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Abstract
Changes in land surface albedo can alter ecosystem energy balance and poten-
tially influence climate. We examined the albedo of six bioenergy cropping sys-
tems in southwest Michigan USA: monocultures of energy sorghum (Sorghum 
bicolor), switchgrass (Panicum virgatum L.), and giant miscanthus (Miscanthus 
× giganteus), and polycultures of native grasses, early successional vegetation, 
and restored prairie. Direct field measurements of surface albedo (αs) from 
May 2018 through December 2020 at half-hourly intervals in each system 
quantified the magnitudes and seasonal differences in albedo (∆α) and albedo-
induced radiative forcing (RF∆α). We used a nearby forest as a historical native 
cover type to estimate reference albedo and RF∆α change upon original land use 
conversion, and a continuous no-till maize (Zea mays L.) system as a contem-
porary reference to estimate change upon conversion from annual row crops. 
Annually, αs differed significantly (p < 0.05) among crops in the order: early suc-
cessional (0.288 ± 0.012SE) >> miscanthus (0.271 ± 0.009) ≈ energy sorghum 
(0.270 ± 0.010) ≥ switchgrass (0.265 ± 0.009) ≈ restored prairie (0.264 ± 0.012) > na-
tive grasses (0.259 ± 0.010) > maize (0.247 ± 0.010). Reference forest had the low-
est annual αs (0.134 ± 0.003). Albedo differences among crops during the growing 
season were also statistically significant, with growing season αs in perennial 
crops and energy sorghum on average ~20% higher (0.206 ± 0.003) than in no-till 
maize (0.184 ± 0.002). Average non-growing season (NGS) αs (0.370 ± 0.020) was 
much higher than growing season αs (0.203 ± 0.003) but these NGS differences 
were not significant. Overall, the original conversion of reference forest and maize 
landscapes to perennials provided a cooling effect on the local climate (RFαMAIZE: 
−3.83 ± 1.00 W m−2; RFαFOREST: −16.75 ± 3.01 W m−2). Significant differences 
among cropping systems suggest an additional management intervention for 
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1   |   INTRODUCTION

Land surface albedo (αs), the ratio of outgoing short-
wave radiation to the incoming shortwave radia-
tion (Henderson-Sellers,  1980; Henderson-Sellers & 
Hughes, 1982; Russel, 1916), is one of the most important 
measures in radiation and energy budgets (Bright, 2015; 
Chen et al.,  2021). Albedo is a vital indicator of energy 
partitioning because it reflects solar energy absorbed by a 
land surface (e.g., grasslands, forest, or urban lands) and 
then converted to heat, versus the amount reflected back 
to space with no warming impact (Ollinger et al., 2008). 
Theoretically, if more solar radiation is reflected back to 
space, the global climate is cooled—raising the potential 
for contributing to climate change mitigation through 
land surface management (Bright et al.,  2012; Carrer 
et al.,  2018, 2021; Muñoz & Kravchenko,  2011; Ouyang 
et al., 2022). Spatial and temporal changes in albedo have 
been closely explored, as albedo not only directly affects 
climate warming and cooling (Campbell & Norman, 2012) 
but also indirectly affects changes in evaporation and 
transpiration, and also local climate through its impact 
on surface energy fluxes and the hydrologic cycle (Akbari 
et al., 2009; Cherubini et al., 2012; Pachauri et al., 2014).

Promoting cellulosic bioenergy crops has been pro-
posed as a way to replace fossil fuels to reduce emissions of 
greenhouse gases (GHG) to the atmosphere (IPCC, 2022; 
Robertson et al., 2017, 2022). Albedo change upon conver-
sion of prior vegetation to cellulosic crops could either at-
tenuate or magnify this benefit depending on its effects on 
radiative forcing—with the exact magnitude not yet fully 
resolved because of nonlinear effects, large uncertain-
ties for multi-century processes, and assumptions about 
changing atmospheric conditions when converting albedo 
to radiative forcing (Chen et al., 2021). Critically, research 
on albedo in agricultural landscapes is still severely lack-
ing (Flato et al., 2013; Henderson-Sellers & Wilson, 1983; 
Ouyang et al.,  2022; Smith et al.,  2020). The albedo of 
short-statured vegetation such as grasslands is likely to 
be more variable than forests due to differences in surface 
emissivity—the amount of radiant heat which has been 
reflected or absorbed—which can in turn affect vegetative 
indices of evaporation and transpiration, and plant phe-
nology (e.g., canopy height and leaf area and duration). 

In annual croplands, agronomic management practices 
such as tillage, fertilization, and cover crops can further 
affect albedo (Pielke Sr et al., 2011). Thus, the impacts of 
large-scale cellulosic bioenergy production on land sur-
face albedo could be significant, where perennial bioen-
ergy grasses' replacing row crops could lead to significant 
changes in regional temperature.

Previous studies on albedo-induced warming effects 
are mostly based on satellite data (Fang et al.,  2007; 
Sciusco et al., 2020, 2022; Zhang et al., 2010), while bio-
physical models (Cherubini et al., 2012; Smith et al., 2020) 
and ground surface measurements (Abraha et al.,  2021; 
Miller et al.,  2016) have been lacking. Within the latter 
studies, measurements have been restricted to the effects 
of albedo on only one to two bioenergy crop species, over 
very short periods that do not thoroughly inform longer 
temporal changes, through the use of remote sensing that 
can potentially miss entire portions of the growing season, 
or through modeling studies that may be oversimplified 
and not reflect realistic changes seen on the landscape. 
Very few studies have been based on ground measure-
ments, which offer high spatial and even higher temporal 
resolutions. Our study offers a multi-year, highly resolved 
assessment of six alternative cellulosic cropping systems, 
including three polycultures, relative to both a contem-
porary annual crop that currently dominates the US Mid-
west and historical forest cover, in order to assess surface 
reflectivity on diverse types of land use management and 
in diverse ecosystems.

