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An equation of state unifies diversity, productivity,
abundance and biomass
John Harte 1,2,3✉, Micah Brush1,4, Erica A. Newman 5 & Kaito Umemura1,6

To advance understanding of biodiversity and ecosystem function, ecologists seek widely

applicable relationships among species diversity and other ecosystem characteristics such as

species productivity, biomass, and abundance. These metrics vary widely across ecosystems

and no relationship among any combination of them that is valid across habitats, taxa, and

spatial scales, has heretofore been found. Here we derive such a relationship, an equation of

state, among species richness, energy flow, biomass, and abundance by combining results

from the Maximum Entropy Theory of Ecology and the Metabolic Theory of Ecology. It

accurately captures the relationship among these state variables in 42 data sets, including

vegetation and arthropod communities, that span a wide variety of spatial scales and habitats.

The success of our ecological equation of state opens opportunities for estimating difficult-to-

measure state variables from measurements of others, adds support for two current theories

in ecology, and is a step toward unification in ecology.
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A major focus of ecology is the study of species diversity
across ecosystems and its relationship to ecosystem
structure and function1–8. Considerable effort has been

directed at the challenge of finding other macro-level ecosystem
variables, such as productivity, that might correlate with and
potentially explain the wide range of values of species richness
observed in different habitats, climates, and taxa across spatial
scales. Species diversity and productivity are system-level
descriptors of ecosystems. Other system descriptors include the
total biomass and abundance of individuals.

Diversity, productivity, abundance, and biomass in ecology are
loosely analogous to state variables in thermodynamics, such as
the pressure, volume, temperature, and the number of moles of a
container of gas. In thermodynamics, a universal relationship
among state variables, also known as an equation of state, exists
in the form of the ideal gas law: PV= nRT. Equations of state are
common in physics and chemistry and derive from fundamental
theory, but in macroecological studies of ecosystems, such
framing has been lacking. A successful equation of state derived
from ecological theory would deepen our understanding of
ecology, allow prediction of diversity or productivity from
knowledge of other system-level state variables, and potentially
enhance applications of ecological theory to conservation and
restoration9.

In thermodynamics, it has proven useful to distinguish the
micro-level and the macro-level descriptions of the system and
then maximize Shannon information entropy10,11 to infer phe-
nomena at the micro-level from constraints imposed by state
variables at the macro-level. For example, the Boltzmann dis-
tribution of molecular kinetic energies can be derived from
knowledge of the total system energy and the number of mole-
cules. Extending this concept to ecology, we take the micro-level
variables to be the metabolic rates, ε; of individuals and the
abundances, n, of species within an ecological community of, for
example, plants, arthropods, or mammals. We take the macro-
level state variables to be the total number of species, S, the total
number of individuals, N, in the community, and the total
metabolic rate, E, of all the individuals in a given area A. An
application of MaxEnt then results in the Maximum Entropy
Theory of Ecology (METE)12–14, which we use to derive an
equation of state.

At the core of METE is the “ecosystem structure function”
Rðn; εjS;N; EÞ, a joint probability distribution over two micro-
level variables, abundance n, and metabolism ε, that is con-
strained by values of the state variables S, N, and E. R ∙ dε is the
probability that if a species is picked from the species pool, then it
has abundance n, and if an individual is picked at random from
all the species with abundance n, then its metabolic energy
requirement is in the interval (ε, ε+ dε). From the definition of R,
total abundance, N, is S times the average of n, and total meta-
bolic rate, E, is S times the average of nε, where both averages are
taken over the distribution R. The form of R is derived by max-
imizing its Shannon information entropy subject to the con-
straints imposed by the two independent ratios that can be
formed from S, N, and E: N/S and E/S. The MaxEnt solution12 is
R ¼ e�λ1ne�λ2nε=Z where the λi are Lagrange multipliers and Z is
the normalization factor, all of which depend only on S, N, and E.

From the ecosystem structure function, predictions for the
distribution of abundances across species and the distribution of
metabolic rates across individuals, as well as a relationship
between the abundance of a species and the average metabolism
of its individuals, can be derived12–14. In spatially explicit appli-
cations, the area of the system is included as a fourth state
variable and additional predictions follow, including a universal
scale-collapse expression for the species-area relationship15. If
higher taxonomic levels such as genus or family are included as

additional state variables in addition to species, then the theory
predicts the distribution of species over these added taxonomic
categories and explicit dependence of the abundance-metabolism
relationship on the taxonomic structure of the community16.

Across ecosystems, no one of the three state variables, S, N, and
E, that define METE at the macro-level is accurately predicted by
the other two. Although models have been proposed that do
relate species richness to the abundance or to either productivity
or metabolic rate6,17,18, empirically, there is considerable scatter
around such relationships (Supplementary Note 1 and Supple-
mentary Video). In a pioneering study6, Fisher et al. derived a
parameterized relationship between S and N from the widely-
applicable log-series distribution of abundances. However, the
parameter (Fisher’s alpha) is observed to vary considerably from
one ecosystem to another, from one taxonomic group to another,
and across spatial scales. That variability has not been shown,
either theoretically or empirically, to be explainable by abundance
or productivity17.

