mean 
SOC at these sites were compared to DCfrac and DCdef simulated SOC, DCfrac had better fit (R 2 = 0.52) and lower 
RMSE (8.49 Mg C ha −1) compared to DCdef (R 2 = 0.40; RMSE = 8.93 Mg C ha −1; Figure S6 in Supporting Infor-
mation S1). The mean SOC based on observation for these sites was 38.96 Mg C ha −1, which is comparable to 
the sum of predicted C fractions (37.07 Mg C ha −1) and simulated SOC using DCfrac (42.30 Mg C ha −1) and DCdef 
(36.60 Mg C ha −1) models. The DCfrac simulated SOC was higher than observation and machine learning based 
SOC by 9% and 12%, respectively, while DCdef showed under-predicted SOC by 6% compared to observation. 
Although DCfrac showed a tendency toward over-prediction, assessment of the distribution of SOC demonstrated 
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that DCfrac was able to better simulate the distribution of SOC in soil pools compared to DCdef. The DCfrac simu-
lated the highest proportion of C in the slow (56%) pool followed by the passive (30%) and active (14%) pools, 
which is comparable to the machine learning model-based estimates of MAOC (57%), PyC (29%) and POC 

Figure 2. Comparison of the machine learning (ML) and DAYCENT simulated soil organic carbon (SOC) using the fraction-constrained (DCfrac) and default/
SOC-only-constrained (DCdef) models at long-term research sites with a known cropping history (n = 387). The black dots in the boxplot represent the SOC at the 
various sites plotted by adding a random value along the y-axis such that they do not overlap with each other.

Figure 3. Comparison of the machine learning (ML) and DAYCENT simulated soil organic carbon (SOC) using the fraction-constrained (DCfrac) and default/
SOC-only-constrained (DCdef) models across different pools at two long-term research sites dominated by grasslands with a known grazing history (n = 201). The black 
dots in the boxplot represent the SOC across different sites plotted by adding a random value along the y-axis such that they do not overlap with each other.
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(14%), respectively. Unlike DCfrac, DCdef model simulated the highest proportion of C in passive (53%), followed 
by slow (39%) and active (8%) pools (Table S2 in Supporting Information S1).

Evaluation of the model performance for grasslands and croplands showed that the DCfrac outperformed the DCdef 
with better model fit (R 2 = 0.60), lower bias (−1.94 Mg C ha −1) and lower RMSE (6.7 Mg C ha −1) for grasslands 
(Figure S7 in Supporting Information S1). The DCfrac also produced better model fit for croplands (R 2 = 0.48), 
but higher bias (−5.84 Mg C ha −1) and RMSE (8.86 Mg C ha −1) compared to the DCdef model (bias = −0.82 and 
RMSE = 7.45 Mg C ha −1). The DCfrac was able to better represent the distribution of C in the active, slow and 
passive pools for both grasslands and croplands, while DCdef showed large discrepancies when representing the 
distribution of SOC for croplands (Table S2 in Supporting Information S1).

The results of this exercise demonstrate that tuning the model parameters to initialize the conceptual SOC pools 
by matching with C fraction data can reproduce the distribution of SOC (Figures 2 and 3), building confidence 
in the modeling of SOC stocks, and their pool distribution (Lee & Viscarra Rossel, 2020; Luo et  al.,  2016). 
A common approach to initializing soil C pools is based on the use of soil C steady-state conditions, which 
is primarily achieved by running the model over a long period of 100–10,000 years under native vegetation. 
However, this approach has shown large uncertainty in the estimation of contemporary SOC partly due to differ-
ences in parameter values used to determine the initial SOC stocks, which vary many fold across models (Tian 
et al., 2015; Todd-Brown et al., 2014). Additionally, the size and distribution of the soil C pools are constrained 
by model structure and parameter values producing large differences in initial conditions, which ultimately prop-
agates into uncertainties in historical and future projection of SOC change (Ogle et al., 2010; Shi et al., 2018). 
Relating these conceptual pools to measurable C fractions by tuning parameters that control decomposition rates 
can help to constrain initial pool size and reduce uncertainties related to initial SOC stocks across different 
models (Christensen, 1996; Luo et al., 2014; Zimmermann et al., 2007). Results of this study show that tuning the 
potential decomposition rates within reasonable range (Figure 1) can effectively capture the distribution of SOC 
among different pools without significantly altering the magnitude of total SOC (Figures 2 and 3).

