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Landscape diversity is one of the key drivers for maintaining ecosystem services

in agricultural production by providing vital habitats and alternative food

sources for beneficial insects and pollinators within the agricultural

landscapes. The landscape structure, land uses, and diversity differ between

geographic locations. However, how the changes of landscape structure and

land use diversity affect the arthropod diversity in a geographic area is poorly

understood. Here, we tested the impact of landscape diversity on the rice

locations in Bangladesh. Results ranged from highly diversified to very highly

diversified in Chattogram (>7.9), to highly diversified (0.590.79) in Satkhira and

moderately (0.390.59) to less diversified (0.190.39) in Patuakhali. These

significant different landscape diversities influenced the arthropod diversity

in rice fields. Arthropod species diversity increases with the increase in the

Land Use Mix (LUM) index. Themaximum tillering stage of rice growth harbored

higher abundance and species diversity in rice fields. Moreover, we found that

vegetation is the most important factor influencing the abundance of

arthropods. Extensive agriculture and forest contributed substantially to

predicting arthropod richness. Meanwhile, barren land and high-density

residential land as well as intensive agriculture had large impact on species

diversity. This study indicates that landscape diversity plays a vital role in shaping

the species diversity in rice fields, providing guidelines for the conservation of

arthropod diversity, maximizing natural pest control ecosystem service and

more secure crop production itself.

KEYWORDS

landscape structure, land use change, arthropod diversity, rice, geographic location

OPEN ACCESS

EDITED BY

Marco Malavasi,
Czech University of Life Sciences
Prague, Czechia

REVIEWED BY

Xunbing Huang,
Linyi University, China
José Antonio Albaladejo García,
University of Murcia, Spain

*CORRESPONDENCE

M. P. Ali,
panna_ali@yahoo.com
Xinghu Qin,
qinxinghu@gmail.com
M. T. H. Howlader,
tofazzalh@bau.edu.bd

SPECIALTY SECTION

This article was submitted to
Conservation and Restoration Ecology,
a section of the journal
Frontiers in Environmental Science

RECEIVED 12 July 2021
ACCEPTED 30 June 2022
PUBLISHED 05 October 2022

CITATION

Ali MP, Biswas M, Clemente-Orta G,
Kabir MMM, Datta J, Haque SS, Qin X,
Landis D, Kaur P, Pittendrigh BR and
Howlader MTH (2022), Landscape
diversity influences the arthropod
species diversity in the rice field.
Front. Environ. Sci. 10:740287.
doi: 10.3389/fenvs.2022.740287

COPYRIGHT

© 2022 Ali, Biswas, Clemente-Orta,
Kabir, Datta, Haque, Qin, Landis, Kaur,
Pittendrigh and Howlader. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 05 October 2022
DOI 10.3389/fenvs.2022.740287

https://www.frontiersin.org/articles/10.3389/fenvs.2022.740287/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.740287/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.740287/full
http://orcid.org/0000-0001-6541-347X
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.740287&domain=pdf&date_stamp=2022-10-05
mailto:panna_ali@yahoo.com
mailto:qinxinghu@gmail.com
mailto:tofazzalh@bau.edu.bd
https://doi.org/10.3389/fenvs.2022.740287
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.740287


Introduction

To meet the world’s growing food demand, agricultural

production practices in many parts of the world have shifted

from traditional extensive farming systems to more intensified

forms of agriculture. Such intensified agricultural practices often

include the widespread use of agro-chemicals and exploitation of

water resources, coupled with livestock production to meet the

food demands of the global population, projected to reach

9.8 billion in 2050 (United Nations, 2017). Agricultural

intensification results in a simplification of overall landscape

structure in addition to other landscape diversity that include,

but are not limited to, degradation, urbanization (Clement et al.,

2015), tourism (Halling, 2011), industrialization (Hatamia and

Shafieardekani, 2014), and expanding human settlements

(Antrop and Eetvelde, 2008).

Climate change can further alter land use systems leading

to multidimensional effects, for example, enhanced

desertification, nutrient-deficient soils, salinity intrusions,

floods, and frequent natural calamities in climate-

susceptible regions, including Bangladesh (Khan et al.,

2012; Kabir et al., 2016; Masum and Khan, 2020). These

effects can transform entire land use systems (Islama et al.,

2018). For example, in coastal areas, which occupy one-third

of Bangladesh, major changes have occurred over the last half-

century largely due to frequent and diverse natural disasters

with the direct and indirect impact on land resources and their

uses. In particular, saltwater intrusion areas have increased

more than 25% in Bangladesh during the past 35 years,

constituting 109 million ha in 2009, and the area continues

to increase (Soil Resource Development Institute, 2010;

Mahmuduzzaman and Zahir Uddin Ahmed, 2014; BBS,

2017). Increasing salinity induces further land use change

(Islama et al., 2018). For example, traditional rice cultivation

lands have been transformed using climate-smart farming

systems into shrimp farming in Satkhira and Khulna

districts of Bangladesh (Karim and Mimura, 2008; Hossai

et al., 2014; BBS, 2017). However, these unplanned and

haphazard land use shifts have resulted in dramatic

changes to traditional cultivation practices and shrimp

farming in these coastal areas (Parvin et al., 2016).