Various other semi-empirical relationships among biomass,
species richness, abundance, and productivity or metabolic rate
have been proposed as well5,7,8. Moreover, an effort has been
directed at linking patterns in macroecology by searching for
associations among hypothesized power-law exponents used to
characterize various scaling relationships among, for example,
abundance, body size, and spatial distribution19,20. None of these
efforts have yielded the sought-after widely-applicable unification
of state variables in ecology.

Here we derive an equation of state for ecology by combining
results from the maximum entropy theory of ecology12–14 with a
mass-metabolism scaling rule from the metabolic theory of
ecology18,21. The equation of state provides a relationship among
four state variables: total biomass, B, total metabolic rate, E, the
total number of individuals, N, and species richness, S. We
demonstrate the accuracy of this equation of state across a wide
variety of taxa, habitats, and spatial scales.

Results
To derive the relationship among macro-level ecological vari-
ables, which would constitute an ecological analog of the ther-
modynamic equation of state, we introduce a fourth state
variable, B, the total biomass in the community. The ecological
analog of the thermodynamic equation of state, an expression for
biomass, B, in terms of S, N, and E, arises if we combine METE
with a scaling result from the metabolic theory of ecology
(MTE)18,21. In particular, we assume the MTE scaling relation-
ship between the metabolic rate, ε; of an individual organism and
its mass, m: ε � m3=4. Without loss of generality22, units are
normalized such that the smallest mass and the smallest meta-
bolic rate within a censused plot are each assigned a value of 1.
With this units convention, the proportionality constant in this
scaling relationship can be assigned a value of 1. From the defi-
nition of the structure-function, it follows23 that averaging the
biomass of individuals times the abundance of species, nε4/3, over
the distribution R and multiplying by the number of species gives
the total ecosystem biomass as a function of S, N, and E. Expli-
citly:

B ¼ S∑
n
n
Z

dε ε4=3Rðn; εjS;N; EÞ ð1Þ

Both the sum and integral in the above equation can be calculated
numerically, and Python code to do so for a given set of state
variables S, N, and E, is available at github.com/micbru/equation
of_ state/.

We can also approximate the solution to Eq. 1 analytically
(Supplementary Note 2) to reveal the predicted functional
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relationship among the four state variables. If E >> N >> S >> 1:

B ¼ c
E4=3

S1=3lnð1=βÞ ð2Þ

where c � ð7=2ÞΓð7=3Þ ≈ 4.17 and β= λ1 þ λ2 is estimated13,22

from the relationship βlnð1=βÞ � S=N . Equation 2 approximates
the numerical result to within 10% for 5 of the 42 datasets ana-
lyzed here, corresponding to N/S greater than ~100 and E/N
greater than ~25. Multiplying the right-hand side of Eq. 2 by
1� 1:16β1=3 approximates the numerical result to within 10% for
33 of the 42 datasets analyzed here, corresponding to N/S greater
than ~3 and E/N greater than ~5. The inequality requirements are
not necessary for the numerical solution of Eq. 1, which is what is
used below to test the prediction.

Empirical values of E and B can be estimated from the same
data. In particular, if measured metabolic rates of the individuals
are denoted by εi; where i runs from 1 to N, then E is given by the
sum over the εi and B is given by the sum over the εi

4=3: Similarly,
if the mass, mi, of each individual is measured, then B is the sum
over the mi and E is the sum over themi

3/4. In practice, for animal
data, metabolic rate is often estimated by measuring mass and
then using metabolic scaling, while for tree data, metabolic rate is
estimated from measurements of individual tree basal areas,
which are estimators5 of the εi.

With E and B estimated from the same measurements, the
question naturally arises as to whether a simple mathematical
relationship holds between them, such as E= B3/4. If all the
measured m’s, are identical, then all the calculated individual ε’s
are identical, and with our units convention we would have E= B.
More generally, with variation in masses and metabolic rates, the
only purely mathematical relationship we can write is inequality
between E and B3/4: E ¼ ∑εi ≥ ð∑εi

4=3Þ3=4 ¼ B3=4. Our derived
equation of state (Eq. 2) can be interpreted as expressing the

theoretical prediction for the quantitative degree of inequality
between E and B3/4 as a function of S and N.

A test of Eq. 1 that compares observed and predicted values of
biomass with data from 42 censused plots across a variety of
habitats, spatial scales, and taxa is shown in Fig. 1. The 42 plots
are listed and described in Table S2 and Supplementary Note 3.
The communities censused include arthropods and plants, the
habitats include both temperate and tropical, and the census plots
range in area from 0.0064 to 50 ha. As seen in the figure, 99.4% of
the variance in the observed values of B is explained by the
predicted values of B.

Figure 2 addresses the possible concern that the success of
Eq. 1 shown in Fig. 1 might simply reflect an approximate con-
stancy, across all the datasets, of the ratio of E to B3/4. If that ratio
were constant, then S and N would play no effective role in the
equation of state. Equation 1 predicts that variation in the ratio
depends on S and N in the approximate combination S1/4ln3/4(1/
βðN=SÞ). In Fig. 2, the observed and predicted values of E/B3/4

calculated from Eq. 1, are compared, showing a nearly fourfold
variation in that ratio across the datasets. The equation of state
predicts 60% of the variance in the ratio.

