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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain

pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage

herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon

sequencing across an entire growing season in a diversity panel of switchgrass (Panicum

virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to

compare the importance of time, space, ecology, and genetics. We found a strong succes-

sional pattern in the microbiome shaped both by host genetics and environmental factors.

Further, we used genome-wide association (GWA) mapping and RNA sequencing to show

that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated

with microbiome structure. We confirmed GWAS results in an independent set of genotypes

for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA mark-

ers. Fungal pathogens were central to microbial covariance networks, and genotypes sus-

ceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host

immune genes are a principal means of controlling the entire leaf microbiome.

Introduction

Microbial communities perform essential functions for their host organisms in all branches of

life. In some systems, hosts can tightly control the microbes with which they form symbioses

[1,2]. In others, the composition of the microbiome is more governed by ecological interac-

tions such as the order of species arrival or abiotic conditions during colonization [3,4]. A key

goal of microbial evolutionary ecology is to determine how both host and nonhost factors

influence microbiome assembly [5], particularly in natural settings where host influence is

more challenging to study.
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Communities that colonize available niches in the process of succession follow certain pre-

dictable ecological patterns. Early-arriving species are typically those with effective long-range

dispersal, while the climax community is dominated by species that can more effectively use

resources under competition [6]. While these broad patterns are generalizable, the composi-

tion of any particular successional community depends greatly on both the habitat colonized

and interspecific interactions such as priority effects, where the order of arrival of taxa governs

the success of later arrivals [7,8]. While most successional theory is based on studies in macro-

scale organisms, the principles of succession are evident in microbial communities as well, but

on a more rapid timescale [9–11].

In the case of microbiomes, host factors governing microbial succession must also be con-

sidered. Since the composition of the microbiome can greatly impact host fitness, it can be

evolutionarily beneficial for the host to play a role in the successional process, encouraging

mutualist colonization while dispelling pathogens as the community assembles. Hosts express

genes that influence colonizing microbes through several means, including immunity, mor-

phological adaptations [12], and chemical exudation [13]. While the immune system is often

effective at preventing detrimental infections, immune receptors may recognize and exclude

beneficial microbes if elicitors are structurally similar to a pathogen, so specific immunity can

have wider impacts on the microbiome [14]. Hosts require finely calibrated mechanisms for

attracting beneficial microbes without attracting pathogens in a constant coevolutionary push

and pull.

The phyllosphere microbiome, consisting of the microbes on and inside the plant leaf, com-

prises diverse taxa that impact plant health and productivity [15–18]. Leaf fungi in particular

are common plant pathogens [19], but nonpathogenic taxa may perform beneficial functions

for the host, including nutrient uptake and pathogen antagonism [20–25]. Since the phyllo-

sphere microbiome of perennial plants is reassembled at the start of each growing season in

freshly sprouted tissues, [26,27] it may show similar patterns to macro-scale secondary succes-

sional communities. Recent research has shown that host control of the leaf microbiome is

often governed by numerous loci of small effect directly impacting relatively few microbes

[28–30].

We hypothesized that the phyllosphere fungal microbiome develops seasonally as a succes-

sional community controlled by environmental factors, host genetics, and interspecific fun-

gal–fungal associations. We used amplicon sequencing to compare the relative importance of

these factors in the phyllosphere fungi of a replicated diversity panel of switchgrass (Panicum
virgatum [31]). We tested whether communities change directionally and whether the trajec-

tory of succession differed across switchgrass genetic subpopulations and across different

growing sites. Additionally, we sought to uncover whether specific genetic loci underlie host

control of the microbiome through genome-wide association study (GWAS) and RNA

sequencing analyses. Finally, we investigated the roles of specific fungal taxa in the microbiome

through network analysis. Specifically, we aimed to determine whether known switchgrass leaf

pathogens [32] covary with nonpathogenic symbionts, or are peripheral to microbial

communities.

Results

Succession varies across host subpopulations and planting sites

Switchgrass is a highly genetically diverse perennial grass native to North America, and both

plant traits and switchgrass–microbe interactions vary across its range [31–33]. We leveraged

this diversity to assess the difference in microbial communities across the 3 main switchgrass

subpopulations by randomly selecting 106 genotypes from a diversity panel [31] planted at our
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focal site, the Kellogg Biological Station (KBS), Michigan, United States of America. Of these,

28 genotypes were from the Midwestern subpopulation, 38 from the Atlantic, 31 from the

Gulf, and 9 showed signs of admixture between groups (Intermediate). These subpopulations

differ in morphological and ecological characteristics, so we expected that fungal succession

would differ as well across subpopulations. Switchgrass subpopulations correspond roughly to

3 morphological ecotypes: Midwest genotypes are mostly Upland, Gulf are Lowland, and

Atlantic mostly Coastal [31]. Since the samples used in this study largely followed this pattern,

subpopulation differences can also be considered ecotypic differences. We examined succes-

sion over time by sampling leaf tissue from each plant at 5 time points, then sequencing the

internal transcribed spacer (ITS) region of the phyllosphere-associated fungi in and on the

leaf. After quality filtering, we clustered 47.8 million ITS reads to 6,756 fungal operational tax-

onomic units (OTUs) that varied across genotypes and over time.

To determine the directionality of successional changes in the microbiome, we visualized

community differences with nonmetric multidimensional scaling (NMDS). NMDS accurately

preserved sample distances in reduced dimensions (Stress = 0.102; S1 Fig) and revealed clear

temporal community structure. NMDS1 clustered closely with the date of collection, while

NMDS2 clustered more with host genetic subpopulation (Fig 1A). Notably, the first sampling

date was highly distinct from the later time points, showing greater variation within that time

point, as well as divergence from later time points (Fig 1). To explore the statistical significance

of patterns of succession, we used pAU : PleasenotethatPERMANOVAhasbeendefinedaspermutationalmultivariateanalysisofvarianceinthesentenceToexplorethestatisticalsignificance::::Pleasecheckandcorrectifnecessary:ermutational multivariate analysis of variance (PERMA-

NOVA). Both sampling date (day of year, DOY) and subpopulation had significant effects on

community structure, but differed greatly in their explanatory power (Table 1). At the focal

site, KBS, collection date (DOY) explained the greatest amount of variation (19.4%), followed

by genetic subpopulation (5.7%), and there was a significant date-by-subpopulation interac-

tion (2%). To assess the impact of disease on leaf microbiome, we performed a separate test

with the subset of samples for which we were able to collect both infected and symptomless

leaves. We restricted permutations within individual plants to perform the equivalent of a

paired test of infection effects, resulting in a significant infection term that explained 7.79% of

the variation in community distance (p< 0.001).

In order to directly test the differences in succession across subpopulations, we modeled

changes in the multidimensional representation of fungal communities as directional trajecto-

ries [34]. Across the season, fungal communities on individual plants showed parallel changes

over time, with almost no reversals to earlier community states (Fig 1B), strongly indicating a

successional pattern. Switchgrass genetic subpopulations differed in both mean trajectory

length (df = 3, F = 2.786; p = 0.0453) and mean overall direction (df = 3, F = 3.677; p = 0.0151).

While little subpopulation difference is evident at the beginning of the season, climax fungal

communities were markedly different in the Midwestern population, which showed the great-

est divergence from others in trajectory direction (Fig 1B, Midwest-Atlantic; Tukey honest sig-

nificant difference [HSD] = 0.013, p = 0.050). This provided initial evidence that, while fungal

dispersal is similar across plant subpopulations, host plants influence the climax state of fungal

communities. Further, we tested for differences between genotypes that were presenting rust-

associated symptoms and genotypes that were not presenting symptoms. Infected and symp-

tomless plants changed along parallel trajectories that differed in length (df = 1, F = 5.274,

p = 0.0238), but not in directionality (df = 1, F = 0.652, p = 0.421).