While tuning the parameters that control potential decomposition rates, active, and slow pools were adjusted by 
−3.8 yr −1 (−52% compared to default rate) and −0.06 yr −1 (−30%) respectively, and passive pool was increased 
by 0.003 yr −1 (67%) to match with C fractions data at the long-term research sites. These modifications were 
done such that the model was able to simulate total SOC and their distribution under current climatic, and land 
use conditions while also allowing to capture the legacy effect of previous land use, crop rotation, and tillage 
practices. It is important to note that other soil C models use C fraction data obtained under land use of varying 
intensities to run the model to steady state (Zimmermann et al., 2007), although soils under continuous use are in 
a transient state (Wieder et al., 2018). The rate and direction of SOC change can be modified by environmental 
factors, previous land use, and current management practices (e.g., intensity, cropping systems and fertilization/
irrigation), which ultimately determine a new equilibrium or transient state (Chan et al., 2011; Van Groenigen 
et al., 2014). Here, we run the model to steady state conditions to tune the potential decomposition rates param-
eter using measured C fraction data for simulating the SOC stocks of active-, slow- and passive-pools pools, 
and  evaluate model performance to current land use and management practices by matching with C fractions 
data at all the sites.

3.2. Model Evaluation of Net Primary Productivity (NPP) and SOC Stocks at the Regional Scale

Evaluation of simulated NPP using the DCdef and DCfrac models against county-level USDA-NASS NPP data 
products developed by West (2008) showed that both models simulate NPP that is representative of this region 
(Figure S8 in Supporting Information S1). The USDA-NASS data products were developed using the relationship 
between harvest area and yield in agronomic units (Hicke & Lobell, 2004). There was no significant difference in 
simulated NPP between the DCdef and DCfrac when compared to NPP product developed by West (2008). This is 
likely because model optimization we employed in the DCfrac are related to belowground decomposition, and the 
exchanges of C among the active, slow and passive pools. The inconsistencies between the simulated NPP and 
USDA-NASS data product can be attributed to differences in total cropland acreage by county. While spatially 
explicitly cropland acreage maps were used to scale cropland NPP in the DAYCENT, estimates of NPP using the 
USDA-NASS data product relies on using aggregated acreage by county. As a result, there is a mismatch between 
total cropland acreage reported by USDA-NASS and the spatial map of cropland acreage used in this study.
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Evaluation of the model performance at the regional level by comparing model simulations to three data-driven 
SOC maps showed that the DCdef under-predicts SOC stocks for the contemporary period (2001–2005 average). 
The DCfrac was better able to reproduce the spatial pattern as observed in the data driven estimates of SOC 
(Figure 4). The difference map among different data driven products and simulated SOC showed that DCfrac 
outperforms DCdef for croplands, but overestimate SOC for grasslands (Figure S9 in Supporting Information S1). 
The DCfrac simulated contemporary SOC stocks of 34.86 Mg C ha −1 were closer to the estimates based on three 
data-driven models (32.38–39.19 Mg C ha −1; Figure S10 in Supporting Information S1). The DCdef simulated 
SOC stocks of 26.17 Mg C ha −1, which is lower than the machine learning based predictions by 19%–33%. 
Interestingly, both DCdef and DCfrac were not able to reproduce the high C stocks in the northeastern Great Plains 
although data driven modeling shows large SOC stocks.

Evaluation of the model performance using a scatterplot shows that calibration of active, slow, and passive pools 
was necessary to produce unbiased estimates of SOC despite having slightly higher RMSE values than the DCdef 
model when compared to the different SOC data sets (Figure 5). Among the three data driven models, Sanderman 
et al. (2021) also provided prediction of POC, MAOC, and PyC in the US Great Plains region. Comparison of the 
distribution of SOC across different pools indicate that the DCfrac was able to reproduce SOC in the slow/MAOC, 
but under-predicted the size of the active/POC and passive/PyC pools by 48% and 37%, respectively (Figure S11 
in Supporting Information S1).

While the DCfrac model was able to better capture the magnitude and spatial pattern of SOC when compared 
against data based on machine learning models, the data sets themselves present a few challenges when compar-
ing with the results from this study. First, these data sets were produced using the environmental covariates 
approach under current climatic and land use conditions, and thus represent SOC dynamics using aggregated 
climate, land use, and environmental conditions over a certain period. However, in the DAYCENT model, we 
used annual and daily time series data for climatic and land use conditions to simulate the processes that control 
SOM retention and stabilization, which could lead to inconsistencies when comparing results between this study 
and data driven products. Second, outputs based on machine learning models are sensitive to the number of 
samples used in the training sets. For example, machine learning-based SOC shows higher stocks in the north-
eastern Great Plains region compared to the DCfrac or DCdef models (Figure 4). This may be because the region 
contains thousands of shallow seasonal wetlands with higher SOC stocks averaging between 78 and 109 Mg C 
ha −1 to the depth of 20 cm (Tangen & Bansal, 2020). Accounting for the large number of wetlands samples in the 