Figure 3 shows the dependence on S and N of the predicted
ratio E/B3/4 over empirically observed values of S, N, and E. We
examined the case in which S is varied for two different fixed
values of each of N and E (Fig. 3a) and N is varied for two
different fixed values of S and E (Fig. 3b). The value of E does not
have a large impact on the predicted ratio, particularly when E >>
N. On the other hand, the predicted ratio depends more strongly
on N and S.

The total productivity of an ecological community is a focus of
interest in ecology1, as a possible predictor of species diversity24

and more generally as a measure of ecosystem functioning25. By
combining the METE and MTE frameworks, we can now gen-
erate explicit predictions for certain debated ecological relation-
ships, including one between productivity and diversity.
Interpreting total metabolic rate E in our theory as gross pro-
ductivity, then in the limit 1 << S << N << E, we can rewrite Eq. 2

Fig. 1 A test of the ecological equation of state. Observed biomass is
determined by either summing empirical masses of individuals or summing
empirical metabolic rates raised to the ¾ power of each individual.
Predicted biomass is determined from Eq. 1 using observed values of S, N,
and E. The quantity ln(predicted biomass) explains 99.4% of the variance in
observed biomass. Units of mass and metabolism are chosen such that the
masses of the smallest individuals in each dataset are set to 1 and those
individuals are also assigned a metabolic rate of 1. The shape of the marker
indicates the type of data, and the lighter color corresponds to higher
species richness. Data for all analyses come from tropical trees39–45,
temperate trees30–33,46–48, temperate forest communities27,49, subalpine
meadow flora28, and tropical island arthropods50.

Fig. 2 The explanatory power of diversity and abundance. The observed
ratio E/B3/4 is plotted against the ratio predicted by Eq. 1. Of the fourfold
variability across ecosystems in that ratio, 60% is explained by the variability
in the predicted combination of diversity and abundance. The shape of the
marker indicates the type of data, and the lighter color corresponds to higher
species richness. Data for all analyses come from tropical trees39–45,
temperate trees30–33,46–48, temperate forest communities27,49, subalpine
meadow flora28, and tropical island arthropods50.
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to highlight the role of diversity and the other state variables in
determining this quantity:

E ¼ c�3=4S1=4B3=4ln
3=4ð1=βÞ ð3Þ

here, as shown in Eq. 2, c is a universal constant (~ 4.17). From
Eq. 3, and the fact that up to a logarithmic correction β varies as
S/N, biomass exerts the strongest influence on E. With biomass
fixed, productivity varies approximately as S1/4, with a logarith-
mic correction. With biomass and species richness fixed, the
dependence of productivity on abundance is logarithmic. Thus,
the dependence of productivity on abundance is weakest, on
biomass is strongest, and on species richness is of intermediate
strength. Testing these predictions requires finding communities
with the same values of pairs of state variables, and thus it is most
feasible to compile further tests of Eq. 1 by allowing all four
variables to vary as in Figs. 1 and 2. If N >> S, then β is a function
of N/S and we can re-express Eq. 3 entirely in terms of three
ratios, E/S, B/S, and N/S, rather than the four state variables, and
obtain:

E=S ¼ c�
3
4

�
B
S

�3
4

ln
3
4

�
1=β

�
N
S

��
ð4Þ

To date, empirical cross-ecosystem surveys of relationships
among community metabolism, biomass, species richness, and
abundance have largely focused on uncontrolled pairwise rela-
tionships as, for example1, between productivity and biomass but
without controlling for species richness and abundance, and
found considerably more scatter in the relationship than is shown
in Fig. 1. In Supplementary Note 1, pairwise comparisons among
state variables are shown for the datasets used here, illustrating
the absence of strong relationships among pairs of state variables
when the remaining pair of state variables is unconstrained.
The largest R2 value in all comparisons is 0.987, between ln(B)
and ln(E), which is expected as they are computed from the
same data. Noting ð1� 0:994Þ=ð1� 0:987Þ � 0:46; the unex-
plained variance in the observed ln(B) using the equation of state
is less than half that of the second-best predictor, ln(E). All other
tested relationships shown in Supplementary Note 1 were
significantly worse.

Discussion
Far more testing of the ecological equation of state is warranted.
Moreover, Eq. 1 raises many new questions. As with other

empirical successes of METE, it is unclear why an apparently
mechanism-free theory should work at all in ecology. Our ten-
tative answer is that in ecosystems in which the state variables are
relatively constant in time, the myriad of mechanisms and traits,
differing from organism to organism and species to species,
confer upon them all sufficient fitness to co-exist14,26. In other
words, just as in an ideal gas where interactions among molecules
can be ignored in thermodynamic equilibrium except under
extreme conditions, the mechanisms operating in ecosystems can
be ignored because they simply represent different tactics for
achieving the common goal of sufficient fitness.

Pursuing that idea, we might more generally expect the pre-
dictions of a top-down MaxEnt approach to fail under ecological
disturbances that sufficiently alter the fitness landscape, resulting
in dynamic, not static, state variables. This indeed appears to be
the case for METE’s prediction of the species-abundance dis-
tribution (SAD) and the species-area relationship (SAR), as dis-
cussed elsewhere14,23,27–29. An implication of this is that a survey
of highly disturbed ecosystems with rapidly-changing state vari-
ables might reveal significant deviations from Eq. 1. As in ther-
modynamics, where a failure of the ideal gas law under extreme
values of the state variables revealed the existence of van der
Waals forces between polar molecules, so different types of failure
of Eq. 1 in ecosystems with rapidly changing state variables might
shed light on the causes of disturbance23.

