Publications for the Biofuel Cropping System Experiment > G1 Continuous Corn
Publications associated with KBS LTER, GLBRC and LTAR projects. Click on the pdf link to get open access papers or to sign-in (free and immediate) to get other papers. Click on the data link to get formally published datasets (other datasets available as noted within the publications). Other ways to view KBS LTER publications can be accessed by the Research | Publications menu above.
Publications are also available on our KBS LTER Google Scholar page
-
2025
Min, K., E. Nuccio, E. Slessarev, M. Kan, K. J. McFarlane, E. Oerter, A. Jurusik, G. Sanford, K. D. Thelen, J. Pett-Ridge, and A. A. Berhe. 2025.Deep-rooted perennials alter microbial respiration and chemical composition of carbon in density fractions along soil depth profiles. Geoderma 455:117202. DOI: 10.1016/j.geoderma.2025.117202
-
2024
Chen, J., C. Lei, H. Chu, X. Li, M. Torn, Y. Wang, P. Sciusco, and G. P. Robertson. 2024.Overlooked cooling effects of albedo in terrestrial ecosystems. Environmental Research Letters 19:093001. DOI: 10.1088/1748-9326/ad661d
-
King, A. E., J. P. Amsili, S. C. Córdova, S. Culman, S. J. Fonte, J. Kotcon, M. D. Masters, K. McVay, D. C. Olk, A. M. Prairie, M. Schipanski, S. K. Schneider, C. E. Stewart, and M. F. Cotrufo. 2024.Constraints on mineral-associated and particulate organic carbon response to regenerative management: carbon inputs and saturation deficit. Soil and Tillage Research 238:106008. DOI: 10.1016/j.still.2024.106008
-
2023
Haan, N. L. and D. A. Landis. 2023.Pest suppression potential varies across 10 bioenergy cropping systems. GCB Bioenergy 15:765-775. DOI: 10.1111/gcbb.13053
-
Haan, N. L., G. N. Benucci, C. M. Fiser, G. Bonito, and D. A. Landis. 2023.Contrasting effects of bioenergy crops on biodiversity. Science Advances 9:eadh7960. DOI: 10.1126/sciadv.adh7960
-
Hussain, M. Z., S. K. Hamilton, and G. P. Robertson. 2023.Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US. GCB Bioenergy 15:254-263. DOI: 10.1111/gcbb.13020
-
King, A. E., J. P. Amsili, S. C. Córdova, S. Culman, S. J. Fonte, J. Kotcon, M. Liebig, M. D. Masters, K. McVay, D. C. Olk, M. Schipanski, S. K. Schneider, C. E. Stewart, and M. F. Cotrufo. 2023.A soil matrix capacity index to predict mineral-associated but not particulate organic carbon across a range of climate and soil pH. Biogeochemistry 165:1-14. DOI: 10.1007/s10533-023-01066-3
-
Lei, C., J. Chen, and G. P. Robertson. 2023.Climate cooling benefits of cellulosic bioenergy crops from elevated albedo. GCB Bioenergy 15:1373-1386. DOI: 10.1111/gcbb.13098
-
Lucas, M., J. Gil, G. P. Robertson, N. E. Ostrom, and A. Kravchenko. 2023.Changes in soil pore structure generated by the root systems of maize, sorghum and switchgrass affect in situ N2O emissions and bacterial denitrification. Biology and Fertility of Soils doi: 10.1007/s00374-023-01761-1 DOI: 10.1007/s00374-023-01761-1
-
Perry, S., G. Falvo, S. Mosier, and G. P. Robertson. 2023.Data from: Long-tern changes in soil carbon and nitrogen fractions in switchgrass, native grasses, and no-till corn bioenergy production systems. Dryad, Dataset https://doi.org/10.5061/dryad.547d7wmf3. DOI: 10.5061/dryad.547d7wmf3
-
Perry, S., G. Falvo, S. Mosier, and G. P. Robertson. 2023.Long-term changes in soil carbon and nitrogen fractions in switchgrass, native grasses, and no-till corn bioenergy production systems. Soil Science Society of America Journal 87:1365-1375. DOI: 10.1002/saj2.20575
-
Welikhe, P., M. R. Williams, K. King, J. Bos, M. Akland, C. Baffaut, E. G. Beck, A. Bierer, D. D. Bosch, E. S. Brooks, A. R. Buda, M. Cavigelli, J. Faulkner, G. W. Feyereisen, A. Fortuna, J. Gamble, B. R. Hanrahan, M. Z. Hussain, J. L. Kovar, B. Lee, A. B. Leytem, M. A. Liebig, D. Line, M. L. Macrae, T. B. Moorman, D. Moriasi, R. Mumbi, N. Nelson, A. Ortega-Pieck, D. Osmond, C. Penn, O. Pisani, M. L. Reba, D. R. Smith, J. Unrine, P. Webb, K. E. White, H. Wilson, and L. M. Witthaus. 2023.Uncertainty in phosphorus fluxes and budgets across the US long-term agroecosystem research network. Journal of Environmental Quality 52:873-885. DOI: 10.1002/jeq2.20485