Fungal microbiomes can be greatly influenced by environmental factors in addition to host

factors. Therefore, we compared succession across environments by selecting a subset of 8

plant genotypes replicated in 3 additional sites across a latitudinal gradient in the USA. From

north to south, these field sites were Columbia, Missouri; Austin, Texas; and Kingsville, Texas

(S2 Fig). We sampled each site at 3 time points, standardized by phenology to account for
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seasonal differences across sites (S3 Fig). At most sites, collection date correlated with both

NMDS1 and NMDS2 (Fig 2; stress = 0.103). However, the northern and southern sites were

divided on a diagonal line orthogonal to collection date. The northern sites KBS and Colum-

bia, Missouri formed one cluster, while the southern sites, Austin, Texas and Kingsville, Texas

formed another (Fig 2). Differences across sites accounted for 29.6% of the variation in com-

munity dissimilarity across sites, but sampling date and subpopulation also structured the

community to a lesser extent (Table 1). While succession may show temporal patterns in

southern sites, the composition of fungal communities on leaves is largely distinct. A
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https://doi.org/10.1371/journal.pbio.3001681.g001
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significant site:sampling date interaction term indicates that succession differs across sites, but

additional samples may be needed to fully understand this pattern.

Host genetic subpopulations support divergent fungal communities

Beyond differences at the level of subpopulations, we expected that within-subpopulation

genetic differences would impact fungal diversity. To further examine genetic differences over

Table 1. PERMANOVA of a Bray–Curtis community dissimilarity matrix for genotypes at the focal site (n = 106) and those replicated across sites (n = 8).

KBS sequential

Df SumOfSqs R2 F Pr (>F)

DOY 1 15.6 0.194 143.64 0.001

Subpopulation 3 4.6 0.057 14.03 0.001

DOY:Subpopulation 3 1.6 0.02 4.97 0.001

Residual 538 58.5 0.728

Total 545 80.3 1

Multisite sequential

Df SumOfSqs R2 F Pr (>F)

Site 3 4.6 0.296 12.14 0.001

DOY 1 1.1 0.072 8.88 0.001

Subpopulation 2 0.7 0.046 2.82 0.001

DOY:Site 3 1.4 0.090 3.70 0.001

Residual 61 7.8 0.496

Total 70 15.6 1.000

DOY is sampling date, subpopulation indicates genetic group, and site indicates planting site. Terms are shown with sequential effects. All terms were significant with α

< 0.05.

DAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutTable1:Pleaseverifythatallentriesarecorrect:OY, day of year; KBS, Kellogg Biological Station; PERMANOVA, permutational multivariate analysis of variance.

https://doi.org/10.1371/journal.pbio.3001681.t001

Northern

Southern
−0.8

−0.4

0.0

0.4

0.8

−0.5 0.0 0.5 1.0
NMDS1

N
M

D
S

2

Phenology
Early
Mid
Late

Site
KBS
Columbia
Austin
Kingsville
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began. Data underlying this figure can be found in S2 Data. NMDS, nonmetric multidimensional scaling.

https://doi.org/10.1371/journal.pbio.3001681.g002
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time, we compared host genetic distances to fungal community differences between plants at

the focal site, KBS. Genetic distances, calculated as Nei’s distance using 10.2 million single

nucleotide polymorphisms (SNPs) [35], revealed that host population genetic structure largely

matched the 3 major switchgrass genetic groups observed previously: “Gulf,” “Atlantic,” and

“Midwest” [31] (Fig 3A). These 3 subpopulations are deeply diverged and serve as discrete

gene pools within which we tested for host-driven fungal community divergence. Fungal com-

munity distances, calculated as Bray–Curtis community dissimilarity, varied across sampling

dates, but largely recapitulated the genetic structure of switchgrass (Fig 3B and 3C). Notably,

Mantel tests showed that fungal community structure was most closely correlated with host

genetic structure at DOY 260, when most plants had set seed (r = 0.453), but declined as senes-

cence progressed (Fig 3D). While we anticipated some degree of genetic influence, subpopula-

tions were even more highly structured than expected, with almost half of the variation in

fungal community distance explained by genetic distance when plants are setting seed (DOY

260). To confirm this pattern, we estimated pseudo-heritability values for community struc-

ture using the kinship matrix as a random effect in mixed models. Overall, there was weak her-

itability for variation on the second NMDS axis (H2 = 0.132 ± 0.043), but this may be

attributable to high variation across time points (DOY 158: 0.120 ± 0.188, DOY 212:

0.164 ± 0.146, DOY 233: 0.184 ± 0.733, DOY 260: 0.950 ± 0.176, DOY 286: 0.913 ± 0.352).

Such tight host–microbiome genetic diversity associations imply a genetic basis of influence

on fungal community dynamics by their plant hosts. To identify the genetic loci that might

underlie this pattern, we calculated genome-wide associations (GWAs) for microbiome struc-

ture. We used the second NMDS axis at DOY 260 from the above analysis (Figs 1 and S4) to

represent microbiome structure, since it showed the greatest clustering with subpopulation

(Figs 1A and 3C, additional time points in S5 Fig) and controlled for large-scale host genetic

structure by including a single variate decomposition of pairwise genetic distance as a covari-

ate in the linear models. We found several loci associated with the phenotype at a 5% false dis-

covery rate (FDR), but the GWA showed an excess of low p-values (quantile–quantile plot: S6

Fig) so we used a more conservative Bonferroni-corrected threshold to identify significant

SNPs (Fig 4A). This threshold revealed only 1 SNP on chromosome 2N significantly associated

with microbiome structure, Chr02N_57831909. This SNP is closely linked to several genes in

the switchgrass v5.1 genome annotation (Fig 4B and 4C). The 3 closest genes are homologous

to receptor-like kinases (RLKs) annotated in the closely related Panicum hallii (2 copies of cys-
teine-rich receptor-like protein kinase 6; XP_025800480.1 and XP_025800481.1, and 1 copy of

cysteine-rich receptor-like protein kinase 10; XP_025801715.1). This class of RLKs is diverse in

plants, but is known to contain many immune receptors [36], indicating a potential role for

these genes in host control of fungi.

We corroborated the importance of these candidate genes by comparing their expression

levels in divergent genotypes at the 3 of the 4 sites where phyllosphere experiments were con-

ducted, KBS, Columbia, and Austin. In each site, we sequenced leaf tissue RNA from multiple

biological replicates (n� 3) from 4 genotypes: 2 that are typically more susceptible to leaf fun-

gal pathogens (Midwest upland VS16 and DAC) and 2 that typically are more resistant (Gulf

lowland WBC and AP13) [32]. Consistent with host-gene driven variation in fungal commu-

nity assembly, all 3 candidate genes were much more highly expressed in susceptible than

resistant genotypes (Wald tests; Table 2). These differential genotype-specific patterns of

expression were very similar across planting sites (likelihood ratio test for ecotype✕ site inter-

action, p = 0.354).