The effects of landscape change due to agricultural practices

and climate change are multilevel (Koomen et al., 2012). Changes

in land use and shifts in farming systems can induce adverse

environmental impact and hamper normal crop production

(Parvin et al., 2016). Shifting land use systems alters patterns

of vegetation which influence arthropod communities in various

ecosystems (Wang et al., 2019). For example, agroecosystems and

associated natural or semi-natural habitats often provide

resources to different insect herbivores and other arthropods

(Rusch et al., 2010; Schellhorn et al., 2014). Herbivores and their

natural enemies migrate among habitats, resulting in spatial or

temporal emigrations (Landis et al., 2000; Rand et al., 2006;

Tscharntke et al., 2012). Consequently, these impacts directly or

indirectly change the food, shelter, and other resources for

arthropods both in the rice season and off-season.

Immigration of arthropods can enhance densities of local

populations, thereby increasing the biodiversity (Lucey et al.,

2014) and ecosystem services (Barros et al., 2019). Such

immigration is also important in restoration and conservation

projects (Brudvig, 2011). In addition, high vegetation diversity in

landscapes promotes arthropod diversity in dynamic production

areas (van Schalkwyk et al., 2021).

The aforementioned factors are all related to landscape

diversity. Accordingly, landscape diversity is one of the key

factors in maintaining biodiversity and species richness and

abundance in agroecosystems. Most studies on landscape

diversity and insect abundance relationships have been

devoted to investigating the natural enemies of insect pests

with the objective of managing habitats for cost-effective pest

control (Symondson et al., 2002; Bianchi et al., 2006).

However, the farmland landscape diversity promotes wild

pollinators and plant reproduction, increases wild bee

abundance, and increases the seed set of some crops (for

example, Raphanus sativus) through enhanced connectivity

(Annika et al., 2018). Increased diversity of crop fields may

also promote the diversity of insect pollinators (Dennis et al.,

1998; Hass et al., 2018; Foster et al., 2019). Conversely, crop

diversity can reduce bee abundance if particularly intensive

management practices are adopted (Annika et al., 2018).

Insect herbivores also respond to landscape variables such

as vegetation type, land type, and water bodies, and the impact

is much less conclusive than the data on natural enemies

(Bianchi et al., 2013). This represents a knowledge gap in need

of filling and affording the design of more effective biological

control of crop pests.

The present study was conducted to understand the effect of

landscape diversity on the species diversity and richness of the

arthropod population in rice fields in three geographical

locations of Bangladesh. Here, we examined how both

landscape composition and configuration influence

arthropod communities in rice agroecosystems. Our

objectives were as follows: 1) to determine the effects of

landscape diversity in time and location on the species

diversity and richness in rice fields; 2) to assess the

arthropods population presenting in rice fields of varying

diversity factors; 3) to disentangle the influence of the actual

geographic landscape on the composition and abundance of

insect fauna in rice fields. Accordingly, we quantified the

heterogeneity of total landscapes of three geographic

locations in Bangladesh based on high-resolution satellite

imagery using six independent matrices of the landscape. We

then analyzed the landscape diversity of those locations over for

two consecutive years and tested the impact of landscape

diversity on arthropod species diversity measured in the rice

field.
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Materials and methods

Study regions

The study was conducted in three geographical regions of

Bangladesh (Supplementary Figure S1). These three geographic

regions were 1) Chattogram district with rice production in hilly

lowlands; 2) Patuakhali, a coastal belt of Bangladesh where rice

production is challenged by salinity intrusion; and 3) Satkhira, a

traditional rice and shrimp cultivation area where salinity

intrusion is increasing. Within each region, 30 “core study

sites” were selected, resulting in a total of 90 core sites. The

average distance between the nearest cores sites was 3.0 km.

Arthropod sampling

The arthropod communities present in the rice fields were

sampled during the wet season of 2018 and 2019. All samples

were collected at three different stages of rice growth (early, mid,

and maximum tillering stages). The maximum tillering stage

typically occurs ca. 50 days after transplanting and is generally

associated with the maximum abundance of arthropods (Heong

et al., 1991; Wilby et al., 2006). Since the composition of the

arthropod community can change with the development of the

rice crop and between cropping seasons (wet and dry seasons)

(Heong et al., 1991), our study focused on data obtained only

during the wet season (August to October) in each year. This

period is a typical transplanted Aman (T. Aman) rice-growing

season in Bangladesh. This season covers the highest rice

production areas in Bangladesh. This is a rainfed rice

production season in Bangladesh, where rice growth depends

only on natural rainfall. However, at the end of the season,

supplementary irrigation is sometimes required for successful

crop growth and optimum grain yield.

Arthropods were collected from 30 rice fields in each site

using a sweep net (40-cm diameter) (Ali et al., 2017). A total of

20 sweeps were run randomly at the canopy level of the plants at a

transect in each of the two adjoining field margins of the focal

field at each site. Each transect covered a 50 m × 1 m strip which

TABLE 1 User accuracy and product accuracy of each land use pattern for 2018 and 2019 with respect to three considered districts.