Here, we examine temporal changes in the albedo of 
managed bioenergy cropping systems by directly quanti-
fying albedo-induced radiative forcing at half-hour inter-
vals over monthly, seasonal, and annual periods for six 
bioenergy crops, a reference maize crop, and a reference 
forest in southwest Michigan USA. We hypothesize first 
that perennial crops will have a higher albedo compared 
to annual crops; second, that the surface reflectivity of 
crops will differ significantly by season (i.e., growing 
season, winter, monthly, annually); third, that the al-
bedos of different bioenergy crops are time dependent 
as each species and ecosystem are affected by climate, 
seasonality, and agronomic practices; and finally, that 
there are landscape cooling differences between bioen-
ergy cropping systems and our two reference systems of 

maximizing the positive climate benefit of bioenergy crops, with cellulosic crops 
on average ~9.1% more reflective than no-till maize, which itself was about twice 
as reflective as the reference forest.

K E Y W O R D S

albedo, bioenergy, climate impact, cropland, forest, land use change, radiative forcing
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maize and forest. Our specific objectives are to: (1) esti-
mate the magnitudes and temporal changes of albedo in 
different cellulosic bioenergy crops over a 3-year period, 
(2) compare these albedos to those of continuous maize 
and forest reference systems, and (3) quantify albedo-
induced radiative forcing (RF∆α) to evaluate warming/
cooling impacts on the climate.

2   |   MATERIALS AND METHODS

2.1  |  Study site

This study was conducted at the Biofuel Cropping Sys-
tems Experiment (BCSE, http://glbrc.org/ (See Fig-
ure  S1 for description of experiment)) of the Great 
Lakes Bioenergy Research Center (GLBRC), located at 
the Kellogg Biological Station Long-term Ecological Re-
search site in southwest Michigan, USA (Robertson and 
Hamilton, 2015; 42° 24’ N, 85° 24’ W, 288 m a.s.l.). The 
BCSE is located in a diverse, rural- to-semirural land-
scape with cropping systems typical of the upper Mid-
west US. The climate is humid continental temperate 
with a 30-year (1981–2010) average annual air tempera-
ture of 9.9°C, ranging from a monthly mean of −4°C in 
January to 23°C in July, and average annual precipita-
tion of 1027 mm evenly distributed throughout the year 
(NCDC,  2013). Soils at the site are in the Kalamazoo 
and Oshtemo soil series, fine-loamy, mixed, semiactive, 
and Mesic Typic Hapludalfs formed under a forested 
landscape in loamy outwash overlaying sand and gravel 
(Crum & Collins,  1995; Thoen,  1990). BCSE systems 
were established in a randomized complete block de-
sign, replicated in five 30 meter × 40 meter plots (Gel-
fand et al., 2020).

A total of eight experimental units comprise this 
experiment. Six candidate bioenergy cropping systems 
include no-till energy sorghum (Sorghum bicolor (L.) 
Moench., an annual, photoperiod insensitive sorghum 
hybrid, TAM 17900); switchgrass (Panicum virgatum 
L., variety Cave-in-Rock); giant miscanthus (Mis-
canthus × gigantea); native grasses (a polyculture of 
five grasses native to North America—Little bluestem 

(Schizachyrium scoparium [Michx.] Nash), Big bluestem 
(Andropogon gerardii Vitman), Canada wild rye (Elymus 
canadensis L.), Indiangrass (Sorghastrum nutans [L.] 
Nash), and switchgrass (variety Southlow); early succes-
sional vegetation (comprised of grasses and fobs from 
the pre-establishment seedbank and subsequent colo-
nizers after land was abandoned); and restored prairie 
(a C3 and C4-species mix of species as described in San-
ford et al. (2016) provided by a local prairie restoration 
contractor). Species composition of the successional and 
restored prairie systems are available at https://lter.kbs.
msu.edu/datat​ables. Each bioenergy crop was planted 
and managed according to standard agricultural prac-
tices for the region (Table 1; Sanford et al., 2016). Addi-
tionally, two reference sites represent the historical and 
modern landscape: A continuous no-till maize (Zea mays 
L.) system representing a contemporary row-crop com-
mon in the US Midwest Corn Belt, and an 87-year-old 
managed hybrid-spruce forest located at the Kellogg Ex-
perimental Forest (KEF; 42° 21' N, 85° 21'W) depicting 
a 2.5-acre forest established in 1932 from abandoned ag-
ricultural land.