Applying those insights to our equation of state, four data
points stand out as outliers in Fig. 1 and especially Fig. 2, These
are the four temperate tree communities (blue triangles). One of
the common characteristics of these four sites is that they are
currently undergoing secondary succession processes from dis-
turbances over the past decades to centuries30–33. Moreover, they
stand out from the other sites of their relatively small S-to-N ratio
(Supplementary Note 3). A more thorough survey of the validity
of Eq. 1 across a spectrum of levels and kinds of natural and
anthropogenic disturbance is suggested.

We note that the ecosystem area does not appear explicitly in
Eq. 1; the area only enters implicitly through the area-dependence
of the state variables. At least over the range of areas spanned by
our datasets (50 ha/0.0064 ha ~104), this absence of explicit area-
dependence in our equation of state is validated. However, just as
some of METE’s other predictions fail at large spatial scales
encompassing multiple ecoregions13,14, we expect to see sig-
nificant deviations from the predicted equation of state at very
large scales.

Fig. 3 The theoretical prediction for the ratio E/B3/4 as a function of S and N. The biomass B is predicted by holding E fixed along with one other state
variable. In a N is fixed and S is varied, and in b S is fixed and N is varied. The fixed values are chosen to be roughly consistent within a range of the data
considered. The color of the lines represents the corresponding fixed value of N or S, while the solid and dashed lines represent different fixed values of E.
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The full mass-metabolism scaling relationship in MTE18

includes a temperature-dependent multiplicative term such that

ε � e�E0=kTm
3=4

, where E0 is the activation energy, k is Boltz-
mann’s constant, and T is the temperature in Kelvin. The effect of
this temperature correction on the accuracy of the equation of
state remains to be tested.

We have used a metabolic scaling exponent of 3/4 in all of the
above, but there is both controversy over, and empirical varia-
bility in, its actual value34. If the scaling exponent is taken to be
2/3, as can be obtained from an energy budget model in which
energy loss is proportional to the surface area of an organism35

then the exponent of 4/3 in Eq. 1 becomes 3/2, and a different
form of the equation of state is obtained. Moreover, the empirical
value of E calculated from measured values of the masses of
individuals will differ, and thus the empirical ratio of E to B will
differ. In Supplementary Note 4 we show that the empirical
validity of the equation of state is reduced if the metabolic scaling
exponent is assumed to be 2/3 instead of 3/4. In particular, for the
test shown in Fig. 1, the R2 value drops from 0.994 to 0.986, and
for Fig. 2, the R2 drops from 0.600 to 0.477. On the other hand, if
the metabolic scaling exponent is 1, then with our units con-
vention, empirically, E= B and Eq. 1 predicts exactly that. An
example of a community in which E � B might be a microbiome
in which the masses of bacteria differ from one another by a
much smaller factor than, for example, the masses of trees in a
forest differ from one another. It is noteworthy that for micro-
organisms, there is evidence18 that the metabolic scaling exponent
is, in fact, closer to 1 than to 3/4.

Ecosystems exhibit numerous idiosyncratic phenomena, but
ubiquitous patterns nevertheless exist. The latter motivates the
search for general laws. We have provided evidence here for the
validity of one such law, an ecological equation of state, which can
be derived by combining two ecological theories, METE and
MTE. Each of these theories had previously been shown to have
broad explanatory power, and our result demonstrates the utility
of combining theories that in combination yield more than the
sum of the parts36. Our ecological equation of state is a simple
property of complex ecosystems, and it appears to be valid across
spatial scales, across types of habitat, and across different taxo-
nomic groups. Parallel advances in our understanding of rela-
tionships among macro-scale variables in other types of complex
systems, such as economies37 or networks38 may also be possible
by combining the powerful MaxEnt inference procedure with
appropriate scaling laws.

Methods
Data curation and processing. We searched several databases for data repre-
senting censused, species-level information for organisms from a well-defined area,
such as a plot or single tree canopy, which included the size of individuals and
abundances. We selected data sources in which at least ten species were represented
due to the prediction accuracy constraints within METE22. Datasets were further
investigated through metadata and associated publications. Any datasets that had a
recent history of major natural disturbance or human alterations, such as logging
and roadbuilding activities, were excluded. After identifying suitable candidate
datasets, all data were then processed in the R programming language using a
similar workflow.

For plant data, records were filtered to include only live individuals with size
measurements. Where individual stem diameters were recorded, we grouped them by
individual tree. Diameter at breast height (DBH) measurements were then combined
using DBHnew ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DBH1

2 þ ¼ þ DBHn
2

p
. For plants, measurements of a size

such as DBH and leaf area are considered proxies for the metabolic rates of those
individuals. Plant data were processed such that the smallest individual metabolic
rate measurement was rescaled to εmin ¼ 1, and B ¼ ∑N

1 metabolic ratei;rescaled
4=3

(for the main manuscript) or B ¼ ∑N
1 metabolic ratei;rescaled

3=2 (Supplementary
Note 4), depending on the scaling relationship being tested.