Figure 4. Spatial pattern of soil organic carbon (SOC) change during the contemporary period: fraction-constrained 
(DCfrac) (a), default/SOC-only-constrained (DCdef) (b), Sanderman et al. (2021) (c), Ramcharan et al. (2018) (d), and Hengl 
et al. (2017) (e). Data-driven SOC maps were scaled by cropland and grassland distribution maps before comparing against 
day Century-simulated SOC.
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training set would likely produce higher SOC stocks in the region. We did not specifically model wetlands SOC 
and only considered grasslands and croplands, which cover >90% of the land area in the US Great Plains region 
and as such may have underrepresented these high SOC ecosystems.

3.3. Historical Changes in SOC Stocks and Their Distribution

When the baseline SOC (1895–1899 average) values were compared with the current (2001–2005 average) SOC 
stocks, the DCfrac and DCdef models simulated a loss of 1,063 Tg C (12%) and 634 Tg C (10%), respectively. On 
a per unit area basis, DCfrac showed higher absolute (17.62 Mg C ha −1) and relative (33%) SOC losses compared 
to the loss of 10.60 Mg C ha −1 (27%) using DCdef for croplands. Grasslands showed similar patterns of higher 
absolute (2.51 Mg C ha −1) and relative (4%) SOC losses using DCfrac compared to the loss of 1.06 Mg C ha −1 
(3%) using DCdef. Overall, croplands showed a large and significant loss of C when compared against the baseline 

Figure 5. Scatter plots of the comparison of DAYCENT simulated soil organic carbon (SOC; fraction-constrained; DCfrac & default/SOC-only-constrained; DCdef) 
against Sanderman et al. (2021)—JS250m, Ramcharan et al. (2018)—AR100m, and Hengl et al. (2017)—SG250m.

Figure 6. Changes in contemporary (2001–2005 average) soil organic carbon (SOC) after conversion of native vegetation to croplands (a) and under native vegetation 
(b) as a function of baseline (1895–1899 average) SOC stocks. Negative values are losses while positive values are gains of SOC.
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SOC using both models, while grasslands showed both losses and gains of SOC during 1895–2005 (Figure 6). 
The SOC loss from conversion of native vegetation to croplands were on average 14.70 Mg C ha −1 and 9.29 Mg 
C ha −1 using DCfrac and DCdef, respectively. This translates into a relative loss using DCfrac that is higher than 
the loss using DCdef by 58% during 1895–2005. For grid cells under native grasslands, DCfrac simulated slightly 
higher average SOC loss (1.96 Mg C ha −1) compared to DCdef (1.39 Mg C ha −1).

The simulation of total SOC stocks following historical land use under a changing climate is constrained by 
model parameters that determine the time until decomposition, modified by the interaction of land use intensity 
with changing climate (Arora & Boer, 2010; Eglin et al., 2010). Land use change can modify total SOC through 
its effect on individual soil pools, with the POC/active pool more vulnerable to loss compared to the MAOC/slow 
and PyC/passive pools (Poeplau & Don, 2013). The potential decomposition rates using the DCfrac model were 
adjusted to match C fraction data such that higher SOC was allocated to rapid and slow cycling pools, which are 
more vulnerable to loss following land use change and management intensity at decadal to century time scales 
(Hobley et al., 2017; Sulman et al., 2018). We further compared the historical SOC loss following land use change 
against other studies to determine the robustness of the new parameterization using DCfrac. The SOC loss rate 
using DCfrac are closer to the mean 30 cm loss rate of 17.7 Mg C ha −1 (Sanderman, Hengl, & Fiske, 2017), and 
relative loss of 42%–49% following conversion of forest/pasture to croplands (Guo & Gifford, 2002). However, 
it is important to note that these previous studies are not directly comparable with the results from this study 
because of differences in sampling depth, the intensity of land use and the time since disturbance.