2.2  |  Data collection and 
instrumentation

Continuous measurements of albedo at the BCSE and 
KEF were made from May 2018 to December 2020. At 
the BCSE site seven measurement stations were de-
ployed at the BCSE in each of six cropping systems. 
Each station consisted of a tower equipped with a four-
component net radiometer (SN-500, Apogee Instru-
ments), two net radiometers (Q.7.1, REBS, USA), and 
one soil water content reflectometer (CS616, Campbell 
Scientific Inc. (CSI)). One tower was also equipped with 
a precipitation gauge (TE525, CSI) and temperature 
sensor to measure air temperature and relative humid-
ity (HMP 60, CSI). Maize (in 2018) and restored prairie 
(in 2019) both included an additional four-component 
net radiometer. The heights of the towers in each plot 
were adjusted over the study period in order to main-
tain a field of view above the canopy layer. Sensors were 

T A B L E  1   Planting (P) and harvesting (H) dates (month/day) for all crops at the BCSE site

Year Maize Sorghum Switchgrass Miscanthus Native grasses Early succesional Restored prairie

P H P H P H P H P H P H P H

2008 6/19 5/23 6/17 5/05 6/17

2018 5/01 10/04 6/02 11/07 — 10/24 — 11/07 — 10/24 — 10/24 — 10/24

2019 5/19 10/29 6/07 11/20 — 11/08 — 11/05 — 10/24 — 10/23 — 10/23

2020 5/13 10/29 5/27 11/17 — 11/03 — 11/14 — 11/03 — 11/03 — 11/03
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placed ~30–40 cm above the canopies, consistent with 
other studies in agricultural landscapes (Raupach, 1994; 
Zeri et al., 2011). At the forested KEF site, we deployed 
an eddy covariance tower 34 m tall equipped with a 
four-component net radiometer (CNR4, Kipp & Zonen, 
Netherlands), precipitation gauge (TE525), and an IR-
GASON (CSI).

2.3  |  Statistical analysis

Albedo (αs) is the ratio of reflected (SW↑) to incident solar 
radiation (SW↓):

Our quality control protocols consisted of checking 
data for values within the expected range, e.g., 0 < αs < 1; 
0 < SW↓ < 1500 W m−2. Data potentially subject to errors 
(i.e., instrument tilt; snow cover on an upfacing radiom-
eter dome, temporary tower removal) were eliminated. 
In the case of maize and restored prairie, where two 
net radiometers existed simultaneously on the albedo 
tower, gap-filling was completed where needed. Oth-
erwise, discarded observations were treated as gaps for 
both incoming and outgoing irradiance at the same in-
terval for all sites. Larger gaps of several hours to up to 
30 consecutive days occurred due to instrument failure 
(see Table  S1 for complete tower coverage throughout 
the study period).

Change in albedo (∆α) in this study is determined as 
the albedo of a specific crop less the albedo of a reference 
(i.e., the forest or maize systems):

where ∆α is the local change in albedo at a specific time, 
∆scrop is the crop albedo and ∆sref is the reference albedo. 
Here, we used both maize and forest as our reference land-
scapes. Maize is the dominant annual cropping system in 
the US Midwest, while spruce forest represents a major 
Michigan land cover type before European settlement 
(Brown et al., 2000); thus, both respectively serve as mod-
ern and historical references of representative landscape 
changes.

We calculated values for the growing season (GS), non-
growing season (NGS), and annually. GS was defined as 
May through October (DOY of 121-304) following previous 
studies of similar bioenergy species in our region (Sciusco 
et al.,  2020; Zeri et al.,  2011), where plant emergence 
occurs in early May, and harvesting at the KBS BCSE is 

completed in November, after a killing frost. NGS includes 
all other days not defined as GS. The daily mean albedo for 
each site was computed by aggregating 5-minute data into 
half-hourly time steps.

Upwelling transmittance (Ta) is usually considered a 
constant average of 0.854 for clear sky conditions (Cheru-
bini et al.,  2012; Lenton & Vaughan, 2009). However, to 
reduce bias caused by day-to-day differences in cloud 
cover, Ta was manually calculated as the ratio of incoming 
solar radiation at the top of the atmosphere (SWTOA) to 
that at the surface (SW↓), assuming a same value of up-
ward and downward atmospheric transmittances (Carrer 
et al., 2018; Sciusco et al., 2020). SW↓ was obtained from 
each tower daily, while SWTOA was calculated as:

where Isc is the solar constant (1367 W m−2), Iθ is the extra-
terrestrial irradiance intensity using the cosine of the solar 
zenith angle, and dr is the average Earth-Sun distance cal-
culated for each day of the year (see Chen et al., 2021 for 
a detailed model). The daily zenith angle was derived from 
NOAA Earth System Research Laboratories for calculating 
solar radiation (NOAA, 2005).

Radiative forcing provides a basis for comparing sur-
face albedo with other climate forcing variables. Radiative 
forcing (RF∆α, W m−2) is calculated as

where RF∆α is the albedo-induced radiative forcing at the 
top-of-atmosphere, ∆α is the mean albedo difference from a 
reference over a specific season, SW↓ is local incoming solar 
radiation, N is the number of days for each season (i.e., GS, 
NGS, annual), and Tk being the “two-way” transmittance 
of the atmosphere, calculated by Tk = Ta2, where Ta is the 
upward atmospheric transmittance factor. Negative values 
of RF∆α indicated a cooling effect due to increased albedo 
compared with the albedo of the reference site.

Differences in annual and seasonal albedo were ana-
lyzed by mixed models analysis of variance (ANOVA) using 
the statistical package R (R Development Team,  2013), 
with crop type as fixed effects and years as random ef-
fects. For all tests, the statistical significance using Tukey 
HSD was evaluated at p < 0.05. Diurnal changes in ∆α for 
each site were also explored by analyzing daily averages 
between our reference sites of maize and forest. Finally, 
temporal variances in surface reflectivity affected by daily 
changes were modeled with a local polynomial regression 
(LPR). This nonparametric technique was used to deter-
mine a weighted average in order to fit a smooth curve 
between our variables. This allowed any daily estimates 

(1)�s =
SW↑

SW↓

.

