Publications for the Biofuel Cropping System Experiment > G5 Switchgrass

Publications associated with KBS LTER, GLBRC and LTAR projects. Click on the pdf link to get open access papers or to sign-in (free and immediate) to get other papers. Click on the data link to get formally published datasets (other datasets available as noted within the publications). Other ways to view KBS LTER publications can be accessed by the Research | Publications menu above.

Publications are also available on our KBS LTER Google Scholar page

  • 2024

    King, A. E., J. P. Amsili, S. C. Córdova, S. Culman, S. J. Fonte, J. Kotcon, M. D. Masters, K. McVay, D. C. Olk, A. M. Prairie, M. Schipanski, S. K. Schneider, C. E. Stewart, and M. F. Cotrufo. 2024.Constraints on mineral-associated and particulate organic carbon response to regenerative management: carbon inputs and saturation deficit. Soil and Tillage Research 238:106008., DOI: 10.1016/j.still.2024.106008

  • 2023

    Haan, N. L., G. N. Benucci, C. M. Fiser, G. Bonito, and D. A. Landis. 2023.Contrasting effects of bioenergy crops on biodiversity. Science Advances 9:eadh7960., DOI: 10.1126/sciadv.adh7960

  • Haan, N. L. and D. A. Landis. 2023.Pest suppression potential varies across 10 bioenergy cropping systems. GCB Bioenergy 15:765-775., DOI: 10.1111/gcbb.13053

  • Howe, A., N. Stopnisek, S. K. Dooley, F. Yang, K. L. Grady, and A. Shade. 2023.Seasonal activities of the phyllosphere microbiome of perennial crops. Nature Communications 14:1039., DOI: 10.1038/s41467-023-36515-y

  • Hussain, M. Z., S. K. Hamilton, and G. P. Robertson. 2023.Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US. GCB Bioenergy 15:254-263., DOI: 10.1111/gcbb.13020

  • Kim, K., A. Kaestner, M. Lucas, and A. N. Kravchenko. 2023.Microscale spatiotemporal patterns of water, soil organic carbon, and enzymes in plant litter detritusphere. Geoderma 438:116625., DOI: 10.1016/j.geoderma.2023.116625

  • King, A. E., J. P. Amsili, S. C. Córdova, S. Culman, S. J. Fonte, J. Kotcon, M. Liebig, M. D. Masters, K. McVay, D. C. Olk, M. Schipanski, S. K. Schneider, C. E. Stewart, and M. F. Cotrufo. 2023.A soil matrix capacity index to predict mineral-associated but not particulate organic carbon across a range of climate and soil pH. Biogeochemistry 165:1-14., DOI: 10.1007/s10533-023-01066-3

  • Lei, C., J. Chen, and G. P. Robertson. 2023.Climate cooling benefits of cellulosic bioenergy crops from elevated albedo. GCB Bioenergy 15:1373-1386., DOI: 10.1111/gcbb.13098

  • Lucas, M., J. Gil, G. P. Robertson, N. E. Ostrom, and A. Kravchenko. 2023.Changes in soil pore structure generated by the root systems of maize, sorghum and switchgrass affect in situ N2O emissions and bacterial denitrification. Biology and Fertility of Soils doi: 10.1007/s00374-023-01761-1, DOI: 10.1007/s00374-023-01761-1

  • Perry, S., G. Falvo, S. Mosier, and G. P. Robertson. 2023.Data from: Long-tern changes in soil carbon and nitrogen fractions in switchgrass, native grasses, and no-till corn bioenergy production systems. Dryad, Dataset https://doi.org/10.5061/dryad.547d7wmf3., DOI: 10.5061/dryad.547d7wmf3

  • Perry, S., G. Falvo, S. Mosier, and G. P. Robertson. 2023.Long-term changes in soil carbon and nitrogen fractions in switchgrass, native grasses, and no-till corn bioenergy production systems. Soil Science Society of America Journal 87:1365-1375., DOI: 10.1002/saj2.20575