As further confirmation of the importance of the outlier SNP, we selected several genotypes

that were not in the original study (n = 20) containing differing alleles of the outlier SNP. We

used the same protocols as the first round of sampling, but only sampled at one location at 2
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https://doi.org/10.1371/journal.pbio.3001681.g003
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time points, KBS, Michigan. Fungal microbiomes in these samples conformed closely to our

predictions, with allelic variation at the Chr02N_57831909 locus influencing microbiome

structure (PERMANOVA F = 1.84, p = 0.016, R2 = 0.064; S7 Fig). Although this was a smaller

subset of samples taken 3 years after the original samples, we were also able to confirm a strong

temporal influence on microbiome structure between the 2 time points (PERMANOVA
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https://doi.org/10.1371/journal.pbio.3001681.g004

Table 2. Wald test for expression differences in 3 candidate genes between Midwest (more susceptible) and Gulf (more resistant) populations.

Wald test

Base mean Log fold change SE W p-value

Pavir.2NG521906 12.91 3.22 0.81 3.95 7.89E-05

Pavir.2NG521912 313.63 1.99 0.16 12.25 0.00E+00

Pavir.2NG521915 189.09 5.33 0.30 17.94 0.00E+00

Data underlying this table can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001681.t002
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F = 16.80, p< 0.001, R2 = 0.293; S7 Fig). In addition, we sequenced the fungal large subunit

(LSU) in these samples to exclude any primer bias against any taxonomic group. LSU

sequences showed a similar temporal pattern to fungal ITS and were structured with the

Chr02N_57831909 locus in a strikingly similar pattern to ITS (PERMANOVA F = 2.66,

p = 0.001, R2 = 0.086; S7 Fig). For both amplicons, population structure as indicated by PCs 1

and 2 of the genomic SVD explain some variation in the microbiome, but not as much as alle-

lic variation at Chr02N_57831909. Together, these results suggest that the Chr02N_57831909

locus has a stable and deep influence on the microbial community.

Yeasts, pathogens, and mycoparasites are core phyllosphere microbiome

members

Given the large differences in leaf pathogen susceptibility across switchgrass subpopulations,

we sought to determine the influence of pathogenic fungi on other members of the fungal

microbiome. We examined the taxonomic relationships of the 7392 OTUs in our dataset

through a hybrid method that compares matches across fungal databases and BLAST (Basic

Local Alignment Search Tool) hits [37]. We identified 6,756 OTUs as fungi, and excluded 633

plant, and 3 metazoan OTUs. We performed NMDS and PERMANOVA analyses using the

full fungal community, but focused our taxon-specific analyses on OTUs at the focal site that

were present at high occupancy across time and showed relatively high abundance, often

referred to as the “core” microbiome [38]. This group consisted of 128 OTUs, the majority of

which were Dothideomycetes (43.5%) and Tremellomycetes (28.7%, S1 Table). We assigned

each of the core OTUs to a functional guild when possible using published literature (S1

Table). Of the core group, 23 OTUs were grass pathogens, and 9 were documented pathogens

of other plants. Four were known mycoparasites, fungi that prey upon other fungi. Three were

generalist decomposers or had an unclear functional guild, and the remaining 52 were yeasts

or yeast-like fungi. Compared to fungal species in soil, these taxa were especially enriched for

grass pathogens and yeasts and contained much fewer saprophytes [39].

To investigate how these functional guilds associate, we built covariance networks using

OTU relative abundances at each time point (Fig 5A). We summarized network statistics

across functional guilds to show that known grass pathogens are central to covariance net-

works, with high betweenness centrality (extent to which a node lies on paths connecting

other nodes) and degree (overall number of connections; Fig 5E). Standard deviation was high

within this group, however, reflecting seasonal and within-group differences. Yeasts, in con-

trast, showed higher modularity (compartmentalization; Fig 5E). This indicates that, while

yeasts are overall more speciose in the core microbiome, they covary less with the rest of the

microbial community than pathogens. Since yeasts are thought to be mostly commensal

inhabitants of the outer leaf surface [40], this difference may reflect their ecological or spatial

niche.

In addition to varying among functional groups, OTU covariance also significantly changed

over time as supported by the bootstrap-permutation based network comparisons between

each sampling point (Fig 5A and S6 and S2 Tables). To identify positive or negative covariance

temporal patterns within network members, we generated a Class-level heatmap showing the

proportion of edges linking OTUs within or between each Class at each time point (S8 Fig).

Due to the high proportions of Dothideomycetes (mixed guilds) and Tremellomycetes (yeast)

in the core, the majority of edges at every time point were within (38.3% to 48.6%) and

between (9.9% to 14.5%) OTUs in these classes. While the proportion of positive edges main-

tained more or less stable with time between OTUs in the Dothideomycetes (from 20.0% to

23.9%) and Tremellomycetes (from 23.0% to 17.4%) or within the 2 classes (from 3.6% to
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2.8%), negative edges between classes increased from DOY 158 (6.7%) to DOY 233 (9.7%) and

DOY 286 (11.7%). This may indicate competition for host resources between these 2 classes of

fungi, resulting in more spatially heterogeneous distributions in the late season.

While patterns in this core group reflected major changes in the fungal microbiome, we

used several alternate methods to identify important OTUs. In addition to the core, we modi-

fied trajectory analyses (Fig 1B) by computationally removing each OTU from the analysis and

calculating the change in the overall community trajectory [34]. Nineteen OTUs significantly

impacted trajectories when they were removed, all of which overlapped with the core group

(Fig 5C). To examine priority effects, we used microbial temporal variability mixed linear

models (MTV-LMMs), which identify taxa for which variation in earlier time points explains

variation in later points [41]. Of the 153 OTUs we found in this analysis, 49 overlapped with
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Fig 5. Network analysis of core OTUs. (A) Covariance networks of core OTUs over time. Nodes are colored by each OTU’s relative abundance in infected leaves with

visible symptoms. The shape of the node denotes network position, defined by Zi-Pi ratio. Edges are colored by the covariance sign. (B) Infection indicator taxa, including

best taxonomic match and z-score for indicator analysis. (C) Number of OTUs identified as important by several methods: MTV-LMM analyses that indicate time-

dependent OTUs, OTUs that impact the successional trajectory, and core OTUs with high occupancy-abundance. (D) Taxonomic information for the 14 OTUs identified

in all 3 analyses in (C). Best match denotes the lowest taxonomic level confidently identified for each OTU using BLAST. Guilds were estimated based on published

studies, references are in S1 Table. (E) Network statistics for fungal guilds, calculated as mean values across all time points, with (SD. Data underlying this figure can be

found in S5 Data. DOY, day of year; MTV-LMM, microbial temporal variability mixed linear model; OTU, operational taxonomic unit; SD, standard deviation.
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the core, and 14 with both the core and trajectory analysis (Fig 5C). The 14 OTUs that were

identified as important using all 3 methods (Fig 5C and 5D) included taxa from several puta-

tive functional guilds, including yeasts, pathogens, and mycoparasites. Network connections

confirmed mycoparasitic interactions; we found a negative relationship between putative plant

pathogens Mycosphaerella tassiana and Microdochium seminicola versus mycoparasitic Epicoc-
cum dendrobii. In addition, we used indicator species analysis to identify OTUs that were over-

represented in leaves with fungal disease symptoms (Fig 5A). Although the major fungal

pathogen of switchgrass, Puccinia novopanici, was not identified as a core taxon, indicator spe-

cies analysis showed that putative mycoparasite Sphaerellopsis filum is present in the core and

significantly associated with fungal infection symptoms (OTU_4; Fig 5A).