In % User accuracy Product accuracy User accuracy Product accuracy

Chittagagon 2018 2019

River 100 93.33 100 100

Agriculture 94.77 94.87 91.667 94.23

Vegetation 94.23 98 93.5 95.74

Built up 86.67 92.86 90.48 90.48

Barren land 94.44 85 100 85

Waterbody 100 100 92.31 100

Satkhira User accuracy Product accuracy User accuracy Product accuracy

River 100 93.33 100 100

Extensive/intensive agriculture/strip farming 98.15 94.64 96.83 96.83

Vegetation 94.72 100 95.35 95.35

Built up 88.89 80 100 100

Barren land 90 81.81 90 90

Waterbody 94.22 100 100 100

Patuakhali User accuracy Product accuracy User accuracy Product accuracy

River 100 100 100 91.66

Agriculture 87.74 94.44 77.78 93.33

Vegetation 96.15 92.59 95.65 95.65

Built up 89.47 94.44 94.44 85

Barren land 94.23 94.23 92.98 92.97

Water body 100 92.31 100 100
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was sampled with 20 sweeps. At each core site, three samples

were taken at random locations near the center of the field

between 09:00–11:00 h. Collected arthropods were sorted,

identified, and counted at the field site. The arthropods which

were not identified at the field site were preserved in 70%

ethanol and brought into the laboratory for further study

and were identified to the species level using a binocular

microscope and the taxonomic keys of Barrion and Litsinger,

(1994). Thus, identified arthropods also were then sorted and

counted.

Analysis of landscape structure

The landscape structure was derived from digital satellite

images taken in 2018 and 2019. The datasets used for image

classification were obtained from the United States Geological

Survey using Landsat 8 Operational Land Imager (USGS U.S,

2018). Landsat 8 was first launched on 11 February 2013, having

nine spectral bands, including a pan band: Band 1 Visible

(0.43–0.45 μm) 30 m, Band 2 Visible (0.450–0.51 μm) 30 m,

Band 3 Visible (0.53–0.59 μm) 30 m, Band 4 Red

(0.64–0.67 μm) 30 m, Band 5 Near-Infrared (0.85–0.88 μm)

30 m, Band 6 SWIR 1 (1.57–1.65 μm) 30 m, Band 7 SWIR 2

(2.11–2.29 μm) 30 m, Band 8 Panchromatic (PAN)

(0.50–0.68 μm) 15 m, and Band 9 Cirrus (1.36–1.38 μm)

30 m23. Cloud-free months in Bangladesh, such as January or

February, were used to extract images which showed comparable

reflectance. These were OLI data of operational land Imager of

15 m × 15 m panchromatic and 30 m × 30 m multispectral. The

images were classified in supervised classification techniques to

detect the landscape changes in terms of land use land cover

(LULC) that quantify the changes in particular land use patterns

over the years. The radiance values were rescaled into a 16-bit

digital number (DN) with a range between 0 and 65,536 and

converted to reflectance rather than radiance. The post-

classification detection of LULC changes was performed in

ERDAS Imagine 14 platform through training samples, or

signatures were collected under land use classes using the

Signature Editor separately for 2018 and 2019.

For the accuracy assessment of contingency matrix, stratified

random sampling with ground-truthing was applied. The kappa

coefficient (K) was calculated for the accuracy assessment

(Rwanga and Ndambuki, 2017). Therefore, the overall

accuracy and accuracy of each land use pattern were

calculated in terms of user accuracy and product accuracy.

The Cohen’s kappa coefficient was calculated for 2018 and

2019 in Chattogram, Satkhira, and Patuakhali districts.

KappaCoefficient(K) �
(TS × TCS) −∑(ColumnTotal

× RowTotal)
(TS)2 −∑(ColumnTotal × RowTotal) × 100,

(1)

where TS = total sample and TCS = total corrected sample.

The overall accuracy of Chattogram was 94.667% in

2018 LULC and 94.00% in 2019. In Satkhira, the overall

accuracy was 95.00% in 2018 and 96.875% in 2019. In

Patuakhali, the overall accuracy was 94.29% in 1918 and

92.85% in 2019. Details of user accuracy and product

accuracy are listed in Table 1. Accuracy assessment of all the

districts and both 2018 and 2019 are presented in Supplementary

Tables S1A and B for Chattogram, Supplementary Tables S2A

and B for Satkhira, and Supplementary Tables S3A and B for

Patuakhali.

The calculated Kappa coefficient for Chittagagon was

92.953% in 2018 and 92.425% in 2019. In Satkhira district,

the Kappa coefficient was 93.28% in 2018 and 95.796% in

2019. In Patuakhali district, the Kappa value was 92.64% in

2018 and 90.598% in 2019.

Measurement of landscape diversity

In this study, we concentrated on insect abundance and

diversity in rice fields; thus, the landscape diversity has been

calculated through the LUM method (Frank et al., 2005).

Comparing the 2 years datasets implies very minimum

changes in LULC. However, landscape LUM analysis in terms

of diversity has been processed based on the requirement of some

particular land use patterns such as dense forest, vegetation,

intensive agriculture, extensive agriculture, barren land, land

without crops and shrimp farming of 2019 LULC.