  • Tejera-Nieves, M., M. Abraha, J. Chen, S. K. Hamilton, G. P. Robertson, and B. J. Walker. 2023.Seasonal decline in leaf photosynthesis in perennial switchgrass explained by sink limitations and water deficit. Frontiers in Plant Science 13:1023571., DOI: 10.3389/fpls.2022.1023571

  • Welikhe, P., M. R. Williams, K. King, J. Bos, M. Akland, C. Baffaut, E. G. Beck, A. Bierer, D. D. Bosch, E. S. Brooks, A. R. Buda, M. Cavigelli, J. Faulkner, G. W. Feyereisen, A. Fortuna, J. Gamble, B. R. Hanrahan, M. Z. Hussain, J. L. Kovar, B. Lee, A. B. Leytem, M. A. Liebig, D. Line, M. L. Macrae, T. B. Moorman, D. Moriasi, R. Mumbi, N. Nelson, A. Ortega-Pieck, D. Osmond, C. Penn, O. Pisani, M. L. Reba, D. R. Smith, J. Unrine, P. Webb, K. E. White, H. Wilson, and L. M. Witthaus. 2023.Uncertainty in phosphorus fluxes and budgets across the US long-term agroecosystem research network. Journal of Environmental Quality 52:873-885., DOI: 10.1002/jeq2.20485

  • Zahorec, A. 2023.Microarthropod-microbe interactions on soil carbon dynamics in bioenergy cropping systems. ,

  • 2022

    Hussain, M. Z., S. K. Hamilton, and G. P. Robertson. 2022.Data from: Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US. Dryad, Dataset doi: https://doi.org/10.5061/dryad.dfn2z355r, DOI: https://doi.org/10.5061/dryad.dfn2z355r

  • Kemmerling, L. R. 2022.Diversifying agricultural landscapes for biodiversity and ecosystem services. ,

  • Kim, K., J. Gil, N. E. Ostrom, H. Gandhi, M. S. Oerther, Y. Kuzyakov, A. K. Guber, and A. N. Kravchenko. 2022.Soil pore architecture and rhizosphere legacy define N2O production in root detritusphere. Soil Biology and Biochemistry 166:108565., DOI: 10.1016/j.soilbio.2022.108565

  • Kittredge, H. A., K. M. Dougherty, and S. E. Evans. 2022.Dead but not forgotten: How extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Applied and Environmental Microbiology 88:e02280-21., DOI: 10.1128/aem.02280-21

  • Lei, C. 2022.The analysis of albedo on bioenergy crops: Assessment for climate and global warming impact. ,

  • Moran, J. J., T. J. Linley, C. N. Makarem, J. F. Kelly, E. D. Wilcox Freeburg, D. M. Cleary, M. L. Alexander, and J. M. Kriesel. 2022.Spectroscopy-based isotopic (δ13C) analysis for high spatial resolution of carbon exchange in the rhizosphere. Rhizosphere 23:100564., DOI: 10.1016/j.rhisph.2022.100564

  • Williams, M. R., P. Welikhe, J. H. Bos, K. W. King, M. Akland, D. J. Augustine, C. Baffaut, E. G. Beck, A. Bierer, D. Bosch, E. Boughton, C. Brandani, E. S. Brooks, A. R. Buda, M. Cavigelli, J. Faulkner, G. W. Feyereisen, A. Fortuna, J. Gamble, B. R. Hanrahan, M. Z. Hussain, M. M. Kohmann, J. L. Kovar, B. Lee, A. B. Leytem, M. A. Liebig, D. Line, M. Macrae, T. B. Moorman, D. Moriasi, N. Nelson, A. Ortega-Pieck, D. Osmond, O. Pisani, J. Ragosta, M. Reba, A. Saha, J. Sanchez, M. Silveira, D. R. Smith, S. Spiegal, H. Swain, J. Unrine, P. Webb, K. E. White, H. Wilson, and L. M. Yasarer. 2022.P-FLUX: A phosphorus budget dataset spanning diverse agricultural production systems in the United States and Canada. Journal of Environmental Quality 51:451-461., DOI: 10.1002/jeq2.20351