One modification was made for calculating E for the Point Reyes datasets. For
both plots, only the sizes of the largest individuals (trees) were measured. Because
the value of E depends almost entirely on the large individuals, we estimated the

size of the smallest individual from photographs for rescaling and employed those
values for subsequent calculations.

Animal data is processed similarly to plant data, with the change that
measurements of mass are directly measuring biomass, and therefore the metabolic
rates are the calculated quantities. The individual with the smallest mass was
therefore rescaled to εmin ¼ 1; then all masses were rescaled using this convention.
Rescaled masses were then summed to calculate B, and E was calculated using ¾ or
2/3 scaling, such that E ¼ ∑N

1 massi;rescaled
3=4 or E ¼ ∑N

1 massi;rescaled
2=3.

Statistics and reproducibility. Data were processed in R. All statistical analyses
were then performed in Python using the stats package in SciPy.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data sources and permissions are detailed in Supplementary Note 3. Datasets used in
these analyses are available publicly, except Traunstein Large Forest Dynamics Plot,
Kellogg Biological Station, and Hawaii arthropod data, which were made available by
permission of the data owners and can be requested directly from them. The processed
data is available at https://doi.org/10.6084/m9.figshare.20288595.

Code availability
Code to reproduce the analyses and generate all figures in the text is available at github.
com/micbru/equation_of_state/. Data cleaning code is available as R scripts on request
from the authors.
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Supplementary Note 1: Pairwise correlations among state variables 

While the four-variable (S, N, E, B) ecological equation of state appears to reliably describe a 
variety of ecosystems (Eq. 2 and Fig. 1 of main text), the question naturally arises as to whether 
simpler relationships among the state variables are equally successful. 

Here we examine the pairwise comparisons among the observed values, or logarithms of 
observed values, of the four state variables and contrast the resulting regression coefficients with 
the regression coefficients obtained when observed species richness is compared with the value 
of species richness predicted by the equation of state, or when observed logarithm of biomass is 
compared with the value of ln(B) predicted by the equation of state.   

Figures S1.a-f show the six possible pairwise comparisons between the natural logarithms of the 
observed values of the four state variables. Regression coefficients are summarized in Table S1. 

Of the six pairwise comparisons, that of ln(B) versus ln(E) has the highest R2 value (Fig. S1.f), 
which is expected because B and E are computed from the same data. We also note from Figs. 
S1.a-c, that comparing the three possible single-state variable predictors of ln(S), namely ln(N), 
ln(E) and ln(B), ln(N) has the highest explanatory power, although there is still much scatter 
around the regression line.  
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Fig. S1. The six (a, …, f) pairwise comparisons among the four state variables.  

a b
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  ln(N) ln(E) ln(B) 

ln(S) 0.319 0.138 0.109 

ln(N) 
 

0.798 0.712 

ln(E) 
  

0.987 

 

Table S1. Summary of the R2 values from pairwise comparisons among explanatory variables 

discussed above. 
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Supplementary Note 2.  Deriving the closed form ecological equation of state 

To derive a closed form for the equation of state, we need to find an analytic approximation for 
the equation for the biomass, 𝐵	 = 	𝑆 ∑ ∫ 𝑛!" 	𝜀#/%𝑅(𝑛, 𝜀	|	𝑆, 𝑁, 𝐸)	𝑑𝜀. We use the methods from 
SI-E in ref. 23 in the main text to derive this approximation. In the notation used there, 
approximations to equations of the form 𝐼	 = 	∑ ∫𝑛&!" 𝜀'𝑒()!"	(	)""! 	𝑑𝜀 are derived. The 
equation for B is of that form, with 𝜈 = 1 and 𝜎 = 4/3. From Eq. E-10 in ref. S1, the leading 
order terms for this integral with 𝜎 > 	𝜈 are 

 

𝐼	 ≈
Γ(𝜎 + 1)
𝜆+

',- >
1

𝜎 − 𝜈
+
𝑒()!
2

+ Γ(𝜈 − 𝜎)𝛽'(&B =
Γ C73E

𝜆+
.
%
>3 +

𝑒()!
2

+ ΓF−
1
3G
𝛽
-
%B . (S1) 

 

Approximating 𝑒()! ≈ 1	and substituting into the equation for B (Eq. 1 in main text),  

 

𝐵	 ≈
4.17	𝑆	

𝑍𝜆+
.
%
	F1 − 1.16𝛽

-
%G , (𝑆2) 

 

where Z is the normalization and is approximately equal to ln (1/𝛽)/𝜆+, and 𝜆+	is approximately 
S/E (ref 10 in the main text).   Substituting these approximations into Eq. S2 gives 

 

𝐵 ≈
4.17	𝐸

#
%

𝑆
-
% ln F1𝛽G

F1 − 1.16𝛽
-
%G , (S3) 

 

which is Eq. 2 in the main text, with an additional first order correction factor of 1 − 1.16𝛽-/%	. 