LUM�(−1)×[(b1/a) In(b1/a)]+[(b2/a) In(b2/a)]
+[(b3/a) In (b3/a)] In (n3), (2)

where a = total area of land for all three land uses: commercial

(b1), residential (b2), and official (b3); n3 = 2 or 3 depending on

the number of different land uses present. If n3 = 1 or 0, the LUM

value is assigned with 0.

In 2006, this was modified by Frank et al. (2005) as

LUM � A/(In(N)), (3)

where A = (b1/a) ln (b1/a) + (b2/a) ln (b2/a) + (b3/a) ln (b3/a) +

(b4/a) ln (b4/a) + (b5/a) ln (b5/a) + (b6/a) ln (b6/a); a = total square

feet of land for all land uses.

The advantage of entropy is that it dignifies the diversity and

balance of considered land use types within a specific area. The

value of diversity ranges from 0 to 1, indicating 0 as homogeneity

and 1 as diversified or mixed nature; thus, we have modified the

classes of index values into five respective magnitudes: very

highly diversified (mixed or heterogeneity), highly diversified,

moderately diversified, poorly diversified, and very poorly

diversified (homogeneity). To recognize and identify the

LULC changes and LUM index (diversity), studied sites have

been divided into 6 km × 6 km, that is, 36 km2 grid or fishnet
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based, obtaining an equal pattern of number system as in images

and LUM data sheets so that optimum area may be considered

within the blocks and the LUM pattern can be distinctly

identified.

Arthropod species diversity

Species richness and diversity of recorded arthropods in all

rice fields were calculated using the Shanon diversity index (H)

described by Magurran (1988), as follows.

H � −∑ (Pi) × In(Pi), where Pi = the proportion of

individual in each species.

The Czekanowski coefficient was measured using the

following equation Sx � 2∑
m

i�0min(XiYi)
∑

m

i�1Xi+∑m

i�1Yi
, where Xi and Yi =

abundance of species i.

∑m
i�0min(XiYi) = sum of the lesser scores of species i where it

occurs in both quadrats m = number of species. Species

diversity was measured from 30 rice fields in each

geographic location. Squared Euclidean Distance (SED) is

used in many applications and has been considered here for

a comparison of distances between two geographical locations.

The following equation is used to calculate SED (Clifford and

Stephenson, 1975):
d2(p, q) � (p1 − q1)2 + (p2 − q2)2 +/ + (pi − qi)2 +/

+ (pn − qn)2.

Species richness of arthropods was calculated following the

Margalef index (D) (Margalef 1958). The index is given by the

following formula:

D � (S − 1)/lnN.

Here, S is the total number of species, N is the total number of

individuals in the sample, and ln is the natural logarithm

(logarithm to base e).

Statistical and deep learning regression
analysis

A one-way ANOVA was performed to compare the

abundance, species richness, and diversity among the studied

sites. We analyzed how LUM index-related structural

components of the local landscape affects arthropod spillover

TABLE 2 List of arthropods found in rice fields during the study period. The arthropods were recorded using sweep netting. A total of 20 complete
sweeps were run randomly at the canopy level.

Sl no. Common name Scientific name Order Family

1 Green leafhopper Nephotettix virescens Homoptera Cicadellidae

2 Brown planthopper Nilaparvata lugens (Stål) Homoptera Delphacidae

3 White-backed planthopper Sogatella furcifera (Horváth) Homoptera Delphacidae

4 Yellow stem borer Scirpophaga incertulas (Walker) Lepidoptera Pyralidae

5 Leaf roller Cnaphalocrocis medinalis Lepidoptera Crambidae

7 Rice hispa Dicladispa armigera Coleoptera Chrysomelidae

8 Rice bug Leptocorisa sp. Hemiptera Pseudococcidae

9 Caseworm Nymphula depunctalis Lepidoptera Pyralidae

10 Gall midge Orseolia oryzae Diptera Cecidomyiidae

11 Grasshopper Conocephalus longipennis Orthoptera Tettigoniidae

12 Long-horned cricket Tettigonia viridissima Orthoptera Tettigoniidae

13 Stink bug Nezara viridula Hemiptera Pentatomidae

14 Field cricket Euscyrtus concinnus Orthoptera Gryllidae

15 Swarming caterpillar Spodoptera mauritia acronyctoides Lepidoptera Noctuidae

16 Mole cricket Gryllotalpa orientalis (Burmeister) Orthoptera Gryllotalpidae

17 Ladybird beetle Micraspis sp. Coleoptera Coccinellidae

18 Carabid beetle Ophionea sp. Coleoptera Carabidae

19 Staphylinid beetle Staphylinid sp. Coleoptera Staphylinidae

20 Dragonflies Sympetrum flaveolum Odonata Anisoptera

21 Damsel flies Agriocnemis pygmaea Odonata Coenagrionidae

22 Green mirid bug Cyrtorhinus lividipennis Reuter Hemiptera Miridae

23 Earwig Euborellia stali (Dohrn) Dermaptera Carcinophoridae

24 Wasp Panstenon nr. collaris Boucek Hymenoptera Pteromalidae

25 Spider Lycosa sp. Araneae Lycosidae
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in rice fields. Species richness, species diversity, and abundance in

the rice fields were modeled with linear regression to find the

impact of individual factors on them. Explanatory variables

included in these models were forest, waterbody, residential

area, agriculture, barren land, vegetation, and LUM index in

the landscape of each geographic area.