Our analyses mostly identified the taxa that were abundant across samples. Rare taxa can be

important in microbial community functioning [42], but their role in overall ecological pat-

terns is less clear and more challenging to study. Therefore, we only examined rare taxa that

we expected a priori to play an important ecological role. Claviceps species were present in

119/760 samples, and were more highly abundant in the early season. Claviceps species pro-

duce alkaloid compounds that deter grazing [43], so this endophyte may play a role in protect-

ing young grass shoots. Metarhizium, a related genus, was present at low abundances in 43/

760 samples in the Columbia, Missouri and KBS, Michigan sites. Metarhizium species are

insect-pathogenic fungi [44], so may provide a similar protective role.

Discussion

Our results show strong support for the importance of time, geographic location and host

genetics in influencing the switchgrass phyllosphere microbial succession over the growing

season. We found evidence for clear successional dynamics that were consistent in direction

across growing sites, but were distinct in community composition. Fungal communities were

different across host genetic subpopulations, a pattern that may be driven by variation at 3

linked immune receptors. Leaf fungal communities are taxonomically diverse, but a few highly

abundant pathogens and yeast species play a disproportionate role in shaping community

progression.

Viewing the switchgrass leaf microbial community through the lens of succession allowed

us to delineate ecological patterns in these communities. Multidimensional scaling representa-

tions of the leaf communities at the focal site revealed a clear clustering by date of collection

on the first NMDS axis (Fig 1). This indicates that, as we predicted, date of collection is an

important source of variation in the switchgrass leaf fungal community. Further, measuring

the trajectories of these communities showed that succession is both directional and determin-

istic, since no samples showed negative trajectories (reversals of succession) by the end of the

season, and most samples followed a similar trajectory (Fig 1B). We observed similar patterns

to other studies that show early-season leaves as highly distinct from later time points, perhaps

owing to greater influence from soil microbes [16,45]. While the overall shape of trajectories

was similar among samples, the Midwestern population deviated from others, particularly in

the late season. The Midwestern population is notable since we have previously shown that it

is more susceptible to several fungal pathogens such as leaf rust (Puccinia novopanici) and leaf

spot (Bipolaris spp.; [32]; also see [46]) and has on average an earlier phenology than the other

population groups [33]. Leaf microbiome relationships are consistently distinct in this popula-

tion and may be linked to other traits such as cold tolerance that also differ [31,33].

In addition to temporal differences across subpopulations, the composition of fungal leaf

communities differed markedly across geographic locations. This may be partially due to sea-

sonality differences across the region we examined. The Kingsville, Texas site did not
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experience freezing temperatures between 1989 and 2020 (NOAA weather service), so peren-

nial grasses in the region may have living aboveground tissue year-round. Growing season

length has been shown as an important factor in governing the abundance and diversity of

endophytic fungi [47], so it is unsurprising that we saw large differences across this latitudinal

gradient. However, many other factors that influence fungal communities also differ across

these sites, including precipitation regime, soil type, and surrounding vegetation, so further

work is needed to determine if the growing season is truly the causal factor.

We predicted that fungal communities would be impacted by host genetics as well as loca-

tion. We found several lines of evidence for genetic control of the leaf microbiome. In addition

to examining differing successional trajectories across subpopulations, we tested the covari-

ance of genetic distance and fungal community differences using Mantel correlations.

Genetic-fungal community correlations increased until DOY 260, then declined as host senes-

cence began. Mantel tests are inappropriate for some ecological tests and often underestimate

p-values, but can be useful for exploratory analysis of distance matrices [48]. While there was

high variation in our pseudo-heritability estimates, the fact that they mirror temporal patterns

in the Mantel tests strengthens the general trend of greater genetic associations in the late sea-

son. Previous studies have found similarly high variation in microbiome heritability estimates

across time [29], so it is not surprising to see this in our case. Deng and colleagues calculated

H2 for individual OTUs, which ranged from 0 to 0.66 and a Mantel’s correlation of r = 0.13

between genetic and microbiome composition in sorghum rhizosphere. This value of r is

lower than we saw in our study, possibly since it was based on a relatively small subset of sam-

ples. When selecting samples for this study, we randomly chose equal numbers of samples

from the 2 major switchgrass morphological ecotypes, upland and lowland switchgrass [49]

(S2 Fig). Lowland switchgrass, which is more highly represented in Gulf and Atlantic subpopu-

lations, is more resistant to several leaf fungal pathogens [32], so subpopulation differences

may be at least partially driven by differences in immunity across these genotypes. Since patho-

gens such as Microdochium and Alternaria were among the most abundant taxa in our sam-

ples, their differences across subpopulations may have driven overall community differences.

In addition to immunity, however, subpopulations differ in other traits that may contribute to

fungal colonization differences, such as leaf wax content [50], exudate concentration [51], and

phenology [33,49], so microbiome differences may be responding to multiple host plant traits.

A replicated receptor-like kinase is associated with fungal differences

We found one outlier SNP associated with microbiome structure. While there were several

peaks in the Manhattan plot (Fig 5A), our analysis showed a strongly skewed distribution of

observed versus expected p-value (S6 Fig), indicating a risk of Type I errors. This is probably

attributable to the low sample size in this GWAS. The influence of the identified locus is fairly

strong, contributing to a clear decrease on NMDS axis 2 when the minor allele is present

(MAF = 0.083; S9 Fig). This SNP is not in Hardy–Weinberg equilibrium in switchgrass; we

found only one minor-allele homozygote among our samples. This abnormal pattern may be

attributable to structural variation at this locus. Switchgrass subpopulations vary widely in

genome structure, which may result in alignment mismatches that resemble SNPs, particularly

in regions with multiple gene copies [52]. Indeed, this region shows an elevated number of

insertions and deletions compared to nearby sections of the 2N chromosome (S10 Fig, data

from [31]) and is adjacent to a region dense with repetitive long terminal repeat retroelements

(positions 60960000–60980000). Given the confirmatory results for this locus as well as the

RNA sequencing results, however, we expect that there is a true phenotypic association with

the locus, but that it may be with a structural variant rather than a true SNP.
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The 3 nearby genes we identified were replicated variants of a cysteine-rich RLK whose

function has not been experimentally verified in Panicum. RLKs are one of the largest plant

gene families, including over 600 members in Arabidopsis [36]. The best studied of these is

FLS2, which detects the bacterial flagellin protein and initiates an immune response cascade

[53]. The 3 RLKs we identified show high sequence similarity to immune-related cysteine-rich

RLKs in Arabidopsis and Oryza, and contain the “stress-antifungal domain” PF01657, which

has been linked to salt stress as well as fungal responses when present in several proteins

[54,55]. Arabidopsis CRK5, for example, alters defense responses either through resistance to

infection or programmed cell death, depending on how the gene is expressed [56], and CRK6

and CRK 14 are involved in the general non–self-response [57]. Related Arabidopsis genes

may be the targets of immune repression by bacterial strains [58]. Similarly, the Oryza gene

LIL1 (Os07g0488400) improves fungal rice blast resistance when overexpressed [59]. The pat-

tern of these receptors being more highly expressed in pathogen-susceptible plants may seem

counterintuitive given that many RLKs are immune receptors. However, this can often occur

when pathogens produce effector proteins that target immune receptors [60]. Necrotrophic

fungi in particular can benefit by over-inducing plant immune receptors to initiate pro-

grammed cell death, [61,62] then feeding on dead plant tissue.