  • 2021

    Bowsher, A. W., G. Benucci, G. Bonito, and A. Shade. 2021.Seasonal dynamics of core fungi in the switchgrass phyllosphere, and co-occurrence with leaf bacteria. Phytobiomes Journal 5:60-68., DOI: 10.1094/PBIOMES-07-20-0051-R

  • Cleary, D. M., T. Linley, J. Kriesel, A. Fahrland, J. F. Kelly, and J. J. Moran. 2021.Capillary absorption spectroscopy for high temporal resolution measurements of stable carbon isotopes in soil and plant-based systems. Plant Physiology and Biochemistry 169:1-8., DOI: 10.1016/j.plaphy.2021.10.025

  • Helms IV, J. A., K. A. Roeder, S. E. Ijelu, I. Ratcliff, and N. M. Haddad. 2021.Bioenergy landscapes drive trophic shifts in generalist ants. Journal of Animal Ecology 90:738-750., DOI: 10.1111/1365-2656.13407

  • Hussain, M. Z., S. K. Hamilton, G. P. Robertson, and B. Basso. 2021.Data from: Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Dryad, Dataset, https://doi.org/10.5061/dryad.8sf7m0cpx ., DOI: 10.5061/dryad.8sf7m0cpx

  • Hussain, M. Z., S. K. Hamilton, G. P. Robertson, and B. Basso. 2021.Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Scientific Reports 11:20367., DOI: 10.1038/s41598-021-99877-7

  • Kasanke, C. P., Q. Zhao, S. Bell, A. M. Thompson, and K. S. Hofmockel. 2021.Can switchgrass increase carbon accrual in marginal soils? The importance of site selection. GCB Bioenergy 13:320-335., DOI: 10.1111/gcbb.12777

  • Kemmerling, L. R., S. R. Griffin, and N. M. Haddad. 2021.Optimizing pollinator conservation and crop yield among perennial bioenergy crops. GCB Bioenergy 13:1030-1042., DOI: 10.1111/gcbb.12826

  • Kim, K., T. Kutlu, A. Kravchenko, and A. Guber. 2021.Dynamics of N2O in vicinity of plant residues: a microsensor approach. Plant and Soil 462:331-347., DOI: 10.1007/s11104-021-04871-7

  • Kim, K. 2021.Change of soil micro-environments during plant decomposition and its effect on carbon and nitrogen dynamics. ,

  • Zhang, B., C. R. Penton, Z. Yu, C. Xue, Q. Chen, Z. Chen, C. Yan, Q. Zhang, M. Zhao, J. F. Quensen, and J. M. Tiedje. 2021.A new primer set for Clade I nosZ that recovers genes from a broader range of taxa. Biology and Fertility of Soils 57:523-531., DOI: 10.1007/s00374-021-01544-6

  • 2020

    Bramer, L. M., A. M. White, K. G. Stratton, A. M. Thompson, D. Claborne, K. Hofmockel, and L. A. McCue. 2020.ftmsRanalysis: An R package for exploratory data analysis and interactive visualization of FT-MS data. PLOS Computational Biology 16:e1007654., DOI: 10.1371/journal.pcbi.1007654

  • Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Dryad, Dataset https://doi.org/10.5061/dryad.44j0zpc8r., DOI: 10.5061/dryad.44j0zpc8r

  • Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Environmental Science & Technology 54:2961-2974., DOI: 10.1021/acs.est.9b07019

  • Glanville, K. 2020.Impacts of changing precipitation on nitrogen cycling in different landscape positions and cropping systems. ,

  • Helms IV, J. A., S. E. Ijelu, B. D. Wills, D. A. Landis, and N. M. Haddad. 2020.Ant biodiversity and ecosystem services in bioenergy landscapes. Agriculture, Ecosystems and Environment 290:106780., DOI: 10.1016/j.agee.2019.106780

  • Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Science of the Total Environment 734:139379., DOI: 10.1016/j.scitotenv.2020.139379

  • Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Data from: Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Dryad, Dataset https://doi.org/10.5061/dryad.0p2ngf1xb., DOI: 10.5061/dryad.0p2ngf1xb

  • Larimer, C. J., E. H. Denis, J. D. Suter, and J. J. Moran. 2020.Optical coherence tomography imaging of plant root growth in soil. Applied Optics 59:2474-2481., DOI: 10.1364/AO.384674

  • Lin, V. S., J. J. Rosnow, M. Y. McGrady, D. N. Smercina, J. R. Nuñez, R. S. Renslow, and J. J. Moran. 2020.Non-destructive spatial analysis of phosphatase activity and total protein distribution in the rhizosphere using a root blotting method. Soil Biology and Biochemistry 146:107820., DOI: 10.1016/j.soilbio.2020.107820

  • Smercina, D. N., A. W. Bowsher, S. E. Evans, M. L. Friesen, E. K. Eder, D. W. Hoyt, and L. K. Tiemann. 2020.Data from: Switchgrass rhizosphere metabolite chemistry driven by nitrogen availability. Dryad, Dataset https://doi.org/10.5061/dryad.9zw3r229b., DOI: 10.5061/dryad.9zw3r229b

  • Sprunger, C. D., T. Martin, and M. Mann. 2020.Systems with greater perenniality and crop diversity enhance soil biological health. Agricultural & Environmental Letters 5:e20030., DOI: 10.1002/ael2.20030

  • Veličković, D., V. S. Lin, A. Rivas, C. R. Anderton, and J. J. Moran. 2020.An approach for broad molecular imaging of the root-soil interface via indirect matrix-assisted laser desorption/ionization mass spectrometry. Soil Biology and Biochemistry 146:107804., DOI: 10.1016/j.soilbio.2020.107804

  • Wang, S., G. R. Sanford, G. P. Robertson, R. D. Jackson, and K. D. Thelen. 2020.Perennial bioenergy crop yield and quality response to nitrogen fertilization. BioEnergy Research 13:157-166., DOI: 10.1007/s12155-019-10072-z

  • 2019

    Denis, E. H., P. D. Ilhardt, A. E. Tucker, N. L. Huggett, J. J. Rosnow, and J. J. Moran. 2019.Spatially tracking carbon through the root–rhizosphere–soil system using laser ablation-IRMS. Journal of Plant Nutrition and Soil Science 182:401-410., DOI: 10.1002/jpln.201800301

  • Duncan, D. S., L. G. Oates, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2019.Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems. Global Change Biology Bioenergy 11:416-426., DOI: 10.1111/gcbb.12572

  • Grady, K. L., J. W. Sorensen, N. Stopnisek, J. Guittar, and A. Shade. 2019.Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature Communications 10:4135., DOI: 10.1038/s41467-019-11974-4

  • Griffin, S. R. 2019.Restoring wild bees across fragmented landscapes. ,

  • Helms, J. A., S. E. Ijelu, and N. M. Haddad. 2019.Range expansion in an introduced social parasite-host species pair. Biological Invasions 21:2751-2759., DOI: 10.1007/s10530-019-02011-y

  • Hussain, M. Z., A. K. Bhardwaj, B. Basso, G. P. Robertson, and S. K. Hamilton. 2019.Nitrate leaching from continuous corn, perennial grasses, and poplar in the US Midwest. Journal of Environmental Quality 48:1849-1855., DOI: 10.2134/jeq2019.04.0156

  • Ilhardt, P. D., J. R. Nuñez, E. H. Denis, J. J. Rosnow, E. J. Krogstad, R. S. Renslow, and J. J. Moran. 2019.High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS). Soil Biology and Biochemistry 131:119-132., DOI: 10.1016/j.soilbio.2018.12.029

  • Kravchenko, A. N., A. K. Guber, B. S. Rasavi, J. Koestel, M. Y. Quigley, G. P. Robertson, and Y. Kuzyakov. 2019.Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications 10:3121., DOI: 10.1038/s41467-019-11057-4