Comparison of the total SOC and its distribution in different pools between the two models provided a more 
nuanced picture of the effect of new parameterization on SOC stocks and the response of SOC to historical land 
use. The spatial pattern of the SOC stocks showed that the baseline SOC in the active, slow and passive pools 
simulated by the DCfrac model (Figure 7) were higher than the DCdef model (Figure S12 in Supporting Informa-
tion S1). As a result, there were higher SOC losses from the active and slow pools using DCfrac compared to DCdef 

Figure 7. The active, slow, and passive soil pools of soil organic carbon stocks (20 cm depth) based on the fraction-constrained (DCfrac) model under native vegetation 
(1895–1899 average; top maps) and following land cover land use change (2001–2005 average; bottom maps).
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(Figures 7 and S12 in Supporting Information S1). When averaged over all pixels, the cropland SOC loss in the 
active, and slow, pools were 0.85, 10.09 and gains in the passive pool was 0.34 Mg C ha −1, respectively, using 
DCdef. The DCfrac simulated larger SOC loss for all pools with active, slow, and passive pools losing SOC by 
1.48, 16.04 and 0.09 Mg C ha −1, respectively. The magnitude of SOC loss from grasslands was lower compared 
to croplands for all three pools, with the largest SOC loss from the slow pool of 1.45 and 0.49 Mg C ha −1 using 
DCfrac and DCdef models, respectively. The distribution of SOC to different pools indicated that DCdef had 44%, 
43% and 13% SOC in the passive, slow, and active pools for croplands, while DCfrac had 57% of the total SOC 
allocated to the slow pool, followed by the passive (23%) and active (20%) pools. For grasslands, both models 
were consistent in allocating the largest proportion of SOC (59% in DCdef and 70% in DCfrac) to slow pools, 
followed by passive and active pools.

The differences in the total SOC and their distribution between the models is constrained by the sensitivity 
of the SOC pools to environmental, climatic, and management factors (Davidson & Janssens, 2006; Dungait 
et al., 2012; Luo et al., 2016). The SOC stocks in the passive pool are not significantly different between the 
models at the regional level because the passive pool is less sensitive to environmental, climatic, and management 
factors, and it has a smaller contribution to total SOC (Collins et al., 2000), the SOC stocks in the passive pool 
were not significantly different between the models at the regional level. However, the active and slow pools 
respond strongly to environmental, climatic, and management constraints, which is largely driven by rapidly 
cycling fresh organic matter input in the active pool, and gradually decomposing detritus in the slow pool (Sher-
rod et al., 2005). In the DCfrac, the potential decomposition rates of the active and slow pools are adjusted, allow-
ing the model to retain more SOC to match with C fraction data. These changes resulted in higher SOC stocks 
in these pools, which translated into higher total losses despite slower turnover rates relative to DCdef. Model 
optimization was necessary not only to match total SOC values but also to simulate the distribution of SOC into 
the active, slow and passive pools.

3.4. Future Changes in SOC Stocks and Their Distribution

Projection of the SOC dynamics in response to land cover change under a changing climate resulted in greater rela-
tive changes for both croplands and grasslands using the DCfrac compared to the DCdef model (Figure 8). Despite 

Figure 8. Temporal change in the absolute soil organic carbon (SOC) stocks (20 cm depth) for croplands (a) and grasslands (c) and relative SOC loss compared to the 
1895 SOC for croplands (b) and grasslands (d) in response to land use under a changing climate through 2100. The solid and dashed lines after 2006 represent RCP4.5 
and RCP8.5 climate scenarios, respectively, both under the A2 land cover change scenario.
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greater rates of loss, by the end of the 21st century, DCfrac still simulated higher total SOC stocks compared to 
DCdef model (Table 3). By the end of 21st century, the DCfrac simulated total SOC stocks of 2,818 and 2,563 Tg C 
for croplands under the RCP4.5 and RCP8.5 scenarios, while the DCdef simulated total SOC stocks of 2,266 and 
2,082 Tg C. Native grasslands had higher SOC stocks of 3,310 and 3,095 Tg C using the DCfrac compared to the 
SOC stocks of 2,505 and 2,324 Tg C using the DCdef under the RCP4.5 and RCP8.5 scenarios, respectively. On 
a per unit area basis, absolute loss (difference between the 2095s and 2000s) were slightly higher for croplands, 
with a mean loss rate 10.43 Mg C ha −1 compared to 8.44 Mg C ha −1 for grasslands using DCfrac under the RCP8.5 
scenario (Table  3). The DCdef also simulated similar trend with slightly higher absolute losses for croplands 
(7.85 Mg C ha −1) compared to grasslands (6.55 Mg C ha −1) under the RCP8.5 scenario. Relative losses estimated 
as a percentage of contemporary SOC stocks were higher in croplands (29% for DCfrac vs. 28% for DCdef model) 
compared to grasslands (16% for both DCfrac and DCdef models) under the RCP8.5 scenario. Using the DCfrac, the 
SOC loss rate were 33% and 29% higher for croplands and grasslands, respectively, compared to the DCdef by the 
end of the 21st century under the RCP8.5 scenario. While both models simulated total SOC loss over the 21st 
century, the difference in SOC between models sums to an additional loss of 1,252 Tg SOC under the RCP8.5 
scenario.