To see why the integral I gives this result, we summarize the arguments in SI-E of ref. S1 for this 
specific case, with 𝜈 = 1 and 𝜎 = 4/3. To make this approximation, we first take the sum and 
the integral to go to infinity rather than N and E, and then additionally approximate the sum over 
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n as an integral. The first order correction for approximating a sum as an integral is half of the 
value of the function being summed over evaluated at the endpoints of the sum, that is 
∑ 	/
"	0	- 𝑓(𝑛) ≈ ∫ 	/

"0- 𝑓(𝑛)𝑑𝑛 + 1(-),1(/)
+

. In this case, this leads to a correction term 

∫ 		! 𝜀
#/%𝑒()!()"4 	𝑑𝜀/2, since the term at infinity is negligible. With these approximations, 

 

𝐼 ≈ ∫ 	/
"0- ∫ 	/

!0- 𝑛	𝜀
#
$𝑒()!"	(	)""! 	𝑑𝑛	𝑑𝜀 + 4%&!

+ ∫ 	/
!0- 𝜀

#
$𝑒()"𝑑𝜀. (S4)  

The integral over 𝜀	in both terms can be recognized as the generalized exponential integral 
𝐸(#/%(𝜆+𝑛), with 𝑛 = 1	in the second term. The generalized exponential integral is defined as 
𝐸5(𝑧) 	= ∫ 	/

- 𝑒(67/𝑡5𝑑𝑡.	 In this case, we can take the first term from the expansion of this 
function using Eq. 8.19.10 from the Digital Library of Mathematical Functions (DLMF, ref S2)  
(𝐸5(𝑧) ≈ 𝑧5(-Γ(1 − 𝑝)). This means we can use ∫ 	/

!0- 𝜀#/%𝑒()""4 	𝑑𝜀 ≈ 8(./%)
()"")'/$

. Note that this 

is only valid in this case because the exponent on 𝜀 is greater than that on n. This means that this 
approximation works well for large n, even though 𝜆+𝑛 is not small, because the subsequent 
integral over n has a factor of n4/3 in the denominator, and since that power is larger than 1 that 
integral can be approximated again in the same way. Using the approximation of the integral 
over 𝜀	gives us 

 

𝐼 ≈
Γ C73E

𝜆+
.
%
RS

𝑒()!"

𝑛
#
%

/

"0-
𝑑𝑛 +

𝑒()!
2
T . (S5) 

 

The integral over n is another generalized exponential integral, 𝐸#/%(𝜆-), and we take the zeroth 
and first order terms from the same expansion as before (Eq. 8.19.10 from ref. S2). This gives us 

∫ 	/
"0-

4%&!)		
"#/$

𝑑𝑛 ≈ 𝜆-
-/%Γ(−1/3) − -

-(#/%
= 3 + Γ(−1/3)𝜆-

-/%. Plugging this in gives our final 

approximation of the integral, 

 

𝐼	 ≈
Γ C73E

𝜆+
.
%
>3 +

𝑒()!
2

+ ΓF−
1
3G
𝛽
-
%B . (S6) 
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Note that we have used 𝛽	in place of 𝜆-	here as for most ranges of state variables 𝜆- ≈ 𝛽, but this 
also ensures that we can still use this approximation if 𝜆- < 0. Note also that the more careful 
derivation in SI-E of ref. S1 obtains 𝛽 rather than 𝜆- here anyway. We can then plug this 
expression for I into the equation for B (Eq. 1 in the main text) to get an analytic approximation 
for B. 

We then test the accuracy of this analytic expression compared to the direct numerical 
calculation for B for different values of the state variables. Fig. S2 shows direct comparisons of 
the analytical approximation to the numerical calculation for a wide range of E and N with S held 
fixed at 50 (see caption), and both Fig. S2a without the first order term (as Eq. 2 in the main text) 
and Fig. S2b with the first order correction. The contours in this plot are calculated as the 
negative of log10 of the percent difference between the analytic and numerical calculations, or 
− log-9 Z

:+,,-./(:012
:012

Z, where Bapprox is the biomass calculated using the analytic approximation, 

and Bnum is calculated numerically. This means that the different contours correspond to the 
number of decimal places the approximation is good to. For example, the contour of level 1 
corresponds to a 10% difference between the approximation and the numerical calculation, 2 
corresponds to 1%, and so on. We see that for the zeroth order approximation (without the 
1.16𝛽-/%) our approximation is good to within less than 10% error for N/S greater than ~ 100 
and E/N greater than ~ 25. With the first order correction, the approximation is good to within 
less than 10% for N/S  greater than ~ 3 and E/N greater than ~ 5. 
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Fig. S2. Contour plots showing the accuracy of our analytic approximation for calculating 
biomass.  The contour lines show the number of decimal places that are accurate between the 
zeroth order (Fig. S2a) or first order (Fig. S2b) approximations, and the exactly calculated  
numerical result. This is calculated as − log-9 Z

:+,,-./(:012
:012

Z, where Bapprox is the biomass 

calculated using the analytic approximation, and Bnum is calculated numerically. The axes 
correspond to varying E and N with S held constant at 50, and points correspond to the empirical 
data in Table 1. Note that S can be held constant because B/S depends only on E/S, and the 
constraints depend only on E/S and N/S, when S is large enough. However, for small S in this 
range, N can also be quite small, and we see the effects of the finite sum when calculating the 
constraints. This means that we must take S large enough that we do not see these effects, which 
in practice is about S = 50. We have therefore highlighted the data points where S < 50 by 
marking them with a downward triangle rather than a circle to show that the indicated accuracy 
of the approximation may not be correct for these points, though we note that in practice it is 
quite similar. 