Since allelic variants at this locus have now been associated with variation in the fungal

microbiome across several years in natural populations, it may represent a useful target for

future research into genetic control of the leaf microbiome. Previous research has shown that

microbiome control is often polygenic, with many contributing loci of small effect [28–30].

Uncovering only a single causal locus in this study may be a product of the relatively low sam-

ple size; there are more loci associated with microbiome community structure that did not

meet the GWAS cutoff, but may contribute to a polygenic architecture for this trait.

Pathogens and hyperparasites are important in succession

We used several methods to identify important taxa in the phyllosphere community. In several

other recent studies, genetic effects on microbiomes appear to be targeted toward particular

microbes, with the effects permeating through the community through ecological effects

[28,63,64]. We used “core” microbiome analysis to identify OTUs that show high occupancy

(presence across multiple samples within a time point [16]). We found that core taxa over-

lapped well with important taxa identified by MTV-LMMs and trajectory analysis. We can

therefore be confident that this group of taxa is influential in the switchgrass phyllosphere (Fig

5). Within this group, we identified several as pathogens, including Alternaria, Mycosphaerella,

Microdochium, and Taphrina. It is challenging to assign functional guilds to symbiotic fungi,

since their benefit or detriment to the host may depend strongly on phenology, abiotic condi-

tions, and ecological interactions [65]. For example, many endophytic fungi are commensal

for most of the season, then shift to breaking down plant tissue as the host begins senescence

[66]. Others may be weakly pathogenic, but may improve overall host fitness by enhancing

nutrient uptake or preventing infection by more effective pathogens [23,67].

Yeasts and yeast-like fungi were also well represented in phyllosphere samples. Yeasts were

historically thought to be dominant in the phyllosphere [68], but this may have been an artifact

of methods used. Yeasts are more easily culturable than filamentous fungi, and are therefore

overrepresented in studies using cultures to measure fungal diversity. The exact relationship

between yeasts and plant hosts is not totally clear, but they are typically thought to be mostly

commensal symbionts, feeding on small amounts of sugars on the leaf surface [69].

At the focal site, Tremellomycete yeasts and Dothideomycetes dominated the core micro-

biome and covaried negatively through time. This may be explained by different spatial
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distributions across samples; Tremellomyctes dominate some samples and Dothideomycetes

other samples, but they rarely coexist. Priority effects, wherein early-arriving taxa gain advan-

tage over late-arriving taxa, may therefore play a role in governing colonization in these taxa.

Certain Tremellomycete yeasts have been shown to be potential biocontrol agents against

pathogens, e.g., Papiliotrema spp. [70], and others have been shown to be “hub” taxa or nega-

tively connected with leaf pathogens, e.g., Dioszegia spp. [63], both genera with high abun-

dance in our focal site dataset.

One unexpected finding of our taxon-specific analysis was that 2 mycoparasites were identi-

fied as important taxa, Epicoccum and Sphaerellopsis. Epicoccum is an ascomycete genus com-

prising several species with noted antifungal properties [71,72]. The species we identified in

this study, Epicoccum dendrobii, is being investigated as a biocontrol agent of the pathogenic

anthracnose fungus Colletotrichum gloeosporoides [73]. Similarly, Sphaerellopsis filum has been

observed infecting multiple species of Puccinia rusts [74,75] and has been shown specifically to

reduce switchgrass rust infection [76]. Another surprising finding was that switchgrass rust

was not a core species, despite the fact that its disease symptoms are nearly omnipresent each

year in the sites we studied [32]. Fungi in the Pucciniaceae family have an ITS sequence that

differs substantially from general fungal primers used in this study, which we suspect resulted

in reduced amplification of Puccinia rusts. We confirmed this suspicion by additionally

sequencing the LSU for our confirmatory analysis; using ITS failed to identify any Puccinia

rusts in these samples, but LSU identified 10 OTUs as Puccinia present in 18 of 20 samples.

There were more than double the Puccinia OTU counts in individuals with the major allele at

the focal outlier locus, but a large outlier obscures a reliable statistical pattern. The ubiquity of

the Sphaerellopsis hyperparasite is a further indication that Puccinia may be more prevalent

than our sequencing data show, a speculation that is supported by the fact that Sphaerellopsis
was identified by indicator species analysis as clearly overrepresented in leaves with rust infec-

tion. The other OTU most closely associated with disease symptoms is OTU_4, Microdochium.

While we could find little evidence of known associations between Puccinia and Microdochium
pathogens in published studies, this result suggests that they may have a synergistic effect on

host disease.

Bacterial microbiomes may be just as important to leaf function as fungi [16], although eco-

logical patterns may differ in some important ways. We used fungi in this study because they

contain more known switchgrass pathogens and may be documented more clearly within leaf

tissue without conflict by chloroplast DNA. However, interplay between microbial groups is

an essential component to microbiome ecology. Interactions between fungi, bacteria, viruses,

microfauna can all mediate impact on hosts. Bacteria [77] and viruses [78] have documented

impacts on the functioning of host-dependent fungi in complex and fascinating multilevel

interactions. Beyond individual interactions, functional microbiomes in soils require both

diverse fungi and bacterial communities, so influence between these groups is impossible to

connect to just one single microbe [79].

Conclusions

Switchgrass leaf fungal communities are highly diverse, and are influenced by both host and

environmental factors. Succession occurs each season as communities are assembled through

stochastic, environmental, and host-determined processes. Pathogenic fungi play a critical role

in the switchgrass leaf phyllosphere community, determining both the trajectory of microbial

community development and acting as central nodes in community networks. Host immune

genes such as receptor-like kinases control pathogens directly, and the prevalent mycoparasites
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that prey on them indirectly. The plant genes that control pathogens may therefore provide a

principal means by which plants influence changes in their fungal microbiome.

Materials and methods

Plant material

We collected switchgrass leaves from a diversity panel established for a separate study [31]. In

brief, researchers planted arrays of 732 genotypes of switchgrass clonally replicated at over 15

sites in the USA and Mexico. These genotypes were collected from across the USA, grown in

controlled conditions, then clonally split before replanting at all sites. Since 2018, they have

been growing in 1.3 m spaced grids with minimal interference for weed control [31]. Research-

ers used Illumina HiSeq X10 and Illumina NovoSeq6000 paired-end sequencing (2 × 150bp) at

HudsonAlpha Institute for Biotechnology (Huntsville, Alabama, USA) and the Joint Genome

Institute (Walnut Creek, California, USA) to sequence the genome of each individual.

Sequence information for these samples is available on the NCBI SRA: Bioproject

PRJNA622568. Lovell and colleagues [31] called 33.8 million SNPs with minor allele frequency

(MAF) greater than 0.5%, we used a subset of 10.2 million, which had less than 10% missing

data and a MAF greater than 5%.

We used 2 sampling strategies to assess temporal and geographic variation (S3 Fig and S3

Table). For temporal variation, we sampled leaf tissue from 106 genotypes from a diversity

panel of switchgrass grown at the KBS, Michigan field site at 5 time points during the 2019

growing season. To assess geographic variation, we collected 8 randomly chosen genotypes

representative of switchgrass genetic populations that were replicated in 4 sites that span the

geographic range of temperate switchgrass populations KBS, Michigan (42.419, −85.371);

Columbia, Missouri (38.896, −92.217); Austin, Texas (30.383, −97.729); and Kingsville, Texas

(27.549, −97.881). At each site, we sampled the same 8 genotypes at 3 time points (n = 96; S3

Fig). Given that climate varies greatly over this latitudinal range, we standardized collection by

phenology rather than date, focusing on switchgrass emergence, flowering, and senescence.