To assess which factors affect the species diversity most, we

regressed the total number of species, species richness, and

Shanon index against the landscape factors independently

using deep neural networks. We first constructed a 3-hidden-

layer MLP (multilayer perceptron) and then tuned the number of

neurons in each layer to find the optimal model. The deep neural

network was constructed with a weighted decay optimizer and a

logistic function at the hidden layer. We performed a random

search on the number of neurons at each layer via cross-

validation. For each regression, we searched

50 hyperparameter combinations. The final model

performance was determined by the lowest mean average

error (MAE). The importance of the variable is determined

based on Olden’s algorithm (Olden and Jackson 2002), which

calculates variable importance as the product of the raw input-

hidden and hidden-output connection weights between each

input and output neuron and sums the product across all

hidden neurons. Deep neural network models were built using

the caret package (Shepard et al., 1987; Kuhn, 2008; Kuhn, 2012).

Results

A total of 30,814 arthropods representing 24 species were

captured in sweep netting across all sampling periods. The

recorded arthropods found in this study are presented in

Table 2. The two sampling years and three sampling times in

each year were comparable, with 11,982 individuals of 22 species

recorded in 2018 and 18,832 individuals representing 24 species

captured in 2019. Among the sampled arthropods,

18,972 specimens were identified as pest species, and

11,842 specimens were identified as natural enemies (NE),

which serve as biological control agents in rice fields.

Approximately twice as many pests were found during the

second sampling year compared to the first year, with

12,810 pests of 18 species captured in 2019 and 6,162 pests of

16 species in 2018. Approximately similar quantities of NE were

observed in both sampling years, with 5,820 in 2018 and 6,022 of

6 species in 2019. The abundance of insect fauna in the three

geographical locations is presented in Supplementary Figure S2.

TABLE 3 Czekanowski coefficient and squared Euclidean distance (SED) values of three study sites. I: Chattogram, II: Satkhira, and III: Patuakhali.

Year Study site Czekanowski coefficient Squared Euclidian distance (SED)

I II III I II III

2018 I 1.00 0

II 0.46 1.00 1559 0

III 0.27 0.42 1.00 1568 1518 0

2019 I 1.00 0

II 0.39 1 1541 0

III 0.20 0.40 1 1533 1522 0

TABLE 4 Feeding links of natural enemies recorded from rice fields in the three study sites. Insects were recorded using sweep net at three crop
phonologies.

Common name Feeding link References

Ladybird beetle Small brown planthopper, brown planthopper, and green leafhopper Shepard et al. (1987)

Carabid beetle Leaffolder, leafhopper, and planthopper

Staphylinid beetle Striped and dark-headed stem borer, leaffolder, armyworm, whorl maggot, planthopper, leafhopper, and caseworm Fahad et al. (2015)

Green mirid bug (GMB) Yellow stem borer, rice bug, planthopper, and leafhopper

Dragonflies Planthopper, stem borer, and leafhopper Shepard et al. (1987)

Damsel flies Hopper and leaffolder

Earwig Stem borer and leaffolder

Wasp Planthopper, leafhopper, and stem borer Shepard et al. (1987)

Spider Stem borer, planthopper, and leafhopper Fahad et al. (2015)
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Species richness and diversity

The species richness and diversity of arthropods in three crop

periods varied among the geographic locations (Figure 1).Within

each location, crop phenology showed a significant effect on the

species richness (F = 6.106, p = 0.036 for 2018 and F = 41.684, p <
0.01 for 2019), with the highest species richness observed in

Chattogram, followed by Satkhira and Patuakhali (Figure 1). The

highest species richness was observed in the mid-tillering stage of

crop irrespective of year and location. Likewise, species diversity

(Shanon index) of rice insects observed in three crop phonologies

was also varied by geographical locations. Comparative species

diversity index (Shanon index) in three geographical locations is

presented in Figure 2.

The highest Shanon diversity index was observed in

Chattogram, followed by Patuakhali and Satkhira (Figure 2).

We also measured and compared similarity indices for all three

sites. Table 3 presents the Czekanowski coefficient and SED for

each site. The largest Czekanowski coefficient (0.46) and lowest

SED score (1,538) observed between Chattogram and Satkhira

indicates these two sites are most similar to each other in terms of

composition.

Trophic guilds

The recorded arthropods were further classified as natural

enemies (NE) (including predators and parasitoids) and herbivores

based on their food habits (Table 4). The NE guild was dominated by

the spiders followed by greenmirid bug (GMB), ladybird beetle (LBB),

dragonflies, damsel flies, and staphylinid beetle. Thus, it is evident that

spiderswere themost dominant predator in all three study sites. Other

collected NE were carabid beetle, wasps, and earwig. In contrast, the

herbivorous guild was dominated by the member of Homoptera,

followed by the Lepidoptera order. The numerically most captured

preys/herbivores in the rice fields were brown planthopper (BPH),

green leafhopper (GLH), white-backed planthopper (WBPH) and

yellow stem borer (YSB). Geographic location also influenced the

trophic guilds irrespective of crop phenology. Chattogram showed the

highest number of natural enemies and herbivore guilds than the

other two geographical locations.