The turnover rates of SOM are primarily driven by temperature and environmental controls with significant 
impact on the dynamics of total SOC changes at decadal to century time scales (Knorr et al., 2005). The two 
model versions used the same climate and environmental data and only differ in the turnover rates of the active, 
slow, and passive pools. Because the sizes of active, and slow pools in the DCfrac model were larger than the 
DCdef model, simulated absolute and relative losses were higher using the DCfrac compared to the DCdef for crop-
lands. Larger losses using the DCfrac are primarily associated with the legacy effects of management intensity 
and rising temperatures with larger rates of SOC loss from the active, and slow pools (Crow & Sierra, 2018) of 
DCfrac compared to DCdef. Additionally, the size of the passive pool in DCdef is larger compared to DCfrac, and this 
pool is less vulnerable to land use intensity and warming climate compared to active and slow pools. Thus, there 
was a disproportionately larger SOC loss driven by the size of the slow pool and the interaction of climate and 
management intensity using the DCfrac compared to the DCdef, which translated into larger absolute and relative 
losses of SOC. For grasslands, we did not include any management driven changes. Both absolute and relative 
losses of SOC stocks in the grasslands are primarily driven by the warming climate (Jones & Donnelly, 2004), 
with active and slow pools losing more SOC stocks using DCfrac compared to DCdef. Future work should consider 
the interactive effects of grazing management with climate.

Future land use, management intensity, nitrogen content, and climate interact in different ways to control C 
flow from soil pools with different mean residence times, which ultimately determine total SOC stocks (Deng 
et al., 2016; Luo et al., 2017; Sulman et al., 2018). Under a warming climate, SOC formed from fresh organic 

Time

Total (TgC) Per unit area (MgC/ha)

DCdef DCfrac DCdef DCfrac

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Croplands 2000s 2,113 2,717 28.51 36.17

2045s 1,988 1,938 2,588 2,513 25.20 24.80 32.41 31.87

2095s 2,266 2,082 2,818 2,563 22.31 20.66 27.91 25.87

Grasslands 2000s 3,891 5,160 40.82 54.05

2050s 3,531 3,523 4,674 4,659 38.90 38.80 51.51 51.34

2095s 2,505 2,324 3,310 3,095 36.88 34.27 48.65 45.61

Total 
(Croplands + Grasslands)

2000s 6,004 7,877 NA NA

2045s 5,519 5,461 7,262 7,172 NA NA NA NA

2095s 4,771 4,406 6,128 5,658 NA NA NA NA

Table 3 
Fraction-Constrained (DCfrac) and Default/SOC-Only-Constrained (DCdef) Simulated Absolute Changes in Total and Per 
Unit Area Soil Organic Carbon (SOC) During the 2000s, 2045s, and 2095s for Croplands and Grasslands in the US Great 
Plains Region
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matter inputs controls the size of the active/POC pool, which is further constrained by the intensity of land 
use and is more vulnerable to loss (Crow & Sierra, 2018; Lavallee et al., 2020). The active/POC pool also acts 
as a donor to the slow/MAOC pool with C transfer and rates of SOC accumulation increasingly controlled by 
temperature (Crow & Sierra, 2018). In the DAYCENT, regardless of model version, the size of the active pool 
is relatively small as fresh organic matter is either decomposed rapidly or quickly enters the slow pool following 
decomposition. The slow pool has longer residence times ranging from years to decades, and can accrue C when 
transfer rates from the active pool are higher than C losses through decomposition from the slow pool (Collins 
et al., 2000; Fontaine et al., 2007). In this study, the rates of decomposition due to rising temperatures had a 
stronger control on the size of the slow pool compared to the transfer of SOC from the active pool. As a result, 
the slow pool continued to lose SOC under projected climate changes. Although rising temperature had a strong 
control on SOC dynamics of the slow pool, it is important to recognize that the actual sensitivity of active, slow, 
and passive pools to elevated temperatures is relatively unknown (Lugato et al., 2021; Soong et al., 2021).