Switchgrass genetic variation segregates into 3 main subpopulations that differ greatly in mor-

phology and phenology [31], so we compared fungal community responses over these popula-

tions. At all sites, we collected roughly equal numbers of genetic subpopulations (S3 Fig and S3

Table).

For each plant at each time point, we collected 3 leaves. We haphazardly sampled leaves

from the middle of the canopy; that is, leaves that were neither close to the base nor the flag

leaf. To minimize external contamination, we sterilized gloves between plants, and collected

directly into sterile 50mL tubes (UHP tubes, Fisher Scientific, Waltham, Massachusetts, USA).

Since we expected that the fungal community would be impacted by the dominant fungal

pathogen, leaf rust, we collected 3 leaves with visible rust symptoms as well as 3 symptomless

from the same plant when possible (n = 35), all of which were used in downstream analyses.

We stored tubes on dry ice in the field and while being shipped, then at −80 ˚C until extrac-

tion. For each day of sampling, we also collected a negative control, one tube opened to the

ambient air for at least 10s. Samples were shipped overnight on dry ice to Michigan State Uni-

versity (MSU) for processing.

Amplicon sequencing

We targeted the endophytic (inside the leaf) and epiphytic (on the leaf surface) fungi. To pre-

pare leaves for DNA extraction, we used 4mm biopsy punches (Integra, Princeton, New Jersey,

USA) to produce approximately 21 leaf discs pooled across the 3 collected leaves. We sterilized

the biopsy punch tool between samples by soaking it overnight in DNAaway (Thermo Fisher
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Scientific, Waltham, Massachusetts, USA), then washing in DI water. We punched across the

leaf blade to fully represent the spatial diversity in leaves. We homogenized leaf tissue by grind-

ing with 2 sterile 3.175 mm stainless steel ball bearings. We placed sealed sterile 1.5 ml tubes

with bearings and leaf discs into liquid nitrogen for 10s, then homogenized in a Mini-G bead

beater (SPEX sample prep, Metuchen, New Jersey, USA) for 60 s at 1,500 rpm.

To extract DNA, we used QIAGEN Plant Maxi kits, following the manufacturer’s

instructions (QIAGEN, Hilden, Germany). This method yields large amounts of plant

DNA in addition to fungal, so we used primers for the fungal ITS rDNA region. We per-

formed library preparation for ITS using the ITS1f (50-CTTGGTCATTTAGAGGAAGT

AA-30) and ITS4 (50-TCCTCCGCTTATTGATATGC-30) primers. We used a 3-step ampli-

fication process to amplify the target region, add adaptors, and add barcodes for multi-

plexing as previously reported by Benucci and colleagues [80,81] PCR amplification steps

and reagents are included in the supplement (S4 Table). We normalized DNA concentra-

tions using SequalPrep normalization kits (Thermo Fisher Scientific), concentrated librar-

ies using Amicon Ultra 0.5 mL 50K centrifugal filters (EMD Millipore, Burlington,

Massachusetts, USA), and removed primer-dimers with Ampure magnetic beads (Beck-

man Coulter, Brea, California, USA). We randomized samples across plates, then pooled

them into 3 libraries for sequencing. We used 4 levels of negative controls to check for

contamination at different steps: field controls that were exposed to air at each sampling

point, DNA extraction controls, library preparation controls, and a synthetic mock com-

munity [82], resulting in a total of 672 samples that included 59 controls. The synthetic

mock community contained 12 ITS taxa described in Palmer and colleagues ([82]). We

recovered all species present in this community through sequencing.

We sequenced DNA using Illumina MiSeq 300bp paired-end v3 600 cycles kit in the MSU

genomics core facility. Sequencing yielded 84.7 M total reads and high-quality data across

samples. Across 3 multiplexed libraries, 74.9% of reads had quality scores above 30 (Phred),

with an average of 110 K reads per sample (ranging from 110 reads in negative controls to 199

K reads in samples). After quality filtering, 47.8 M reads remained. We used a 97% clustering

threshold for identifying OTUs (Operational Taxonomic Units), resulting in 7,963 OTUs

across 672 samples.

RNA sequencing

Vegetatively propagated plants from 4 genotypes were grown in 3 sites (KBS, Michigan; Aus-

tin, Texas; and Columbia, Missouri). Two genotypes, AP13 and WBC, fit in the Gulf popula-

tion group, and are generally resistant to leaf fungal pathogens [32,46]. The other 2 are more

closely related to the Midwest population and are more susceptible to leaf pathogens [32,46].

Leaf tissue was harvested and immediately flash frozen in liquid nitrogen and stored at −80˚C

until further processing was done. Each harvest involved at least 3 independent biological rep-

licates (individual plants). Plants received no supplemental manipulations, so transcript counts

represent constitutive expression. High-quality RNA was extracted using standard Trizol-

reagent based extraction [83]. RNA-Seq libraries were prepared using Illumina’s TruSeq

Stranded mRNA HT sample prep kit utilizing poly-A selection of mRNA. Sequencing was per-

formed on the Illumina HiSeq 2500 sequencer using HiSeq TruSeq SBS sequencing kit.

Paired-end RNA-Seq 150-bp reads were quality trimmed (Q� 25) and reads shorter than

50 bp after trimming were discarded. High-quality sequences (404.4 M reads) were aligned to

P. virgatum v5.1 reference genome using GSNAP v.2019-06-10 [84] and counts of reads

uniquely mapped to annotated genes (371.8 M reads) were obtained using HTSeq v.0.11.2

[85]. Raw transcript counts are included in S5 Table.
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Bioinformatics

We analyzed amplicon sequences on the MSU HPCC (High-Performance Computing Center)

with qiime v1.9.1 [86], fastqc v0.11.7 [87], cutadapt v2.9 [88], CONSTAX2 [89], and usearch
v11.0.667 [90]. We demultiplexed sequencing reads using split_libraries_fastq.py in qiime1,

then checked for sequencing errors with fastqc. We removed barcodes with cutadapt and fil-

tered fastqs with USEARCH using the -fastq_filter option with arguments: 1 expected error

(-fastq_maxee 1.0), truncation length of 200 (-fastq_trunclen 200), and no unidentified bases

(-fastq_maxns 0) [91]. We clustered 97% OTUs with the UPARSE algorithm [92] through the

-cluster_otus option, with singletons discarded (-minsize 2). We assigned taxonomy to OTUs

using CONSTAX2 [37], which improves OTU identifications using a consensus algorithm

between RDP [93], SINTAX [94], and BLAST classifications [37].

Statistical analyses

We performed downstream analyses in R v4.0.3 [95] using the packages decontam [96], vegan
[97], phyloseq [98], vegclust [99], and metagenomeseq [100]. We used decontam to remove con-

taminants by pruning OTUs that were overrepresented in negative controls, then normalized

read depth with functions in the metagenomeseq package. Of 7,963 OTUs we clustered, 162

were identified as contaminants and removed from analyses (identifiable contaminants

removed are shown in S6 Table). All contaminants showed low abundance and were evenly

spread across negative controls, indicating that fungal contamination was minimal in this

study.