(2)Δ� = Δscrop −Δsref,

(3)SwTOA = Isc × I� × dr ,

(4)RFΔ� = −
1

N

N
∑

N=1

SW↓ ×Δ� × Tk ,
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near “outlier” points from being highly biased while still 
ensuring a smooth fit (Cleveland et al., 1990).

3   |   RESULTS

3.1  |  Annual row crops

The average annual albedo of our annual row crops 
ranged from 0.212 ± 0.005SE in 2018, to 0.270 ± 0.010 
in 2019 and 0.271 ± 0.010 in 2020 (Table  2). Energy sor-
ghum (0.270 ± 0.010) and maize (0.247 ± 0.010) had lower 
albedos than most other cropping systems throughout 
the study period. During the growing season, maize al-
bedo (0.184 ± 0.002) was lower than energy sorghum 
(0.208 ± 0.004) (Figure  1). During the non-growing sea-
son both crops had slightly higher albedos than most 
other cropping systems at 0.362 ± 0.018 and 0.373 ± 0.013, 
respectively.

3.2  |  Perennial crops

Combined, perennial crops had consistently higher an-
nual and growing season αs compared to annual crops 
(p < 0.05) (Figure  1). Annual average αs was highest 
in early successional (0.288 ± 0.010), and miscanthus 
(0.271 ± 0.010), intermediate in switchgrass (0.265 ± 0.01) 
and restored prairie (0.264 ± 0.010), and lowest in native 
grasses (0.254 ± 0.010). Among the perennial crop types, 
miscanthus had the highest mean growing season αs in 
2018 (0.251 ± 0.003) and 2019 (0.227 ± 0.002) and native 
grasses lowest (0.186 ± 0.002) (Figure  1a). Albedo was 
more variable during the non-growing season and ranged 
between 0.24 and 0.85. The non-growing season αs was 

much higher than the growing season αs but with statisti-
cally insignificant differences among crops.

3.3  |  Comparisons across systems

Differences in the growing season αs and annual αs were 
statistically significant (p < 0.05) among crops and be-
tween forest and perennial crops, as well as between per-
ennials and the maize system. The annual mean albedo 
for all systems ranged from 0.134 in the reference forest, 
0.247 for the reference crop maize, to 0.264–0.288 for the 
six bioenergy crops (Table 2). Mean diurnal variation of 
αs during different seasons were apparent for all sites, but 
varied in magnitude and by season and cropping system 
(Figure 2).

3.4  |  Seasonality

Variations in αs expected upon converting either maize 
or forest to a candidate bioenergy crop (Equation 2; Fig-
ure S2), were similar among crops across both growing 
season and annual time frames. Conversion of forest to 
bioenergy crops resulted in higher RFs than conversion 
of maize to bioenergy crops (Figure  3). Average cooling 
effects from modeling the conversion of maize to another 
bioenergy crop yielded −3.83 ± 1.00 W m−2 (Table  3), 
while modeled conversions from forest to another bioen-
ergy crop showed a − 16.75 ± 3.01 W m−2 cooling effect. 
Highest daily averages in mean growing season RF were 
observed in miscanthus (RFFOREST: −20.99 ± 3.45 W m−2; 
RFMAIZE: −9.49 ± 1.66 W m−2) and switchgrass (RFFOREST: 
−17.37 ± 2.68 W m−2; RFMAIZE: −6.07 ± 0.96 W m−2). 
There was also a clear seasonality in RF when modeling 

T A B L E  2   Growing season, non-growing season, and annual αs (mean ± SE) for the six bioenergy crops, reference maize, and reference 
forest sites.

Crop

Growing season Non-growing season Annual

Mean SE Sig. Mean SE Sig. Mean SE Sig.

Maize 0.184 0.002 *** 0.362 0.018 * 0.247 0.010 ***

Sorghum 0.208 0.004 0.373 0.013 0.270 0.010 *

Switchgrass 0.217 0.004 * 0.373 0.014 0.265 0.009 *

Miscanthus 0.230 0.002 *** 0.356 0.022 * 0.271 0.009

Native grasses 0.186 0.002 *** 0.354 0.020 ** 0.259 0.010 ***

Early successional 0.212 0.002 *** 0.400 0.028 *** 0.288 0.012 ***

Restored prairie 0.187 0.005 *** 0.372 0.027 0.264 0.012 **

Forest 0.123 0.002 *** 0.145 0.005 *** 0.134 0.003 ***

Study period 0.203 0.003 0.37 0.02 0.266 0.01

Note: Sig. represents p values showing level of significance among mean values: ***p < 0.001; **p < 0.01; *p < 0.05,.: p < 0.01.
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the conversion from annual row crop maize to another 
candidate crop. During the non-growing season, aver-
age cooling effects of maize were small, on the order of 
−0.95 ± 0.88 W m−2 (Table  3) for all perennials cropping 
systems versus a − 4.54 ± 0.93 W m−2 during the growing 
season. Overall, early successional, miscanthus, and na-
tive grasses resulted in the greatest average annual cooling 
relative to the no-till maize system.

4   |   DISCUSSION

We documented changes in αs for six bioenergy crop-
ping systems (energy sorghum, switchgrass, mis-
canthus, native grasses, early successional grassland, 
and restored prairie) in southwest Michigan USA to bet-
ter understand differences in the potential contributions 
of albedo alterations to climate change. We also com-
pared bioenergy cropping systems to reference systems 
of no-till maize and native forest. We are not aware of 
other studies comparing this many systems side-by-side 
with direct, finely resolved albedo measurements over 
three field seasons. Our findings generally support our 
hypotheses that perennial crops have a higher albedo 
than the annual crops, and that albedo for all systems 

differed significantly by season and year, and that RFs 
have strong seasonal variations.