Association between natural enemies (NE)
and their prey

The association of different identified natural enemy (NE) and

their respective host was also analyzed, as presented in Figure 3. Total

NE showed significant association with total insect pest prevailed in

rice field (R2 = 0.668, p = 0.04697). Green mirid bug and spider

displayed significant association with most of their prey, such as

brown planthopper and green leafhopper (Figure 3). The highest NE

prey interaction was observed between yellow stem borer (adult) and

dragonflies (R2 = 0.939, p = 0.0486), followed by brown planthopper

and green mirid bug (R2 = 0.761, p = 0.0232), green leafhopper and

spider (R2 = 0.632, p = 0.0485), brown planthopper and spider (R2 =

0.537, p = 0.0482), and green leafhopper and green mirid bug (R2 =

0.474, p = 0.1183) (Figure 3). Thus, it was found that the prey (host)

and their respective NE present in the rice field are interdependent on

each other.

Spatio-temporal changes of landscape
and LUM index

Landscape changes from 2018–2019 specify some changes in

land uses of three respective study locations. In Chattogram,

FIGURE 1
Comparative graphical representation of species richness in
three geographic locations. Diversity measured at early tillering
stage, mid tillering stage and maximum tillering stage of 2018
(upper figure) and at early, mid, maximum tillering stage
values, which increased in 2019 (lower figure). This is remarkably
so in Patuakhali’s early tillering stage while Satkhira looks same
(despite the maximum tillering stage having increased). In
Chattogram, the mid tillering stage has decreased in 2019 but,
overall, themean values of diversity tend to be increased i.e., mixed
nature of land utilization.
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high-density settlement areas increased in 2019, followed by low-

density settled areas. Mainly, the northern and north-eastern part

of the district forest and barren lands are converted into

settlements, and comparatively extensive and intensive

agriculture are increased, especially along the river lines in the

southern and south-eastern parts (Figures 4A and D). North-

western grids display the huge changes of wetlands to low-density

settlements with the increased population. The developed

agricultural sectors have intensified the mixed nature in LUM

index 0.59–0.79 and found significantly highly diversified to very

highly diversity > 7.9 (Figure 5A). The Satkhira exhibits (Figures

4B and E) different kinds of landscape changes, that is, 40% of

extensive agricultural land and lands without crops are converted

to shrimp cultivation and grid no 40–54 in the southern part

settled area are increased with extensive paddy cultivation. Land

transformation mainly has occupied the northern part and

north-eastern grid areas and is visualized in the LUM index,

where 80% of grids under highly diversified (0.59–0.79), that is,

mixed nature of landscape (Figure 5B). Patuakhali (Figure 5C)

exhibited homogeneous LUM indices, indicating most of the

areas are moderately (0.39–0.59) to poorly diversified

(0.19–0.39). In fact, highly diversified grids occupy only 25%

of the areas where settlement has increased with agriculture

(Figures 4C,F).

Effect of landscape diversity on arthropod
species diversity

Population fluctuation also depends upon vegetative

biodiversity and intensity. Insects’ feeding and multiplication

were higher on extensively higher land use mix index areas. Each

FIGURE 2
Comparative graphical representation of species diversity index (Shanon index) in three geographic locations. Diversity measured at early
tillering stage, mid tillering stage and maximum stage of 2018 (upper figure) and at early, mid, and maximum tillering stage, which have increased in
2019 (lower Figure 2. Notably, early tillering in Patuakhali increased the most while Satkhira seems constant (albeit with an increased maximum
tillering stage). In Chattogram mid tillering stage has decreased in 2019, while overall diversity mean values increased, i.e. mixed nature of land
utilization.
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geographic location has a unique LULC pattern, as described

previously. More or less similar LULC pattern was observed in

two consecutive years 2018 and 2019 in each geographic location

(Figure 6). The best-fitting model shows that the agricultural area

in each location has a significant impact on species richness.

Figure 6A depicts that species richness increases with the increase

of agricultural area. Similarly, residential area has significant

impact on species richness (F = 12.11, p = 0.025). However, it has

no significant impact on species diversity (p > 0.05). Wide

differences of LUM indices also significantly influenced

species diversity, with a significant positive impact on species

diversity (F = 9.344, P = 0.038). Best-fitted modelling showed that

species diversity increased with increasing LUM indices

(Figure 6A), though not species abundance or species richness

(p > 0.05).

Landscape factors contributing most to predicting species

diversity were also analyzed using a neural network approach. By

this model, vegetation, we found that forest, and water body

contributed most to predicting the total number of species

(Figure 7A). As opposed to the total number of species, we

observed that extensive agriculture and forest are the most

impactful factors influencing species richness (Figure 7B). In

contrast, barren land and high-density residential land and

intensive agriculture are the top three factors affecting species

diversity (Figure 7C).