Successional dynamics

We visualized community structure using NMDS, which represents the multivariate structure

of a community in reduced dimensions (Shepard plot in S1 Fig). NMDS is classically used for

dimensionality-reduction in ecological research since it has few assumptions about the under-

lying data structure, and contains all variance within a limited set of axes, rather than distrib-

uted across eigenvectors as in PCoA [101]. We first used a Hellinger transformation to reduce

the impact of extreme data points across samples using the decostand function, then performed

NMDS with metaMDS, both in the vegan package. We also used permutational analysis of var-

iance to assay the relative importance of various factors in structuring the fungal community

implemented through the adonis2 function in vegan. To test the PERMANOVA assumption of

multivariate homogeneity of group dispersion (variance from centroids), we used the betadis-
per function in the vegan package. Samples at the first sampling time point (DOY 158) had

greater dispersion than other time points, so we repeated our analyses with this time point

removed. Since the PERMANOVA still showed a strong effect of DOY (p< 0.001), we con-

cluded that the significance of this result is not due to heterogeneity of dispersion. To test the

community impact of disease symptoms, we performed a separate PERMANOVA test on indi-

viduals for which we were able to collect both infected and uninfected leaves. We modeled leaf

infection as a block with each individual plant by including infection status as strata in the ado-

nis function in vegan.

To test the importance of historical contingency in temporal community changes, we used

a MTV-LMM [41]. The MTV-LMM assumes that temporal changes are a time-homogenous

high-order Markov process and fits a sequential linear mixed model to predict the abundance

of taxa at particular time points [41]. For each taxon, we calculated “time explainability,” a

metric of the degree to which variation in later time points is explained by variation in earlier

points [41]. We fit linear mixed models for each OTU present across multiple time points and

used a Bonferroni-corrected α to identify taxa that exhibit significant temporal contingency.
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In addition, we examined individual and subpopulation-level succession using trajectory

analysis [34]. Trajectory analysis transforms multivariate community changes to two-dimen-

sional trajectories, for which parameters of individual community changes can be compared.

We calculated mean trajectories for communities in each subpopulation, then used ANOVA

to test for trajectory differences across subpopulations. Additionally, we split OTUs between

genotypes that showed rust infection symptoms, and those that were symptomless through the

whole season, and tested for trajectory differences. We then used a permutational method to

discover OTUs that substantially impact succession. We computationally removed each OTU

from our dataset, recalculated mean population trajectories, then compared to the original tra-

jectories. We then used the trajectoryDistances function in the vegclust package to calculate the

degree to which removing each OTU altered the overall community trajectory [99].

Conceptualization of ecological communities as trajectories has a long history in ecology

[102], but explicit modeling of trajectory parameters has been challenging until relatively

recently [34,103,104]. This approach utilizes statistical methods that are typically applied to

movement in geometric space [105] to compare movement by a community in multidimen-

sional space [34]. While trajectory analysis has not been applied to changes in microbial com-

munities to our knowledge, other researchers have used the method to understand succession

in Amazon forest communities after land-use change [106], and Iberian forests after fires

[107]. We visualized these results using PCoA, which allowed us to estimate variance assigned

to each axis and to show that our results are robust to mode of dimensionality reduction.

Genetic associations

To specifically measure the overall microbiome variation explained by genetic structure, we

examined the covariation of genetic distance and fungal community distance using Mantel

tests. We calculated genetic distance as the number of pairwise SNP differences between each

sample (Nei’s distance, π). We used the switchgrass GWAS SNP dataset [35], which features

10.2 million high-confidence SNPs with MAF> 0.05, and calculated distance with the dist.gen-
pop function in adegenet [108]. For microbiome community differences, we used Hellinger-

transformed Bray–Curtis distances calculated with the decostand function in vegan. We per-

formed Mantel tests with 999 permutations using the mantel function in vegan for each sam-

pling time point at the focal site (KBS). We also confirmed that there was no impact of spatial

position within the field by fitting a mixed model for community structure with sampling date

as a fixed effect, and field position and genetic kinship as random effects. Using the mmer

function in the R package sommer, likelihood ratio tests indicated that models including kin-

ship had improved fit (p< 0.001), but fit was not impacted by including a spatial term

(p = 0.899 [109]). By including a kinship term, we were able to estimate microbiome pseudo-

heritability across all dates (same formula as above), and for each sampling date individually

using the vpredict function in sommer [109].

To identify specific genetic loci associated with microbiome community structure, we

examined GWAs between SNPs and community structure, represented as the second axis

from our NMDS analysis (described above). We did not use the first axis, since that clearly

clustered with sampling date (Fig 1). We performed GWA using the switchgrassGWAS [31]

package and the same SNPs as we used in Mantel tests. To correct for population structure, we

included the first 10 principal components of a singular value decomposition (SVD) of pair-

wise genetic distance as a covariate in the linear models. The first 3 SVD axes explain 35.5%,

29.2%, and 9.03% of the variance of the decomposition. The switchgrassGWAS package imple-

ments linear regression tests for each SNP using the big_univLinReg function in bigstatsR,

which rapidly applies statistical tests across filebacked big matrices using memory mapping
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[110]. We calculated both a 5% FDR threshold, as well as a Bonferroni-corrected p-value

threshold to distinguish outlier SNPs.

To verify outlier SNPs, we examined expression-level differences of adjacent genes across

divergent genotypes with RNA sequencing data from a separate study (prepublication access

through the Department of Energy Joint Genome Institute). We tested for normalized expres-

sion differences across switchgrass genotypes using likelihood ratio tests in DESeq2 [111]. We

tested for expression differences across genotypes separately and additionally examined the

influence of site using a combined test for genotype✕ site interaction.

To confirm the variation at the outlier GWAS locus, we repeated leaf collection and ampli-

con sequencing in a new set of genotypes with differing alleles at the Chr02N_57831909 locus

in 2021. We collected 20 plants at 2 time points (June 22 and July 27) at KBS, then extracted

DNA and sequenced ITS libraries according to the steps above. In addition, we targeted the

fungal LSU using the primer pair LR0R (50 ACCCGCTGAACTTAAGC 30) and LR3 (50

CCGTGTTTCAAGACGGG 30) to determine if the patterns hold for a different DNA marker

region as well, and exclude primer choice biases. We followed the same bioinformatic steps as

previously used for ITS, and assessed the impact of alternate alleles on the microbiome using

PERMANOVA via the adonis2 function in vegan87.

Important taxa

To identify OTUs that are important in structuring the fungal community, we used several

complementary methods. In addition to identifying taxa important in temporal dynamics as

described above, we also identified “core” taxa [16]. We examined core community taxa using

custom scripts [16,112]. Core taxa are defined as those with relatively high occupancy and

abundance across all samples and represent those taxa most likely to have a close symbiosis

with the host [113]. To calculate the core, we ranked OTUs by frequency, then selected all the

OTUs up to the last OTU that adds a 2% increase in beta diversity (Bray–Curtis similarity)

between factors (subpopulations and time points) [113]. For the overall core group, we used

the intersection between the core across subpopulations and the core across time. Within this

core group, we used network analysis implemented in SpiecEasi [114] and igraph [115] to

build covariance networks over time. Nodes in covariance networks can be assigned to 4 possi-

ble groups based on the ratio of their within-module (Zi) and between-module connectivity

(Pi) [116]. Those with high Zi and Pi are widely connected “network hubs,” those with low Zi

and Pi are disconnected “peripherals.” Nodes with high Pi and low Zi are “connectors,”

whereas those with high Zi and low Pi are “module hubs” [116]. To statistically assess similar-

ity across networks we adopted a bootstrap-permutation based network comparison method

as implemented in the R package mina. This approach repeatedly permutes OTUs within a

network to evaluate the likelihood of similarity to a second network. In this study, we assessed

the degree to which networks at different time points resembled the previous time.