4.1  |  Hypothesis 1: Albedo of perennial 
versus annual cropping systems

For the three-year period of this study, annual mean 
αs ranged from 0.134 for the reference forest to 0.247 
for the reference maize and from 0.264 to 0.288 for 
our annual and perennial bioenergy cropping systems 
(Table 2; Figure 1). These values are consistent with ear-
lier αs comparisons of perennial grasses and annual row 
crops of maize and energy sorghum (Campbell & Nor-
man, 2012; Fritschen, 1967; Krishnan et al., 2012; Miller 
et al., 2016).

Although our perennial crops overall (0.269 ± 0.01) had 
a higher αs compared to annual crops (0.259 ± 0.01), energy 
sorghum (0.270 ± 0.01) was an exception in that its αs was 
more similar to that of the perennial crops, likely due to a 
later planting date than maize. It is also worth noting that 
our no-till maize system was a continuous rotation rather 
than rotated with soybean. This provides a more conser-
vative estimate of αs change from conventional cropland, 
first because soybean has a higher surface reflectance 

F I G U R E  1   Mean albedo for (a) 
the growing season, (b) non-growing 
season, and (c) entire year for the six 
bioenergy cropping systems, the reference 
maize system, and the reference forest. 
Groupings of different letters indicate 
statistical differences (p < 0.05) for the 
three-year study period; error bars 
represent ± 1SE.
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      |  7LEI et al.

than maize, and secondly because no-till management 
(used for soil and water conservation) is more reflective 
than conventional tillage due to more surface residue and 

undisturbed soil. Energy sorghum, which is also a no-till 
annual crop, also displayed a higher αs (0.270 ± 0.01) com-
pared to maize, but was still lower than perennial crops. 

F I G U R E  2   Diurnal variation in 
average albedo and solar irradiance for 
the growing season, non-growing season, 
and annual time scales for six bioenergy 
systems, a reference no-till maize system, 
and a reference forest. Averages represent 
30-min time steps.

F I G U R E  3   Diurnal changes in radiative forcing (RF) due to conversion of forest (top panel) and no-till maize (bottom panel) to 
candidate bioenergy cropping systems (early successional, native grasses, switchgrass, miscanthus, restored prairie, energy sorghum). Each 
point represents a 30-min mean time step; growing season averages appear as squares, non-growing season as diamonds and annual as 
circles. Error bars represent ± 1SE.
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Energy sorghum is usually planted several weeks later 
than maize in our region, which appeared to be the major 
factor contributing to its greater αs than maize. With the 
soil's being bare throughout the months of April, May 
and early June, planting date can affect αs as the irradi-
ance reaching surface soil occurs for a much longer period 
compared to perennials, which typically emerge in early 
May in our region, and thus energy sorghum can have a 
greater warming effect in early spring. Thus, crop-species 
can influence surface-induced αs which can result in sub-
stantial climate change effects (Chen et al., 2019). In gen-
eral, differences among cropping systems were greatest 
early in the growing season. Differences were less appar-
ent at peak growing season when all systems had closed 
canopies, resulting in greater irradiance interception.

Our reference forest was a mix of both coniferous and 
deciduous species. Bonan (2008) showed that forests have 
lower surface albedo than most other cover types, which 
contributes to climate warming. Sciusco et al. (2020) used 
satellite imagery to show that αs within forest landscapes 
in southwest Michigan were ~ 3% lower than αs of those 
of bioenergy croplands. We also found consistently lower 
albedos in our reference forest system relative to both pe-
rennial and annual row crops (Figure 2, αs: 0.135).

4.2  |  Hypothesis 2: Seasonal differences 
in albedo among cropping systems

Seasonal albedo patterns were observed within our study 
sites. (i.e., growing season, winter, monthly, annually). 
Differences in αs were most likely influenced by differ-
ences in agronomic practices including planting densities, 
planting times, harvest dates, and stover retention, as well 
as differences in plant morphology and canopy growth. 
In winter months (January–March), temporal variations 
among all bioenergy crops appeared quite high, especially 

when snow was present. In early spring (February–April), 
the perennial grass cropping systems had consistently 
higher albedos than no-till maize. However, during the 
growing season (May–October), all bioenergy crops had 
similar αs values. After harvests (November–December), 
αs was elevated in all bioenergy croplands. The reference 
forest had the lowest monthly αs of all study sites, reflect-
ing its conifer composition, and changed little throughout 
the year (Table S2). The effect of tall, complex forest cano-
pies on αs during winter periods can affect the amount of 
radiation absorbed or reflected. Similar to other studies 
(e.g., Betts & Ball, 1997; Robinson & Kukla, 1984), albedo 
in winter mixed forests are estimated to be around 0.110–
0.150. Thus, changes in αs observed during both the grow-
ing and non-growing seasons can vary during periods of 
high snow, winter thaws, weather, and sunlight intensity, 
and can have significant cooling of seasonal mean and an-
nual temperatures.

4.3  |  Hypothesis 3: Climate, agronomic 
practices, and plant species effect 
on albedo

Finally, we hypothesized that albedos of different bioen-
ergy crops are time dependent as each species and ecosys-
tem are affected by climate, seasonality, and agronomic 
practices. Modifying surface albedo through alternative 
avenues, such as crop residue management and landscape 
conversion from climate and agronomic practices, may 
add additional cooling benefits to the warming climate.