  • Kravchenko, A. N., A. K. Guber, B. S. Razavi, J. Koestel, E. V. Blagodatskaya, and Y. Kuzyakov. 2019.Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biology and Biochemistry 135:411-419., DOI: 10.1016/j.soilbio.2019.06.002

  • Liang, D. 2019.Microbial sources of nitrous oxide emissions from diverse cropping systems. ,

  • Roley, S. S., C. Xue, S. K. Hamilton, J. M. Tiedje, and G. P. Robertson. 2019.Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology & Biochemistry 129:90-98., DOI: 10.1016/j.soilbio.2018.11.006

  • Starke, R., N. Jehmlich, T. Alfaro, A. Dohnalkova, P. Capek, S. L. Bell, and K. S. Hofmockel. 2019.Incomplete cell disruption of resistant microbes. Scientific Reports 9:5618., DOI: 10.1038/s41598-019-42188-9

  • Szymanski, L. M., G. R. Sanford, K. A. Heckman, R. D. Jackson, and E. Marín-Spiotta. 2019.Conversion to bioenergy crops alters the amount and age of microbially-respired soil carbon. Soil Biology and Biochemistry 128:35-44., DOI: 10.1016/j.soilbio.2018.08.025

  • von Haden, A. C., C. J. Kucharik, R. D. Jackson, and E. Marín-Spiotta. 2019.Litter quantity, litter chemistry, and soil texture control changes in soil organic carbon fractions under bioenergy cropping systems of the North Central U.S. Biogeochemistry 143:313-326., DOI: 10.1007/s10533-019-00564-7

  • Xue, C., Y. Hao, X. Pu, C. Ryan Penton, Q. Wang, M. Zhao, B. Zhang, W. Ran, Q. Huang, Q. Shen, and J. M. Tiedje. 2019.Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biology and Fertility of Soils 55:79-88., DOI: 10.1007/s00374-018-1331-4

  • 2018

    Kravchenko, A. N., A. K. Guber, M. Y. Quigley, J. Koestel, H. Gandhi, and N. E. Ostrom. 2018.X‐ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission in contrasting bioenergy cropping systems . Global Change Biology - Bioenergy 10:894-909., DOI: 10.1111/gcbb.12552

  • Landis, D. A., C. Gratton, R. D. Jackson, K. L. Gross, D. S. Duncan, C. Liang, T. D. Meehan, B. A. Robertson, T. M. Schmidt, K. A. Stahlheber, J. M. Tiedje, and B. P. Werling. 2018.Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass and Bioenergy 114:18-29., DOI: 10.1016/j.biombioe.2017.02.003

  • Sprunger, C. D. and G. P. Robertson. 2018.Data from: Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Dryad Digital Repository. https://doi.org/10.5061/dryad.7jq46., DOI: 10.5061/dryad.7jq46

  • Sprunger, C. D. and G. P. Robertson. 2018.Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318:42-51., DOI: 10.1016/j.geoderma.2017.11.040

  • 2017

    Emery, S. M., M. L. Reid, L. Bell-Dereske, and K. L. Gross. 2017.Soil mycorrhizal and nematode diversity vary in response to bioenergy crop identity and fertilization. Global Change Biology Bioenergy 9:1644-1656., DOI: 10.1111/gcbb.12460

  • Sanford, G. R., R. D. Jackson, L. G. Oates, G. P. Robertson, S. Roley, and K. D. Thelen. 2017.Biomass production a stronger driver of cellulosic ethanol yield than biomass quality. Agronomy Journal 109:1911-1922., DOI: 10.2134/agronj2016.08.0454

  • Sprunger, C. D., L. G. Oates, R. D. Jackson, and G. P. Robertson. 2017.Plant community composition influences fine root production and biomass allocation in perennial bioenergy cropping systems of the upper Midwest, USA. Biomass and Bioenergy 105:248-258., DOI: 10.1016/j.biombioe.2017.07.007