-
2022
Hussain, M. Z., S. K. Hamilton, and G. P. Robertson. 2022.Data from: Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US. Dryad, Dataset doi: 10.5061/dryad.dfn2z355r DOI: 10.5061/dryad.dfn2z355r
-
Lei, C. 2022.The analysis of albedo on bioenergy crops: Assessment for climate and global warming impact. Michigan State University East Lansing MI
-
Williams, M. R., P. Welikhe, J. H. Bos, K. W. King, M. Akland, D. J. Augustine, C. Baffaut, E. G. Beck, A. Bierer, D. Bosch, E. Boughton, C. Brandani, E. S. Brooks, A. R. Buda, M. Cavigelli, J. Faulkner, G. W. Feyereisen, A. Fortuna, J. Gamble, B. R. Hanrahan, M. Z. Hussain, M. M. Kohmann, J. L. Kovar, B. Lee, A. B. Leytem, M. A. Liebig, D. Line, M. Macrae, T. B. Moorman, D. Moriasi, N. Nelson, A. Ortega-Pieck, D. Osmond, O. Pisani, J. Ragosta, M. Reba, A. Saha, J. Sanchez, M. Silveira, D. R. Smith, S. Spiegal, H. Swain, J. Unrine, P. Webb, K. E. White, H. Wilson, and L. M. Yasarer. 2022.P-FLUX: A phosphorus budget dataset spanning diverse agricultural production systems in the United States and Canada. Journal of Environmental Quality 51:451-461. DOI: 10.1002/jeq2.20351
-
2021
Helms IV, J. A., K. A. Roeder, S. E. Ijelu, I. Ratcliff, and N. M. Haddad. 2021.Bioenergy landscapes drive trophic shifts in generalist ants. Journal of Animal Ecology 90:738-750. DOI: 10.1111/1365-2656.13407
-
Hussain, M. Z., S. K. Hamilton, G. P. Robertson, and B. Basso. 2021.Data from: Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Dryad, Dataset, https://doi.org/10.5061/dryad.8sf7m0cpx . DOI: 10.5061/dryad.8sf7m0cpx
-
Hussain, M. Z., S. K. Hamilton, G. P. Robertson, and B. Basso. 2021.Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Scientific Reports 11:20367. DOI: 10.1038/s41598-021-99877-7
-
Kasanke, C. P., Q. Zhao, S. Bell, A. M. Thompson, and K. S. Hofmockel. 2021.Can switchgrass increase carbon accrual in marginal soils? The importance of site selection. GCB Bioenergy 13:320-335. DOI: 10.1111/gcbb.12777
-
Kravchenko, A. N., A. K. Guber, A. Gunina, M. A. Dippold, and Y. Kuzyakov. 2021.Pore-scale view of microbial turnover: combining 14C imaging, μCT, and zymography after adding soluble carbon to soil pores of specific sizes. European Journal of Soil Science 72:593-607. DOI: 10.1111/ejss.13001
-
Saha, D., B. Basso, and G. P. Robertson. 2021.Machine learning improves predictions of agricultural nitrous oxide (N2O) emissions from intensively managed cropping systems. Environmental Research Letters 16:024004. DOI: 10.1088/1748-9326/abd2f3
-
Zhang, B., C. R. Penton, Z. Yu, C. Xue, Q. Chen, Z. Chen, C. Yan, Q. Zhang, M. Zhao, J. F. Quensen, and J. M. Tiedje. 2021.A new primer set for Clade I nosZ that recovers genes from a broader range of taxa. Biology and Fertility of Soils 57:523-531. DOI: 10.1007/s00374-021-01544-6
-
2020
Bramer, L. M., A. M. White, K. G. Stratton, A. M. Thompson, D. Claborne, K. Hofmockel, and L. A. McCue. 2020.ftmsRanalysis: An R package for exploratory data analysis and interactive visualization of FT-MS data. PLOS Computational Biology 16:e1007654. DOI: 10.1371/journal.pcbi.1007654
-
Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Dryad, Dataset https://doi.org/10.5061/dryad.44j0zpc8r. DOI: 10.5061/dryad.44j0zpc8r
-
Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Environmental Science & Technology 54:2961-2974. DOI: 10.1021/acs.est.9b07019
-
Glanville, K. 2020.Impacts of changing precipitation on nitrogen cycling in different landscape positions and cropping systems. Michigan State University East Lansing, MI
-
Helms IV, J. A., S. E. Ijelu, B. D. Wills, D. A. Landis, and N. M. Haddad. 2020.Ant biodiversity and ecosystem services in bioenergy landscapes. Agriculture, Ecosystems and Environment 290:106780. DOI: 10.1016/j.agee.2019.106780
-
Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Data from: Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Dryad, Dataset https://doi.org/10.5061/dryad.0p2ngf1xb. DOI: 10.5061/dryad.0p2ngf1xb
-
Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Science of the Total Environment 734:139379. DOI: 10.1016/j.scitotenv.2020.139379
-
Myers, A. T., N. L. Haan, and D. A. Landis. 2020.Video surveillance reveals a community of largely nocturnal Danaus plexippus (L.) egg predators. Journal of Insect Conservation 24:731-737. DOI: 10.1007/s10841-020-00248-w
-
Saha, D., B. Basso, and G. P. Robertson. 2020.Data from: Machine learning improves predictions of agricultural nitrous oxide (N2O) emissions from intensively managed cropping systems. Dryad, Dataset https://doi.org/10.5061/dryad.bnzs7h493. DOI: 10.5061/dryad.bnzs7h493
-
Sprunger, C. D., T. Martin, and M. Mann. 2020.Systems with greater perenniality and crop diversity enhance soil biological health. Agricultural & Environmental Letters 5:e20030. DOI: 10.1002/ael2.20030
-
Xu, J., S. S. Roley, M. M. Tfaily, R. K. Chu, and J. M. Tiedje. 2020.Organic amendments change soil organic C structure and microbial community but not total organic matter on sub-decadal scales. Soil Biology and Biochemistry 150:107986. DOI: 10.1016/j.soilbio.2020.107986
-
2019
Duncan, D. S., L. G. Oates, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2019.Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems. Global Change Biology Bioenergy 11:416-426. DOI: 10.1111/gcbb.12572
-
Hussain, M. Z., S. K. Hamilton, A. K. Bhardwaj, B. Basso, K. Thelen, and G. P. Robertson. 2019.Evapotranspiration and water use efficiency of continuous maize and maize and soybean rotation in the upper Midwest U.S.. Agricultural Water Management 221:92-98. DOI: 10.1016/j.agwat.2019.02.049
-
Hussain, M. Z., A. K. Bhardwaj, B. Basso, G. P. Robertson, and S. K. Hamilton. 2019.Nitrate leaching from continuous corn, perennial grasses, and poplar in the US Midwest. Journal of Environmental Quality 48:1849-1855. DOI: 10.2134/jeq2019.04.0156
-
Kravchenko, A. N., A. K. Guber, B. S. Razavi, J. Koestel, E. V. Blagodatskaya, and Y. Kuzyakov. 2019.Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biology and Biochemistry 135:411-419. DOI: 10.1016/j.soilbio.2019.06.002
-
Kravchenko, A. N., A. K. Guber, B. S. Rasavi, J. Koestel, M. Y. Quigley, G. P. Robertson, and Y. Kuzyakov. 2019.Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications 10:3121. DOI: 10.1038/s41467-019-11057-4
-
Liang, D. 2019.Microbial sources of nitrous oxide emissions from diverse cropping systems. Michigan State University East Lansing MI
-
Szymanski, L. M., G. R. Sanford, K. A. Heckman, R. D. Jackson, and E. Marín-Spiotta. 2019.Conversion to bioenergy crops alters the amount and age of microbially-respired soil carbon. Soil Biology and Biochemistry 128:35-44. DOI: 10.1016/j.soilbio.2018.08.025
-
von Haden, A. C., C. J. Kucharik, R. D. Jackson, and E. Marín-Spiotta. 2019.Litter quantity, litter chemistry, and soil texture control changes in soil organic carbon fractions under bioenergy cropping systems of the North Central U.S. Biogeochemistry 143:313-326. DOI: 10.1007/s10533-019-00564-7
-
Xue, C., Y. Hao, X. Pu, C. Ryan Penton, Q. Wang, M. Zhao, B. Zhang, W. Ran, Q. Huang, Q. Shen, and J. M. Tiedje. 2019.Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biology and Fertility of Soils 55:79-88. DOI: 10.1007/s00374-018-1331-4
-
2018
Hamilton, S. K., M. Z. Hussain, C. Lowrie, B. Basso, and G. P. Robertson. 2018.Data from: Evapotranspiration is resilient in the face of land cover and climate change in a humid temperate catchment. Dryad Digital Repository, https://doi.org/10.5061/dryad.6fm52. DOI: 10.5061/dryad.6fm52
-
Hamilton, S. K., M. Z. Hussain, C. Lowrie, B. Basso, and G. P. Robertson. 2018.Evapotranspiration is resilient in the face of land cover and climate change in a humid temperate catchment. Hydrological Processes 32:655-663. DOI: 10.1002/hyp.11447
-
Kravchenko, A. N., A. K. Guber, M. Y. Quigley, J. Koestel, H. Gandhi, and N. E. Ostrom. 2018.X‐ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission in contrasting bioenergy cropping systems . Global Change Biology - Bioenergy 10:894-909. DOI: 10.1111/gcbb.12552
-