Zeri et al. (2011) and Miller et al. (2016) noted the dif-
ferences in albedo in perennials as well as annual row 
crops were highly influenced by planting density, plant 
morphology, and canopy architecture. Maize had much 
lower αs during the growing season than did the perennial 
systems (Figure 1). This was due to the immediate growth 

T A B L E  3   Average radiative forcing (RF; W m−2) inferred for conversion of no-till maize (leftmost columns) and forest (rightmost 
columns) to different bioenergy cropping systems. SE refers to ±1 standard error.

Crop

Conversion from maize Conversion from forest

Growing 
season

Non-growing 
season Annual Growing season

Non-growing 
season Annual

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Energy sorghum −3.72 0.58 −0.18 0.22 −3.08 0.49 −14.84 2.36 −10.76 2.23 −15.26 2.70

Switchgrass −6.07 0.96 0.13 0.74 −2.13 0.71 −17.37 2.68 −11.66 2.48 −15.53 2.71

Miscanthus −9.49 1.66 −0.22 0.28 −5.13 1.02 −20.99 3.45 −11.32 2.47 −18.48 3.36

Native grasses −1.68 0.38 −1.03 0.37 −4.26 0.91 −12.93 2.17 −16.42 3.43 −17.15 3.27

Early successional −4.41 0.70 −3.34 0.73 −6.77 1.16 −15.94 2.42 −15.08 3.16 −19.35 3.36

Restored prairie −1.87 0.50 −1.06 0.40 −1.59 0.39 −12.72 2.08 −13.12 2.69 −14.76 2.63

Average −4.54 0.93 −0.95 0.88 −3.83 1.00 −15.8 2.53 −13.06 2.74 −16.75 3.01
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of perennials at the start of the last frost in March. As 
maize was planted at the sites around early May, the land 
surface was still moderately exposed due to late seeding 
and small seedlings during the same period. Bare earth 
left exposed to the atmosphere during the first few weeks 
of the growing season allows the maize system to absorb 
more solar radiation than vegetated fields until their can-
opies fully develop; hence overall αs of the perennial sys-
tems remains much lower.

Similar agronomic variables such as phenology, cover 
crops, crop residue management, planting date, row spac-
ing, crop variety, and canopy duration also play an integra-
tive role in affecting albedo (Campbell & Norman, 2012; 
Luyssaert et al.,  2014; Moore et al.,  2021; Odum,  1984). 
Energy sorghum's growth habit is similar to that of maize, 
but with more side shoots, a more extensively branched 
root system, and it is planted in conventional 0.38 m rows 
rather than 0.75 m for maize, which allows for optimum 
use of moisture and sunlight, resulting in a higher surface 
reflectance more similar to the albedo of perennial crops 
than to that of maize. After approximately 6 weeks to fully 
establish a closed canopy, energy sorghum remains green 
until fall harvest. Consequently, its average albedo (0.270) 
was comparable to that of perennials.

Albedo during the non-growing periods was markedly 
higher when the landscape was completely or partially 
covered with snow. During the winter periods, stover 
breaks up the snowpack, leading to changes in energy re-
flection. Though not part of this study, previous research 
has shown that winter cover crops can also induce a lo-
calized cooling effect by reflecting more incoming radia-
tion back into the atmosphere (Lugato et al., 2020). Taken 
together, our results suggest that large scale conversions 
of landscapes by expanding bioenergy cropping systems 
may significantly affect local climate in the Midwest U.S. 
due to altered albedo values (Georgescu et al., 2009, 2011; 
Mykleby et al., 2017).

4.4  |  Radiative forcings from forest are 
more pronounced compared to maize

When comparing RFs for alternative representations of 
historical (forest) and contemporary (maize) converted 
land uses, RFs had strong seasonal variations. Overall, 
converting forest to cropland led to substantial decreases 
in RF, and therefore climate cooling, with the degree of 
cooling dependent on crop type. The peak difference in 
annual mean RF between maize and other bioenergy crop-
lands (except forest) averaged −3.83 ± 0.78 W m−2, with 
early successional, miscanthus and native grasses hav-
ing the highest cooling potentials at −6.77 ± 1.16 W m−2, 
−5.13 ± 1.02 W m−2 and − 4.26 ± 0.91 W m−2, respectively.

This was similar to prior findings of Miller et al. (2016) 
who used highly resolved albedo measurements to com-
pare miscanthus, switchgrass, and annual row crops of 
rotational maize/soybean, and found that the perennials 
switchgrass and miscanthus had a daily cooling potential 
of −5 W m−2, and miscanthus of −8 W m−2, compared to 
maize. Similarly, Sciusco et al.  (2020) and Sciusco et al. 
(2022), who integrated spatial and temporal changes as 
main drivers of albedo variations, showed that cropland 
had higher albedo and intra-annual variabilities, with 
an average RF between −5.6 W m−2 to −1.2 W m−2 when 
compared to forests. Abraha et al. (2021) also assessed the 
biogeophysical climate impact of albedo using multiple 
modeled conversions from an unconverted reference CRP 
grassland using radiation measures from eddy covariance 
towers, which showed that switchgrass and restored prai-
rie fields provided albedo-induced cooling.