3.5. Limitations of the Study

Although previous studies have shown that conceptual pools can be linked to measurable fractions of SOC 
separated on the basis of soil physiochemical properties (Christensen,  1996; Luo et  al.,  2016; Zimmermann 
et al., 2007), there are limitations of matching the conceptual pools with the measurable C fractions. One of the 
main limitations is that the conceptual soil pool in the DAYCENT is simulated as a function of potential decom-
position rates modified by clay content, temperature and moisture limitations. But, the C fraction data obtained 
using a specified methodology (e.g., Baldock, Hawke, et al., 2013) are assumed to have different physiochemical 
properties compared to the formation of SOC in the conceptual soil pools.

The POC fraction is composed of plant detritus material with residence times of <5 years (Baldock, Hawke, 
et al., 2013), which is comparable to the SOC in active pool given that changes in POC and active SOC are driven 
by soil texture, temperature and moisture limitations, and management history (Zimmermann et al., 2007). In the 
DAYCENT, the active pool resembles closely with the POC because of short residence time and are assumed to 
be dominated by fresh plant residues. Likewise, the MAOC fraction is composed of highly decomposed plant 
material and microbial necromass, and is more stabilized compared to POC due to its association with reactive 
minerals (Schmidt et  al., 2011). The slow pool in the DAYCENT resembles closely with MAOC because of 
longer residence times and are assumed to be dominated by stabilized organic matter. On the other hand, the 
PyC fraction is associated with incomplete combustion of organic matter and thus have a different mechanism 
of formation compared to the passive pool in the DAYCENT, which is essentially the leftovers after extensive 
action by microbes over decades and its persistence is driven by environmental limitations. However, a recent 
study has shown that the PyC fraction is strongly correlated with clay content (Reisser et al., 2016), indicating 
that the passive pool driven by clay content with long residence time can be representative of the PyC persistence 
in soils. Conceptually, there is a pretty good match between the active and slow DAYCENT pools and their corre-
sponding measurable fractions, but the passive pool is not as well represented by the measured PyC fraction, and 
as a result, there is potential that the DCfrac simulations may not truly represent the SOC dynamics in response to 
climate, land use and management practices. However, the passive pool cycles on a multi-centennial time scale 
and as such does not contribute meaningfully to carbon dynamics for the time scales considered in this study. 
A few research groups have now developed model structures from scratch that best match the characteristics of 
the measurable fractions (Abramoff et al., 2018, 2021; Zhang et al., 2021), while other models now explicitly 
represent microbial activity by accounting for the relationship between litter quality, microbial physiology, and 
the physical protection of microbial products (Wieder et al., 2014; Woolf & Lehmann, 2019).

4. Conclusions
In this study, we developed an approach to link conceptual soil pools in biogeochemical models against measur-
able C fractions. We then quantified the long-term evolution of SOC change and projected the SOC response to 
future climate and land cover scenarios using the fraction-constrained (DCfrac) model that has been calibrated to 
C fraction data. Our results demonstrate that matching the active, slow and passive pools against POC, MOAC 
and PyC data lead to better representation of total SOC stocks and the distribution of SOC into different pools. 
With the updated model, the long-term legacy effect of past agricultural management results in larger absolute 
and relative losses of SOC compared to the default/SOC-only-constrained (DCdef) model. Projecting the SOC 
response to climate and land cover change into the future (2005–2100) indicates that, by the end of 21 st Century, 
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the DCfrac increases SOC losses by 32% and 28% for croplands and grasslands, respectively, under the RCP8.5 
scenario compared to using the DCdef model.

There are several study limitations that need to be addressed in our future work. First, new modeling efforts 
should also consider quantifying how changes in quantity and quality of aboveground biomass inputs affect SOC 
dynamics given mixed results in agricultural systems in response to litter inputs (Halvorson et al., 2002; Sander-
man, Creamer, et al., 2017). Second, current models rely on using clay content to modify rates of SOM stabiliza-
tion and turnover, but recent research has shown that other soil physicochemical properties such as exchangeable 
calcium and extractable iron and aluminum are stronger predictors of SOM content (Rasmussen et al., 2018). 
Third, new modeling efforts should constrain model parameters affecting SOC dynamics by integrating them 
with data-driven modeling and long-term experimental data (Jandl et al., 2014). Finally, given the paucity of data 
related to C fractions, there is increasing need for measurement and modeling of C fractions across a wide range 
of environmental and management gradients (Luo et al., 2017). Despite these limitations, we have shown that 
models calibrated to pool sizes by matching with C fractions can improve long-term SOC predictions by more 
accurately representing soil C transformations in response to climate, land cover and land use change.
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Text S1. Explanation of rate modifiers used in equations 2, 6 and 10 

Effect of moisture and temperature on belowground decomposition 

The bgdec (0-1) is calculated as a product of a temperature (tfunc) and moisture (wfunc) effect on 

decomposition.  