 

 

 

a b 



 

 

9 

 

Supplementary Note 3: Data sources and extended acknowledgements 

Data sources  

A. 

Data source and taxa Plot Year Area (ha) S N E B 

Tropical trees 
       

CSIRO permanent  
rainforest plots of North 
Queensland (Queensland, 
Australia) (S3) EP3 1973 0.5 67 506 4074.955 11131.86 

 
EP18 1975 0.5 79 452 3915.177 11332.63 

 
EP19 1977 0.5 64 397 2482.458 6218.057 

 
EP29 1981 0.5 49 487 2634.251 5684.631 

 
EP30 1976 0.5 66 552 3737.412 9528.809 

 
EP31 1978 0.5 47 236 2544.609 8096.39 

 
EP32 1983 0.5 51 437 1887.393 4519.255 

 
EP33 1990 0.5 43 307 4435.325 15840.59 

 
EP34 1984 0.5 59 290 3040.91 9044.354 

 
EP40 1998 0.5 48 477 3859.423 11095.37 

 
EP41 1983 0.5 50 369 2775.138 6739.585 

 
EP42 1977 0.5 58 243 2732.479 9317.053 

 
EP43 1984 0.5 59 385 4151.287 12856.02 

 
EP44 1990 0.5 58 443 3779.391 10811.51 

CTFS (Panama) BCI (S4-S6) 1982 50 307 235338 23944860 405723649 

 
Cocoli (S7) 1997 2 171 8290 1717206 29636476 

 

Sherman 
(S7) 1997 5.96 225 24453 2325982 24937441 

Catuba (Acre,  
Brazil) (S8) Catuba 1999 20 156 1009 17760.1 62397.22 
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Atlantic Forest  
restinga (Espírito Santo, 
Brazil) (S9) 6L1 2015 0.00125 15 22 102.7092 224.3061 

 
6L3 2015 0.00125 14 20 169.6116 568.2694 

 
5L1 2015 0.00125 13 25 135.3977 371.2233 

 
5L2 2015 0.00125 13 20 195.7322 627.4894 

 
5L3 2015 0.00125 15 25 70.73095 110.6893 

 
5L5 2015 0.00125 18 27 329.9215 1383.537 

 

B. 

Data source and taxa Plot Year Area (ha) S N E B 

Temperate trees 
       

Harvard Forest  
(Massachusetts, USA)  EMS Tower (S10) 1993 1.26 15 759 4953.7 10880.94 

 

 

Lyford mapped 
tree plot (S11) 1969 2.88 24 3696 141101 655151.6 

Hubbard Brook Experimental  
Forest (New Hampshire, 
USA) (S12) Watershed 6 2017 13.23 16 10230 55324 117597.1 

Kellogg Biological Station  
(Michigan, USA) (S13) Deciduous Forest 1 2018 0.81 (*) 18 259 11105 57231.16 

 
Deciduous Forest 2 2018 0.5 (*) 10 172 8115.8 43636.65 

 
Deciduous Forest 3 2018 0.35 (*) 13 136 2820.1 10936.14 

SCBI Large Forest Dynamics  
Plot (Virginia, USA) (S14) Front Royal 2012 25.6 68 29986 11102334 153035741 

 

Ordway Swisher Forest 
Dynamics Plot (Florida, USA) 
(S15) unburned 2019 17.6 11 7714 2185400 18386158 

Traunstein Forest Dynamics  
Plot (Germany) (S16) CTFS 2016 25 29 15758 425994 1679991 
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C. 

Data source and taxa Plot Year Area (ha) S N E B 

Temperate forest communities 
      

UC Santa Cruz  
(California, USA) 
(S17) FERC 2006 6 31 8370 10046216 223493837 

Point Reyes National 
Seashore Bishop Pines 
(California, USA) 
(S18) Mt. Vision 2012 0.0256 27 1844 2223879 (*) 123940275 

 
Bayview 2012 0.0256 16 486 1585384 (*) 38793345 

Subalpine meadow vascular plants 
      

Rocky Mountain 
Biological Laboratory 
(Colorado, USA) 
(S19) Belleview 2012 0.0064 31 877 917872 17532137 

 

 

D. 
Site Plot Year S N B E 

Tropical island 
arthropods  
Hawaii, USA (S20) Volcano (200 y) 1997 167 1909 424260.2 83121.76 

 
Lanai (1500 y) 1997 156 2253 165838.1 41210.11 

 
Kohala (150 ky) 1997 240 6048 339471.8 87168.36 

 
Molokai (1.2 My) 1997 227 3865 413508.2 102189.2 

 
Kauai (4My) 1997 158 1922 137916.7 35818.52 

Table S2. Sources of data and empirical values of state variables for the data used to test the 
Ecological Equation of State. Tables show values associated with Tropical trees (A), Temperate 
trees (B), Vascular plant communities (C), and Tropical island arthropods (D). “Year” denotes 
year the survey was started. Area is reported in hectares (ha). For Hawaii arthropods, the 



 

 

12 

 

geologic age of each site is given in parentheses and sampling was carried out by fumigating tree 
canopies of varying areas. Plant size data were converted to metabolic rates and rescaled such 
that 𝜺𝒎𝒊𝒏 = 𝟏; rescaled metabolic rate measurements of individuals were summed to calculate E; 
and 𝐵 = ∑ 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐	𝑟𝑎𝑡𝑒>,@4ABCD4E