Forest conversion can lead to significant albedo-
induced cooling, but harvesting forest can create large ini-
tial carbon debt requiring long payback periods before net 
gains in albedo-induced cooling are achieved (Mykleby 
et al., 2017). Harvesting large forests and planting bioen-
ergy crops can reduce or remove carbon stores within the 
crop and soil itself (Chen et al.,  2004; Noormets,  2016), 
which could potentially cause higher emission of GHG, 
i.e., warming effects. Changing forest cover can further 
affect climate change through complex forest-atmosphere 
dynamics including plant phenology, land changes, and 
climate (Duveiller et al., 2021). Fu et al. (2021) observed 
negative RF due to albedo-induced GWP by deforestation, 
while Bastable et al. (1993) also noted that the widespread 
deforestation for croplands could lead to positive feed-
back effects' dampening the cooling effects from elevated 
albedo. Conversions of non-agricultural land such as for-
ests with high initial carbon stocks to the cultivation of 
another bioenergy crop could also result in large carbon 
debt before net mitigation is achieved as much as a cen-
tury later (Amiro et al.,  2010; Field et al.,  2020; Robert-
son et al., 2017). However, forests also aid in generating 
cloud cover, and reflect more radiation back into the at-
mosphere, adding to the long-term net cooling effect on 
landscapes. Thus, as negative RFs can contribute to cli-
mate change mitigation by increasing reflected surface 
radiation (Caiazzo et al., 2014), understanding how these 
changes can alter the Earth's surface properties are crucial 
for developing land-based mitigation policies.

4.5  |  Assumptions and uncertainty

Change in αs is highly correlated with land surface prop-
erties such as vegetation type and cover, snow cover, 
soil moisture (Ahmad & Lockwood,  1979; Weidong 
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et al.,  2002), and changes in climate such as drought or 
floods (Bright et al., 2012). Modifying the surface albedo 
of croplands through different agronomic practices such 
as planting date and density, crop residue management, 
tillage, and harvest may affect warming and cooling in-
fluences (Davin et al., 2014). The vegetative structure of 
crops can also affect radiation absorption and reflectance; 
crops with complex geometries and textures can have 
lower albedos than those with single stalks and leaves 
such as maize. Seasonal changes from bare-ground to 
seeding, growth, and finally senescence and harvest can 
also affect surface albedo through changes in crop height, 
crop cover, leaf texture, and leaf age (Henderson-Sellers & 
Wilson, 1983; Monteith, 1959).

Management effort, economic costs of inputs, and 
landowner preference for a specific crop will also affect 
crop choice, as will environmental impacts unrelated to 
climate mitigation (Robertson et al.,  2017). Other en-
vironmental impacts include nitrogen and phosphorus 
pollution from excess fertilizer use, as well as potential 
biodiversity impacts on pollinators, insect pests and pest 
predators, and other taxa. Energy sorghum, for exam-
ple, takes much more management effort and cost than 
an equivalent perennial crop, and receives more herbi-
cides, is often fertilized more heavily and often tilled, 
leading to soil and nutrient loss. Likewise, miscanthus, 
despite its high productivity (Gelfand et al., 2020; Hea-
ton et al., 2008), as a non-native grass supports far fewer 
insect and vertebrate taxa than switchgrass or other 
native grasses, and is also invasive (Lowry et al., 2022; 
Williams & Feest, 2019). Thus, environmental and eco-
nomic trade-offs must be considered in addition to al-
bedo considerations when choosing among alternate 
bioenergy crops.

Accurate quantification of RF from a specific land 
surface depends on reliable measurements of atmo-
spheric transmission. This can be determined using the 
atmospheric transmittance (Ta) (Chýlek & Wong, 1998; 
Lenton & Vaughan, 2009) or clearness index (KT) (Bright 
et al., 2012; Paulescu et al., 2021; Sciusco et al., 2022). 
Both measurements account for changes in solar irra-
diance measured on the surface and its counterpart 
measured at the top of the atmosphere. Muñoz and 
Kravchenko (2011) and Cherubini et al. (2012) assume a 
global constant of 0.854 for upward atmospheric trans-
mittance from clear sky conditions. However, this is 
usually initiated at a 60° angle, and is not a good rep-
resentation in regions of highly variable weather. In-
stead of using the global mean we employed a daily 
calculation of Ta as the ratio of SW↓ /SWTOA from daily 
measurements of Ta obtained from our albedo towers 
in each cropping system. By calculating Ta for each in-
dividual day, we reduced bias during periods of highly 

variable weather and cloud cover, and thereby reduced 
error estimates in radiative forcing by up to 30% (Sciusco 
et al., 2020) As the differences in RF with the use of KT 
and Ta were negligible, we determined the use of Ta for 
calculations in RF were sufficient.

Larger gaps of several hours to up to thirty consecutive 
days existed within our dataset due mainly to the agro-
nomic management needs of croplands (i.e., removal of 
towers during seeding, herbicide spraying, fertilizer input, 
harvest, etc.), as well as unforeseen instrument failure. In 
addition, the pilot year was initiated in mid-May of 2018, 
such that late winter and early spring measurements for 
our first year were missing (Table  S1). This may have 
caused slightly higher surface reflectivity than on average, 
compared to those measured at eddy covariance towers, 
which are usually permanent fixtures within landscapes. 
However, despite this drawback, the use of multiple mo-
bile micrometeorological towers was highly effective in 
addressing the potential of changes in surface albedo in 
multiple candidate bioenergy landscapes.