𝑏𝑔 𝑡𝑓𝑢𝑛𝑐  𝑤𝑓𝑢𝑛𝑐         (1) 

 

The temperature effect on decomposition is a variable Q10 function and is computed as 

 

𝑡𝑓𝑢𝑛𝑐  
         

     (2) 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟  𝑡𝑒𝑓𝑓   arctan 𝜋 𝑡𝑒𝑓𝑓 30.0 𝑡𝑒𝑓𝑓     (3) 

 

Where,  

soiltemp = average surface soil temperature (oC)for the day 

teff1, teff2, teff3 and teff4 = are fix temperature effects parameters 

normalizer = value of the tfunc when soiltemp is 30oC 

The equation (2) has a low Q10 values at high temperature and high Q10 values at low 

temperatures (Del Grosso et al. 2005). 

 

The moisture effect on decomposition is computed using the relative water content of the top 
layer (relWaterContentlyr). Mathematically, 

 

𝑤𝑓𝑢𝑛𝑐  .

.    .   
       (4) 



 

𝑟𝑒𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑡𝑒𝑛𝑡  
 

 
      (5) 

 

For aboveground decomposition, relWaterContent is the relative water content of the topsoil 

water layer, while for the belowground decomposition, relWaterContent is the weighted average 

relative soil water content of the second and third soil water layers. 

 

 

Effect of pH on decomposition 

The pH effect (0-1) on decomposition is a function of soil pH and the dominant type of 

decomposer (fungi, bacteria, or a combination of both), and is computed as: 

𝑝𝐻𝑒𝑓𝑓𝑒𝑐𝑡 𝑏   arctan 𝜋𝑑 𝑝𝐻 𝑎        (6) 

For pHefffungi, a = 3.0, b = 0.5, c = 1.10, and d = 0.7 

For pHeffcombination, a = 4.0, b=0.5, c = 1.10, and d = 0.7 

For pHeffbacteria, a = 4.8, b = 0.5, c = 1.14, and d = 0.7 

 

For decomposition of metabolic pools, pHeffbacteria is used, while for decomposition of active and 

slow pools pHeffcombination is sued. For the passive pool, pHefffungi is used. 

 

Effect of anaerobic condition on decomposition  

 



𝑎𝑛𝑒𝑟𝑏
1.0,                                                                                                                  𝑟𝑝𝑟𝑝𝑒𝑡 𝑎𝑛𝑒𝑟𝑒𝑓 1

max .  . ,
                                                                                    

,                              𝑟𝑝𝑟𝑝𝑒𝑡 𝑎𝑛𝑒𝑟𝑒𝑓 1
        (7) 

 

𝑠𝑙𝑜𝑝𝑒  .
                (8) 

 

Where,  

rprpet = ratio of available water to the potential evapotranspiration rate 

drain = soil drainage factor 

aneref(1) = value of rprpet below which there is no anaerobic impact 

anreref(2) = fix parameter to calculate the slope of the impact of anerobic decomposition 

aneref(3) = minimum value of anerb (i.e, the maximum reduction in decomposition rates). 

 

Effect of cultivation on decomposition 

There is no effect of cultivation (clteff = 1.0) for grasslands, while the clteff for croplands is 

defined using a set of parameters (1.0-15.0) that have the multiplying effect on the 

decomposition rate to increase the decomposition in the month of cultivation. These parameters 

are defined as clteff(1), clteff(2), clteff(3) and clteff(4) which determines the cultivation effect on 

active, slow, passive and litter pools respectively. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig S1. Comparison of machine learning based prediction of the sum of C fractions (POC, 
MAOC and PyC) against laboratory based total SOC for seven long term research sites in the 
continental US. The left panel figure represent croplands and the right panel figure represent 
grassland sites.  

 

 



 

 

Fig S2. Cropland and grassland distribution (a) and distribution of the schedule files that 
represent different cropping systems (b) in the Great Plains region, US. The black dots in Fig. b 
represent 24 unique county level cropping systems and crop rotations, while the red dots 
represent new randomly selected grid points added to the clustering algorithm for building the 
unsupervised classification model. 
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Fig S3. Classification accuracy of k means unsupervised clustering approach for predicting crop 
rotation and specific crop types in the US Great Plains region against the independent samples. 
In the unsupervised clustering approach, 70% of the samples were retained for developing the 
model, and remaining 30% of the samples were used to test model performance against 
independent datasets. C: corn only, C-C-S: corn corn soya, C-S: corn soyabean, C-WW; corn 
winter wheat, Co-Co-So: cotton cotton sorghum, FA-WW-WW: fallow, winter wheat, winter 
wheat, S: soyabean only, and SW-C-C: spring wheat, corn, corn rotations. 
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Fig S4. Crop rotation maps for the contemporary time period using the K-means unsupervised 
classification algorithm. The crop rotation map is used only when there is cropping in the given 
pixel. In the absence of cropping, the given pixel is assumed to be continuously grazed native 
grasslands. 