We used indicator species analysis to identify taxa associated with fungal rust disease symp-

toms. Indicator species analysis identifies particular taxa that are overrepresented based on a

factor, and thus represent a useful indicator for that factor [117]. By comparing species present

on infected versus uninfected leaves, we could isolate both OTUs associated with disease

symptoms and those overrepresented in symptomless leaves.

We further identified an a priori list of taxa that we expected to play important ecological

roles in the phyllosphere. These included pathogens that we have previously identified in these

plots, including Puccinia spp. [32], Bipolaris spp., Tilletia maclaganii [118], and Colletotrichum
spp., and taxa with roles in herbivore prevention, including Claviceps spp. [43], Beauvaria
spp., and Metarhizium spp. [119].
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S1 Fig. Shepard stress plot for NMDS of KBS site. Data underlying this figure can be found

in S1 Data. KBS, Kellogg Biological Station; NMDS, nonmetric multidimensional scaling.

(PDF)

S2 Fig. Original collection locations for samples. Latitude and longitude are available in S3

Table. The base map uses points from the US Census Bureau, implemented in the maps R

package (https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-

file.html). Data underlying this figure can be found in S3 Table.

(PDF)

S3 Fig. Sampling scheme. Each icon represents one sample taken. We sampled 106 genotypes

at 5 time points at the focal site in Hickory Corners, Michigan, and 8 genotypes at the 3 other

sites. We sampled roughly equal numbers of each subpopulation throughout. Sites are shown

from northern (KBS, Michigan) to southern (Kingsville, Texas). KBS, Kellogg Biological Sta-

tion.

(PDF)

S4 Fig. NMDS plot of the subsetted data used in GWAS analysis. Shapes represent genetic

subpopulation. Data underlying this figure can be found in S1 Data. GWAS, genome-wide

association study; NMDS, nonmetric multidimensional scaling.

(PDF)

S5 Fig. Manhattan plots for additional time points. A. DOY158; B. DOY212; C. DOY233; D.

DOY286. Data underlying this figure can be found in S4 Data.

(PDF)

S6 Fig. Quantile–quantile plot for microbiome GWAS results showing an excess of

observed low p-value. Data underlying this figure can be found in S4 Data. GWAS, genome-

wide association study.

(PDF)

S7 Fig. Fungal community differences across alternate allele states at locus

Chr02N_57831909. These results confirm that the locus has a significant impact on the fungal

community. The figures at left show NMDS plots of the fungal community at 2 time points

sampled in 2021. The right tables show PERMANOVA results for these samples, indicating a

significant effect of allele on community structure. Data underlying this figure can be found in

S6 Data. NMDS, nonmetric multidimensional scaling; PERMANOVA, permutational multi-

variate analysis of variance.

(PDF)

S8 Fig. Class-level comparison of the proportion of edges linking OTUs within or between

each Class in a time point. Column facets show DOY, and row facets show whether connec-

tions were negative or positive. Data underlying this figure can be found in S7 Data. DOY, day

of year; OTU, operational taxonomic unit.

(PDF)

S9 Fig. Phenotypic (NMDS2) values for the outlier SNP, Chr02N_57831909. The x-axis

shows jittered genotypic value, with 0 and 2 as homozygotes, and 1 as the heterozygote. Points

are colored by population. Subpopulations with the _admix suffix show substantial admixture

from other populations. Data underlying this figure can be found in S8 Data. NMDS,
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nonmetric multidimensional scaling.

(PDF)

S10 Fig. Sequencing coverage and structural variation in the region of interest. The upper

panel shows Loess-smoothed normalized sequencing coverage in this region for 3 representa-

tive genotypes. Colors indicate genotype, with the blue line showing an individual homozy-

gous for the major allele, and red and green showing a heterozygote and the minor allele

homozygote, respectively. The lower panel shows structural variation in the same region.

Insertions and deletions in the region of our outlier SNP were overrepresented in the area sur-

rounding the candidate genes, indicating structural variation across genotypes that may

account for genetic and phenotypic differences. Red diamonds show deletions, and blue trian-

gles show insertions. Red arrows with text show nearby genes. Data underlying this figure can

be found in S9 Data. SNP, single nucleotide polymorphism.

(PDF)

S1 Table. Core microbiome taxonomy and functional guilds. This table can be found as a

spreadsheet in S10 Data.

(PDF)

S2 Table. Bootstrap p-value for temporal network distance tests in MINA. This table can be

found as a spreadsheet in S11 Data.

(PDF)

S3 Table. Sample information. Ecotype and subpopulation membership are estimated using

SNP data. Latitude and longitude denote original collection site, if known. This table can be

found as a spreadsheet in S12 Data. SNP, single nucleotide polymorphism.

(PDF)

S4 Table. PCR conditions for ITS amplification. This table can be found as a spreadsheet in

S13 Data.

(PDF)

S5 Table. RNA sequencing transcripts for 3 crRLK genes. This table can be found as a

spreadsheet in S14 Data.

(PDF)

S6 Table. Fungal contaminants removed by the decontam package. This table can be found

as a spreadsheet in S15 Data.

(PDF)

S1 Data. NMDS and PCoA results for KBS site. Custom R scripts to create trajectory plots.

KBS, Kellogg Biological Station; NMDS, nonmetric multidimensional scaling.

(ZIP)

S2 Data. Site comparison NMDS results. NMDS, nonmetric multidimensional scaling.

(ZIP)

S3 Data. Genetic and microbiome distance data.

(ZIP)

S4 Data. NMDS values used for GWAS. RNA sequencing FPKM values. FPKM, fragments

per kilobase of transcript per million mapped reads; GWAS, genome-wide association study;

NMDS, nonmetric multidimensional scaling.

(ZIP)
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S5 Data. Network diagram data. Raw tables for network statistics.

(ZIP)

S6 Data. Confirmatory samples NMDS and PERMANOVA results. NMDS, nonmetric mul-

tidimensional scaling; PERMANOVA, permutational multivariate analysis of variance.

(ZIP)

S7 Data. Class-level comparisons between OTUs. OTU, operational taxonomic unit.

(ZIP)

S8 Data. Allele distribution at the outlier SNP Chr02N_57831909. SNP, single nucleotide

polymorphism.

(ZIP)

S9 Data. Sequencing coverage and insertion/deletion locations within the outlier region on

Chr02N.

(ZIP)

S10 Data. Core OTUs taxonomic information and citations for guild estimates. OTU, oper-

ational taxonomic unit.

(ZIP)

S11 Data. MINA results.

(ZIP)

S12 Data. Collection site information for switchgrass genotypes.

(ZIP)

S13 Data. PCR conditions.

(ZIP)

S14 Data. Raw transcript counts for RNA sequencing.

(ZIP)

S15 Data. Taxonomic information for contaminants removed from analyses.

(ZIP)
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107. Sánchez-Pinillos M, De Cáceres M, Ameztegui A, Coll L. Temporal dimension of forest vulnerability to

fire along successional trajectories. J Environ Manage. 2019; 248:109301. https://doi.org/10.1016/j.

jenvman.2019.109301 PMID: 31362169

108. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics.

2008; 24:1403–5. https://doi.org/10.1093/bioinformatics/btn129 PMID: 18397895

109. Covarrubias-Pazaran G. Genome-Assisted Prediction of Quantitative Traits Using the R Package

sommer. PLoS ONE. 2016; 11:e0156744. https://doi.org/10.1371/journal.pone.0156744 PMID:

27271781
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