#/%F
- . For animal data, mass measurements directly measure 

biomass, and therefore the metabolic rates are the calculated quantities. The individual with the 
smallest mass was therefore rescaled to 𝜀G>" = 1; and rescaled masses were then summed to 
calculate B, and E was calculated as 𝐸 = ∑ 𝑚𝑎𝑠𝑠>,@4ABCD4E%/#F

- . The symbol (*) indicates an 
estimated value. All reference numbers in the Table refer to the Main Text reference list. 
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Supplementary Note 4: Sensitivity of the accuracy of the equation of state to the metabolic 
scaling law 

In the main text, the ecological equation of state is derived under the assumption that the 
metabolic rate of individual organisms scale as mass to the 3/4 power. Although there is 
considerable evidence for such a relationship, alternative scaling exponents ranging from as low 
as 2/3 to 1 or higher have been proposed, depending upon type of taxonomic group and age of a 
cohort. The value 2/3 is motivated by a simple surface-to-volume argument.  

Here we investigate the sensitivity of the equation of state to the choice of scaling exponent. As 
in Supplementary Note 1, we let 𝜎 be the inverse of the scaling exponent and then using 𝐵 =
𝑆∑ ∫𝑑𝜀	𝑛𝜀'𝑅(𝑛, 𝜀|𝑆, 𝑁, 𝐸)" , for 𝜎 > 1	we derive:  

 

𝐵 ≈
Γ(𝜎 + 2)
2(𝜎 − 1)

𝐸'

𝑆'(- ln F1𝛽G
										(𝜎 > 1) (S7) 

 

where 𝛽 is calculated from 𝛽ln(1 𝛽) ≈ 𝑆/𝑁⁄ . For the special case of 𝜎 = 1 we derive:  

 

𝐵 = 𝐸						(𝜎 = 1). (S8) 

 

That B = E if 𝜎 = 1 can be seen from the fact that one of the METE constraint conditions is 𝐸 =
𝑆∑ ∫𝑑𝜀	𝑛𝜀	𝑅(𝑛, 𝜀|𝑆, 𝑁, 𝐸)."   

Because both mass and metabolic rate of all individuals are rarely measured, comparison of the 
above predictions with empirical data, requires estimating observed metabolic rate from 
measured mass, or vice versa. If masses are measured, then metabolic rates are calculated from 
𝜀~𝑚- '⁄ ,	while if metabolic rate is measured, then mass is computed using 𝑚	~𝜀' . For trees, we 
will continue to assume that metabolic rate scales isometrically with basal area.  

We first observe that if 𝜎 = 1 is assumed, then the equation of state, B = E, is an identity and the 
observed B will always equal the predicted B. To see this, assume that metabolic rate is measured 
and the empirical mass of each individual is calculated, using 𝜎 = 1, to be equal to the metabolic 
rate. Or equivalently, if mass is measured, then the empirical metabolic rate of each individual is 
calculated to equal its mass. In both cases, B = E.  Parenthetically, we note that another trivial 
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result, this time holding for any 𝜎, is that if all individuals have the same measured metabolic 
rate, then in our units the metabolic rate values are 1 for all individuals, resulting again in a B = E 
equation of state.  

We next compare the validity of the equation of state for the two scaling exponents 2/3 and 3/4. 
Comparing the same style figures in the main text, the prediction of B value by the 3/4 law is 
more accurate than the 2/3 law (Fig. S3 and Fig. 1). We also note that the 3/4 law predicts more 
of the variance in the ratio of 𝐸: 𝐵- '⁄  than does the 2/3 law (Fig. S4 and Fig. 2). In both results, 
the R2 values of the simple regression of the 2/3 case are smaller than those of the 3/4 case.  

Although the equation of state becomes an identity if 𝜎 = 1, it was not assured that the equation 
of state with a 3/4 scaling rule would outperform that with a 2/3 scaling rule under the 
assumption that our METE starting point is correct. If the true scaling exponent was exactly 2/3, 
then the equation of state derived under that condition might have outperformed the 3/4 result. 
For the data sets considered here, and under the assumption that the METE structure function, R, 
is valid, it thus appears more plausible to choose 3/4, rather than 2/3, metabolic scaling of 
biomass for both practical and empirical reasons: it predicts an equation of state relationship 
among the four state variables with high accuracy and is consistent with a model of the 
physiological features of the vascular system of plants and animals.  
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Fig. S3. Comparing observed and predicted values of B of each site. The same style plots as 
Fig. 1 in the main text is shown but here a different scaling relationship is used between 
metabolic rate 𝜺 and biomass 𝒎 of an individual, 𝜺~𝒎𝟐 𝟑⁄ , namely 𝝈 = 𝟑/𝟐. Lighter color 
corresponds to higher species richness. 
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Fig. S4. Comparing observed and predicted values of the ratio of E and 𝑩𝟏/𝝈 of each site. 
The same style plots as Fig. 2 in the main text is shown but here a different scaling relationship is 
used between metabolic rate 𝜺 and biomass 𝒎 of an individual, 𝜺~𝒎𝟐 𝟑⁄ , namely 𝝈 = 𝟑/𝟐. 
Lighter color corresponds to higher species richness. 
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