Landis, D. A., C. Gratton, R. D. Jackson, K. L. Gross, D. S. Duncan, C. Liang, T. D. Meehan, B. A. Robertson, T. M. Schmidt, K. A. Stahlheber, J. M. Tiedje, and B. P. Werling. 2018.Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass and Bioenergy 114:18-29. DOI: 10.1016/j.biombioe.2017.02.003
-
Sprunger, C. D. and G. P. Robertson. 2018.Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318:42-51. DOI: 10.1016/j.geoderma.2017.11.040
-
Sprunger, C. D. and G. P. Robertson. 2018.Data from: Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Dryad Digital Repository. https://doi.org/10.5061/dryad.7jq46. DOI: 10.5061/dryad.7jq46
-
2017
Sanford, G. R., R. D. Jackson, L. G. Oates, G. P. Robertson, S. Roley, and K. D. Thelen. 2017.Biomass production a stronger driver of cellulosic ethanol yield than biomass quality. Agronomy Journal 109:1911-1922. DOI: 10.2134/agronj2016.08.0454
-
Zhang, B., C. R. Penton, C. Xue, J. F. Quensen, S. S. Roley, J. Guo, A. Garoutte, T. Zheng, and J. M. Tiedje. 2017.Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biology and Biochemistry 112:140-152. DOI: 10.1016/j.soilbio.2017.04.019
-
2016
Duncan, D. S. 2016.Linking soil microbiology and environmental conditions to variability in nitrous oxide production in bioenergy cropping systems. University of Wisconsin- Madison Madison, Wisconsin
-
Fox, A., T. N. Kim, C. A. Bahlai, J. M. Woltz, C. Gratton, and D. A. Landis. 2016.Cover crops have neutral effects on predator communities and biological control services in annual cellulosic bioenergy cropping systems. Agriculture, Ecosystems and Environment 232:101-109. DOI: 10.1016/j.agee.2016.07.003
-
Garoutte, A. 2016.Identifying the activities of rhizosphere microbial communities using metatranscriptomics. Michigan State University East Lansing, Michigan
-
Guo, J. 2016.Rhizosphere metagenomics of three biofuel crops. Dissertation. Michigan State University East Lansing, Michigan
-
Guo, J., J. R. Cole, Q. Zhang, C. T. Brown, and J. M. Tiedje. 2016.Microbial community analysis with ribosomal gene fragments from shotgun metagenomes. Applied and Environmental Microbiology 82:157-166. DOI: 10.1128/AEM.02772-15
-
Jesus, E. C., C. Liang, F. J. Quensen, E. Susilawati, R. D. Jackson, T. C. Balser, and J. M. Tiedje. 2016.Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. Global Change Biology Bioenergy 8:481-494. DOI: 10.1111/gcbb.12289
-
Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2016.Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Global Change Biology Bioenergy 8:539-549. DOI: 10.1111/gcbb.12268
-
Sanford, G. R., L. G. Oates, P. Jasrotia, K. D. Thelen, G. P. Robertson, and R. D. Jackson. 2016.Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agriculture, Ecosystems and Environment 216:344-355. DOI: 10.1016/j.agee.2015.10.018
-
2015
Hamilton, S. K., M. Z. Hussain, A. K. Bhardwaj, B. Basso, and G. P. Robertson. 2015.Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environmental Research Letters 10:064015. DOI: 10.1088/1748-9326/10/6/064015
-
Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2015.Data from: Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.j8227. DOI: 10.5061/dryad.j8227
-
Szymanski, L. 2015.Soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils. Thesis University of Wisconsin- Madison Madison, Wisconsin
-
Tiemann, L. K. and A. S. Grandy. 2015.Mechanisms of soil carbon accrual and storage in bioenergy cropping systems. Global Change Biology Bioenergy 7:161-174. DOI: 10.1111/gcbb.12126
-
Wang, Q., J. A. Fish, M. Gilman, Y. Sun, C. T. Brown, J. M. Tiedje, and J. R. Cole. 2015.Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32. DOI: 10.1186/s40168-015-0093-6
-
2010
James, L. K., S. M. Swinton, and K. D. Thelen. 2010.Profitability analysis of cellulosic energy crops compared with corn. Agronomy Journal 102:675-687. DOI: 10.2134/agronj2009.0289
-
2009
James, L. K., S. M. Swinton, and D. Pennington. 2009.Profitability of converting to biofuel crops. MSU Extension Bulletin E-3084 Michigan State University East Lansing, Michigan, USA