  • Wang, S. 2017.Biomass production potential, theoretical ethanol yield, environmental sustainability of Miscanthus x giganteus and nitrogen fertilizer effect on quantity and quality in five lignocellulosic biomass crops in north-central U.S.. ,

  • Zhang, B., C. R. Penton, C. Xue, J. F. Quensen, S. S. Roley, J. Guo, A. Garoutte, T. Zheng, and J. M. Tiedje. 2017.Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biology and Biochemistry 112:140-152., DOI: 10.1016/j.soilbio.2017.04.019

  • 2016

    Duncan, D. S. 2016.Linking soil microbiology and environmental conditions to variability in nitrous oxide production in bioenergy cropping systems. ,

  • Fox, A., T. N. Kim, C. A. Bahlai, J. M. Woltz, C. Gratton, and D. A. Landis. 2016.Cover crops have neutral effects on predator communities and biological control services in annual cellulosic bioenergy cropping systems. Agriculture, Ecosystems and Environment 232:101-109., DOI: 10.1016/j.agee.2016.07.003

  • Garoutte, A. 2016.Identifying the activities of rhizosphere microbial communities using metatranscriptomics. ,

  • Guo, J., J. R. Cole, Q. Zhang, C. T. Brown, and J. M. Tiedje. 2016.Microbial community analysis with ribosomal gene fragments from shotgun metagenomes. Applied and Environmental Microbiology 82:157-166., DOI: 10.1128/AEM.02772-15

  • Guo, J. 2016.Rhizosphere metagenomics of three biofuel crops. Dissertation.,

  • Jesus, E. C., C. Liang, F. J. Quensen, E. Susilawati, R. D. Jackson, T. C. Balser, and J. M. Tiedje. 2016.Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. Global Change Biology Bioenergy 8:481-494., DOI: 10.1111/gcbb.12289

  • Liang, C., E. da C. Jesus, D. S. Duncan, J. F. Quensen, R. D. Jackson, T. C. Balser, and J. M. Tiedje. 2016.Switchgrass rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural soils of the upper Midwest, USA. Soil Biology & Biochemistry 94:173-180., DOI: 10.1016/j.soilbio.2015.11.020

  • Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2016.Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Global Change Biology Bioenergy 8:539-549., DOI: 10.1111/gcbb.12268

  • Sanford, G. R., L. G. Oates, P. Jasrotia, K. D. Thelen, G. P. Robertson, and R. D. Jackson. 2016.Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agriculture, Ecosystems and Environment 216:344-355., DOI: 10.1016/j.agee.2015.10.018

  • 2015

    Hamilton, S. K., M. Z. Hussain, A. K. Bhardwaj, B. Basso, and G. P. Robertson. 2015.Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environmental Research Letters 10:064015., DOI: 10.1088/1748-9326/10/6/064015

  • Liu, L. 2015.Modeling switchgrass aboveground net primary productivity and evapotranspiration across Michigan. ,

  • Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2015.Data from: Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.j8227., DOI: 10.5061/dryad.j8227

  • Sprunger, C. D. 2015.Root production and soil carbon accumulation in annual, perennial, and diverse cropping systems. ,

  • Szymanski, L. 2015.Soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils. Thesis ,

  • Tiemann, L. K. and A. S. Grandy. 2015.Mechanisms of soil carbon accrual and storage in bioenergy cropping systems. Global Change Biology Bioenergy 7:161-174., DOI: 10.1111/gcbb.12126

  • Wang, Q., J. A. Fish, M. Gilman, Y. Sun, C. T. Brown, J. M. Tiedje, and J. R. Cole. 2015.Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32., DOI: 10.1186/s40168-015-0093-6

  • 2010

    James, L. K., S. M. Swinton, and K. D. Thelen. 2010.Profitability analysis of cellulosic energy crops compared with corn. Agronomy Journal 102:675-687., DOI: 10.2134/agronj2009.0289

  • 2009

    James, L. K., S. M. Swinton, and D. Pennington. 2009.Profitability of converting to biofuel crops. MSU Extension Bulletin E-3084 ,

Sign In