 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Fig. S5. Linking DAYCENT conceptual pools to C fraction data predicted using a combination of mid-infrared spectroscopy and a local 
memory-based learning approach, where STRCbel  is structural, METABbel is metabolic,  Active, Slow and Passive are active, slow and 
passive soil C pools, and POC, MAOC and PyC are particulate, mineral associated and pyrogenic organic carbon. 

Vegetation 
GPP, NPP, crop yields 

Soil 
Decomposition, trace gas, 

nutrient flows 

Land use 
Vegetation type, tillage, 

harvest, grazing, 
irrigation, fertilization 

Diffuse Reflectance 
Spectroscopy 

Machine 
Learning 

Predictive Model of 
POC, MAOC & PyC 

modify kactive, 

 

kslow & kpassive 

Apply Predictive Model to 
long-term sites soil spectra 

STRCbel + METABbel + Active 
Slow 

Passive 

Predicted C fractions 
POC 

MAOC 
PyC 

DAYCENT 

C fraction 
model 

Lab 
data 



 

 

 

Fig. S6. Comparison of the sum of C fractions, DAYCENT simulated SOC using the 
default/SOC-only-constrained (DCdef) and the fraction-constrained (DCfrac) models against 
laboratory based SOC estimates at the long-term research sites.    

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig S7 Scatterplots of the comparison of fraction-constrained (DCfrac) and default/SOC-only-
constrained (DCdef) simulation against data-driven estimates of total SOC at the long-term 
research sites. The top and bottom panels show the comparison for croplands and grasslands, 
respectively.  

 

   



 

 

 

 

 

 

Fig S8. Comparison of the DAYCENT simulated NPP using the default/SOC-only-constrained 
(left panel) and fraction-constrained (right panel) models against county level USDA-NASS NPP 
products developed by West (2008) 

   



 

 

Fig S9. Difference map between JS250 (a), Ramcharan (b) and Soilgrids (c) and the fraction-
constrained model (DCfrac), and difference map between Sanderman et al. (2020) (d), Ramcharan 
et al. (2018) (e) and Hengl et al. (2017) (f) and the SOC-only-constrained model (DCdef). Values 
close to zero indicate a perfect match with the machine learning predicted SOC while positive 
values indicate under prediction and negative values indicate overprediction from the 
DAYCENT. 

 

 

 

   



 

 

Fig S10. Comparison of total SOC (20 cm depth) between the DAYCENT and data driven 
modeling for the contemporary period. JS250, Sanderman et al. 2021; AR100m, Ramcharan et 
al. (2018); SG250m, Hengl et al. (2017). 

 



 

Fig S11. Comparison of the simulated active-, slow- and passive-SOC (20 cm depth) against 
Sanderman et al. (2020) for the US Great Plains Agricultural region during the contemporary 
period. The green line represents the median SOC values based on JS250 (Sanderman et al. 
2021) C fraction predictions. 

 

   



 

 

 

 

 

 Fig S12. Active, slow and passive SOC pools at 20-cm depth based on the SOC-only-
constrained (DCdef) model under native vegetation (1895-1899 average; top maps) and following 
land cover land use change (2001-2005 average; bottom maps). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table S1. Predictive performance of US Samples using spectra acquired on Woodwell 
instrument with and without calibration transfer 

 No calibration transfer1 After calibration transfer1 

 Bias R2 RMSE Bias R2 RMSE 

POC (g/kg) 0.65 0.50 4.93 1.04 0.70 4.39 

MAOC (g/kg) 0.86 0.81 3.30 0.62 0.88 2.84 

PyC (g/kg) 0.38 0.49 2.83 0.29 0.68 2.29 

1Leave-one-out cross validation on the 99 GP samples 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table S2. Distribution of SOC across different pools by plant functional types (PFTs) when 
compared to C fractions predictions at the long-term research sites.  

 Grasslands Croplands 

 
C fractions DCfrac DCdef C fractions DCfrac DCdef 

Active 0.20 0.13 0.08 0.14 0.14 0.08 

Slow 0.56 0.63 0.49 0.57 0.56 0.39 

Passive 0.24 0.24 0.43 0.29 0.30 0.53 
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