Discussion

This study investigated the relationship between species

diversity of rice arthropods and landscape using three distinct

geographical regions in Bangladesh. Consequently, we detected a

significant difference in landscape diversity in the three study

sites, with unique landscape diversity existing around the

experimental plots in each geographical location. Thus, we

highlighted the abundance, species richness and diversity of

FIGURE 3
Simple linear regression showing natural enemy–prey association between important economic insect pest species in rice. Spatio-temporal
changes of the landscape and LUM index.
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rice arthropods in relation to landscape diversity. Land use land

cover (LULC) and landscape diversity (LUM index) were

analyzed to correlate with arthropod species diversity. At the

same time, the neural network approach was used to find the

highest predictor of arthropod species diversity. Landscape

diversity is generally considered to enhance insect species

number in an area (Jonsen and Fahrig, 1997; Krauss et al.,

2003). Similarly, our study shows that geographic location

with higher landscape diversity has higher arthropod species

diversity (Figures 1, 2; Supplementary Figure S2).

The abundance of prey and NE data represents the cyclic

function of a food web composition (Ghani and Maalik, 2020).

However, the fluctuation of one component influences the

abundance of other components in the food web structure of

any ecosystem functioning (Rana et al., 2012). This indicates that

ecological agitation is an important factor in an ecological

breakdown in an agricultural ecosystem. Our study shows that

NE has an ecological association with insect pests observed in rice

fields. The feeding link species shows a positive correlation with

the prey population (Figure 3). This indicates that the

displacement of one component of a food web system

disrupts the ecosystem functioning in an agricultural system.

Insect predators can share the same prey species and

similarly prey species are preferred over other species

FIGURE 4
Extracted land use/land cover change from Landsat 8 data of 2018 (upper) and 2019 (lower). (A and D)Grid-wise comparison of two respective
years of Chattogram; (B and E) Patuakhali and (C and F) Satkhira. The comparative maps detect the spatial changes of land uses; in Chattogram, the
north-eastern part and south-eastern part aremostly changed; in Satkhira, transformation took place in the northern and north-eastern section; and
in Patuakhali, changed grids are mostly visible in the eastern part of the district.
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FIGURE 5
Calculated LUM index for measuring the diversity of 2019 considering the grid method; (A) in Chattogram, most of the areas are under highly
diversified (0.59–0.79); (B) in Patuakhali, the area is poorly to moderately diversified because of its geographical location as it belongs to the coastal
area and% of waste land ismaximum resulting the homogeneous character; and (C) in Satkhira, moderately and highly diversified grids are dominant.

FIGURE 6
Model estimated species diversity (predicted Shanon index) and predicted species richness against different landscape variables and land use
mix (LUM) indexes.

Frontiers in Environmental Science frontiersin.org11

Ali et al. 10.3389/fenvs.2022.740287

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.740287


(Omkar and James, 1997). We found that predator spiders

share two prey species, including green leafhoppers (GLH) and

brown planthopper (BPH), while dragonflies share only one

prey, yellow stem-borers (YSP) (Figure 3). Likewise, the green

mirid bug (GMB) shares BPH and GLH but prefers the former

over the latter (Figure 3). A similar observation was found in

other reports. Ghani andMaalik (2020) reported that Coccinella

septempunctata is significantly associated with all its preys. This

predator shows a general predator but prefers Diuraphis noxia

over Schizaphis graminum. The C. septempunctata is known as

a general predator (Rana et al., 2012), and most predators prefer

two prey species,D. noxia and S. graminum, in wheat compared

to other prey. The predators, C. septempunctata and Coccinella

hieroglyphica, have a significant association with D. noxia

(Ghani and Maalik, 2020). Some predators demonstrate

significant consumption affinity to single prey, which

indicates that indiscriminate application of insecticide

reduced the other prey species in crop fields. Spraying of

insecticide in crop fields reduces the species (Inayat et al.,

2011). This can be happened due to the handling of prey by

different predator species. Our study shows the constant prey-

NE association in rice fields. Moreover, spraying of insecticide

influences insect pest and predator or parasitoid ratio in the

agro-ecosystem. The effect of pesticides on prey and NE

association will be more in the future since the application

of insecticides is increasing day by day (Siddiqui, 2005; Tariq

et al., 2007). This effect can be more important in Bangladesh

since most rice growers apply insecticide 2–4 times in each rice-

growing season (Hoque and Haque, 2014), and there are three

rice-growing seasons per year (Ali et al., 2019).

Our study shows that crop phenology influences significant

species richness in rice fields, and significantly higher species

richness at maximum tillering stages. This result is contrastingly

different from Bakar and Khan (2016), who reported the highest

species richness in the early tillering stage of rice growth. However,

their findings derived fromanBoro rice experiment conducted during

the dry season in Bangladesh. The present study examined T. Aman

rice grown during the rainfed wet season. Earlier, Ali et al. (2020)

reported that the abundance of insects in rice is influenced by season.