Future research should examine the interactions of 
albedo with other biogeophysical, biogeochemical, and 
micrometeorological changes. Additionally, long-term 
observation-based, quantitative estimates of annual to 
decadal-scale changes of shortwave radiation may also be 
useful for capturing rare events that are not detected by 
shorter timescale methods.

5   |   CONCLUSIONS

Direct measurements of albedo for 3 years in candidate 
bioenergy cropping systems in southwest Michigan USA 
showed their potential for localized cooling based on po-
tential conversion from a historical reference forest or 
from a contemporary reference maize crop. Annual mean 
albedos for all systems ranged in the order early succes-
sional >> miscanthus ≈ energy sorghum ≥ switchgrass 
≈ restored prairie > native grasses >> maize >>forest. 
Annual albedos closely mirrored average growing season 
albedos, such that differences among ecosystems mainly 
occurred during the growing season. Increased albedo 
and therefore net climate cooling was observed for all bio-
energy crops relative to the reference no-till maize system, 
and for all systems including no-till maize relative to the 
reference forest system. Our results underscore the impor-
tance of including albedo change in life cycle assessments 
of the climate benefits of bioenergy cropping systems, 
based now solely on biogeochemical change.
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Supplementary Figure 1: Plot map (a) showing replicate block and location of the seven 16 
albedo towers (purple triangle) within selected experimental plots of the BCSE; (b) 17 
unmanned aerial vehicle mosaicked photo taken of experimental plots by KBS research 18 
technician. Drone photo is overlaid on a Landsat satellite image of the study site with 19 
replicate block outlined in black; (c) photo of representative albedo tower; and Map 20 
modified from https://lter.kbs.msu.edu/research. 21 
 22 
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Supplementary Figure 2: Change in albedo (∆α) due to conversion of forest (top row) and annual 25 
maize (bottom row) reference systems compared to six bioenergy crops over growing season, non-26 
growing season, and annual periods. 27 

  28 



Supplementary Table 1: Coverage of cropping system measurements over the entire study period 29 
from 2018 to 2020. 30 
 31 

Crop Year 
Days Coverage 

(%) (N) 
 2018 182 75% 
Maize 2019 315 86% 
  2020 278 76% 
 2018 120 49% 
Energy sorghum 2019 220 60% 
  2020 306 84% 
 2018 194 80% 
Switchgrass 2019 316 87% 
  2020 296 81% 
 2018 113 46% 
Miscanthus 2019 303 83% 
  2020 283 78% 
 2018 198 81% 
Native Grasses 2019 355 97% 
  2020 330 90% 
 2018 131 54% 
Early Successional 2019 335 92% 
  2020 292 80% 
 2018 131 54% 
Restored Prairie 2019 262 72% 
  2020 319 87% 
 2018  63% 
Average Period 2019  82% 
  2020  82% 

 32 
  33 



Supplementary Table 2: Mean monthly albedos for the six bioenergy cropping systems, modern reference maize, and historical 
reference forest systems. 
 
 

Site 

Month 

Maize Sorghum Switchgrass Miscanthus Native 
Grasses 

Early 
Successional 

Restored 
Prairie 

Forest 

α Stdv 
(±) α Stdv 

(±) α Stdv 
(±) α Stdv 

(±) α Stdv 
(±) α Stdv 

(±) α Stdv 
(±) α Stdv 

(±) 
Jan 0.495 0.25 0.51 0.28 0.466 0.31 0.466 0.23 0.497 0.24 0.503 0.25 0.419 0.22 0.169 0.06 
Feb 0.703 0.18 0.602 0.23 0.666 0.25 0.57 0.20 0.579 0.21 0.59 0.20 0.58 0.21 0.213 0.08 
Mar 0.339 0.23 0.239 0.18 0.331 0.26 0.423 0.25 0.259 0.13 0.404 0.22 0.385 0.20 0.126 0.04 
Apr 0.196 0.02 0.145 0.04 0.258 0.11 0.204 0.03 0.224 0.05 0.212 0.07 0.383 0.17 0.121 0.04 
May 0.180 0.04 0.157 0.06 0.215 0.03 0.197 0.03 0.207 0.02 0.201 0.02 0.255 0.07 0.138 0.03 
Jun 0.200 0.04 0.164 0.06 0.219 0.02 0.218 0.03 0.217 0.01 0.225 0.02 0.236 0.06 0.147 0.02 
Jul 0.190 0.03 0.188 0.05 0.228 0.02 0.242 0.02 0.202 0.01 0.208 0.02 0.225 0.04 0.128 0.01 
Aug 0.188 0.02 0.225 0.03 0.258 0.09 0.241 0.02 0.183 0.01 0.212 0.03 0.174 0.02 0.117 0.01 
Sep 0.169 0.02 0.23 0.03 0.183 0.06 0.231 0.02 0.155 0.02 0.205 0.03 0.146 0.02 0.112 0.02 
Oct 0.159 0.03 0.222 0.03 0.16 0.03 0.228 0.03 0.143 0.02 0.216 0.04 0.13 0.03 0.109 0.02 
Nov 0.294 0.20 0.145 0.08 0.244 0.09 0.18 0.05 0.308 0.22 0.324 0.21 0.306 0.24 0.133 0.07 
Dec 0.257 0.18 0.22 0.18 0.282 0.16 0.287 0.18 0.303 0.18 0.292 0.16 0.275 0.20 0.129 0.04 

Avg 2018-

2020 0.247 0.17 0.266 0.19 0.265 0.17 0.271 0.14 0.259 0.17 0.288 0.18 0.264 0.18 0.134 0.05 
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