Maximum tillering stages of rice growth provide attractive shelter and

food sources, which induce a higher number of insects in the field. In

addition, our study also shows that geographical location has a

significant impact on species richness, and higher species richness

was observed in Chattogram (Figure 1). A similar effect was observed

in other studies. Ghani and Maalik (2020) reported that Faisalabad

has higher species diversity than Sialkot. Local weather parameters

such as air temperature, humidity, solar radiation, wind velocity and

rainfall could influence the number of insects, abundance and

diversity in a crop field (Adams et al., 2020). However, we did not

consider weather parameters in our study.

Overall, the rice agro-ecosystem and impact of natural pest

control system alter with the existing landscape diversity, mainly

in Satkhira and Chattogram. The study is also concerned with the

comparison of four respective indices such as diversity, early

FIGURE 7
Weight of different landscape factors predicting species abundance (A), species richness (B), and Shanon index (C). Weight of each factor
contributing most to predicting the species diversity was analyzed using a neural network approach.

Frontiers in Environmental Science frontiersin.org12

Ali et al. 10.3389/fenvs.2022.740287

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.740287


tillering stage, mid-tillering stage, and maximum tillering stage.

The mean values of 2018–2019 of three locations encompass

increased values in 2019, remarkably in Patuakhali, where the

early tillering stage increased abundantly (0.8–1.7). In Satkhira, it

remained the same, although the value of the maximum tillering

stage increased (1.0–1.2). In Chattogram, the mid-tillering stage

decreased in 2019 (2.1–2), but overall, the mean values of

diversity trended to increase, that is, mixed nature of land

utilization with the increased agricultural lands with shrimp

cultivation and settlement. These land use changing patterns

might influence the arthropod diversity in rice fields.

The land use mix (LUM) index increases the species diversity in

rice fields. This can be explained that landscape diversity induced a

higher number of arthropod species in rice fields in all geographical

locations. Landscape diversity increases the insect species number in

crop fields (Jonsen and Fahrig, 1997; Krauss et al., 2003). Our study

shows that a significant correlation exists between the LUM index

and species diversity (Figure 6). The higher species diversity index

observed in higher LUM index as compared to lower LUM index

might be attributed to the more diverse vegetation and land use that

made a suitablemacro andmicro climate for arthropod species in an

area. This result is in agreement with the finding of Adjaloo et al.

(2012), who reported higher species richness observed in heavily

shaded area farms than in widely spaced farms with less canopy

cover. Adeduntan (2009) stated that a particular area with physical

complexity affects the diversity and abundance of insects. Therefore,

higher species diversity observed in higher LUM index areas might

be attributed to the more diverse landscape. More LUM index area

has diverse vegetation, trees, and plantations, which could serve as

suitable food and shelter for many insect species, which ultimately

induce higher species diversity.

Neural network analysis identified variable has a strong

weight in the models. Each factor shows a different weight to

species abundance, species richness, and Shanon index

(Figure 7). For example, vegetation shows the most influential

factor on species abundance, but it poorly influences the species

richness and Shanon index (Figure 7). Similarly, a high-density

residential area shows a positive influential factor on species

abundance and Shanon index, but it shows a negative weight on

species richness. Thus, landscape composition can differently

affect the different diversity index of arthropods in crop fields.

The variables indicating LUM perform poorly in species

abundance but highly in species diversity. This type of result

can be observed in other reports. Gil-Tena et al. (2010) reported

that all the variables show positive signs, but aspect diversity,

temperature, public forest, and road and population density,

display an inverse relationship.

Conclusion

In our experiment, abundance, species diversity, and species

richness of arthropods were found in rice fields varied in

geographic locations and crop phenology due to landscape

diversity. The most abundant species of predator was spiders,

and the pest groups were BPH, GLH, and YSB in rice fields. Higher

abundance, diversity, and species richness were observed in

Chattogram, with higher landscape diversity (LUM index). Both

species richness and abundance were dominated in maximum

tillering stages of rice growth. Species diversity increased with the

increase in the LUM index, which shows that the areas having

more diverse landscapes can provide higher ecosystem service

providers, such as natural enemies.We observed a higher degree of

turnover in species number of pests and natural enemies in

Chattogram, with diverse landscapes along land-cover gradients

of higher agriculture. The shifts in species composition through

land-cover gradients are attributed to the changes in functional

group abundances of pests and natural enemies. Though we did

not assess how this change transforms into ecosystem services such

as pest control and pollination, other studies recommend that

wider spatial variation in species structure across the agricultural

landscape may supply insurance in the ecosystem (Yanchi and

Loreau, 1999; Tscharntke et al., 2007).

Our findings may provide some preliminary information

for biodiversity management and conservation paradigms.

This would involve making proactive conservation and

management plans, in which land use change management

treatments are considered together with different types of

land use changes. In this sense, new tree plantation programs

(forests) in agricultural landscapes or nearer to agricultural

land and roadside forest tree plantations may enhance or

help conserve biodiversity. In this way, this study highlights

the importance of considering prevailing landscape

approaches when planning for conservation of diverse

local landscape system (and, in turn, afford diverse food

for beneficial insects). This demonstration of landscape

diversity as a crucial factor in maintaining arthropod

species diversity in rice fields highlights a need to take

this factor into consideration in biodiversity conservation

program.
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