Publications for the Biofuel Cropping System Experiment > G8 Hybrid Poplar
Publications associated with KBS LTER, GLBRC and LTAR projects. Click on the pdf link to get open access papers or to sign-in (free and immediate) to get other papers. Click on the data link to get formally published datasets (other datasets available as noted within the publications). Other ways to view KBS LTER publications can be accessed by the Research | Publications menu above.
Publications are also available on our KBS LTER Google Scholar page
-
2023
Haan, N. L. and D. A. Landis. 2023.Pest suppression potential varies across 10 bioenergy cropping systems. GCB Bioenergy 15:765-775., DOI: 10.1111/gcbb.13053
-
Haan, N. L., G. N. Benucci, C. M. Fiser, G. Bonito, and D. A. Landis. 2023.Contrasting effects of bioenergy crops on biodiversity. Science Advances 9:eadh7960., DOI: 10.1126/sciadv.adh7960
-
Hussain, M. Z., S. K. Hamilton, and G. P. Robertson. 2023.Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US. GCB Bioenergy 15:254-263., DOI: 10.1111/gcbb.13020
-
Welikhe, P., M. R. Williams, K. King, J. Bos, M. Akland, C. Baffaut, E. G. Beck, A. Bierer, D. D. Bosch, E. S. Brooks, A. R. Buda, M. Cavigelli, J. Faulkner, G. W. Feyereisen, A. Fortuna, J. Gamble, B. R. Hanrahan, M. Z. Hussain, J. L. Kovar, B. Lee, A. B. Leytem, M. A. Liebig, D. Line, M. L. Macrae, T. B. Moorman, D. Moriasi, R. Mumbi, N. Nelson, A. Ortega-Pieck, D. Osmond, C. Penn, O. Pisani, M. L. Reba, D. R. Smith, J. Unrine, P. Webb, K. E. White, H. Wilson, and L. M. Witthaus. 2023.Uncertainty in phosphorus fluxes and budgets across the US long-term agroecosystem research network. Journal of Environmental Quality 52:873-885., DOI: 10.1002/jeq2.20485
-
2022
Hussain, M. Z., S. K. Hamilton, and G. P. Robertson. 2022.Data from: Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US. Dryad, Dataset doi: https://doi.org/10.5061/dryad.dfn2z355r, DOI: https://doi.org/10.5061/dryad.dfn2z355r
-
Kemmerling, L. R. 2022.Diversifying agricultural landscapes for biodiversity and ecosystem services. ,
-
Williams, M. R., P. Welikhe, J. H. Bos, K. W. King, M. Akland, D. J. Augustine, C. Baffaut, E. G. Beck, A. Bierer, D. Bosch, E. Boughton, C. Brandani, E. S. Brooks, A. R. Buda, M. Cavigelli, J. Faulkner, G. W. Feyereisen, A. Fortuna, J. Gamble, B. R. Hanrahan, M. Z. Hussain, M. M. Kohmann, J. L. Kovar, B. Lee, A. B. Leytem, M. A. Liebig, D. Line, M. Macrae, T. B. Moorman, D. Moriasi, N. Nelson, A. Ortega-Pieck, D. Osmond, O. Pisani, J. Ragosta, M. Reba, A. Saha, J. Sanchez, M. Silveira, D. R. Smith, S. Spiegal, H. Swain, J. Unrine, P. Webb, K. E. White, H. Wilson, and L. M. Yasarer. 2022.P-FLUX: A phosphorus budget dataset spanning diverse agricultural production systems in the United States and Canada. Journal of Environmental Quality 51:451-461., DOI: 10.1002/jeq2.20351
-
2021
Hussain, M. Z., S. K. Hamilton, G. P. Robertson, and B. Basso. 2021.Data from: Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Dryad, Dataset, https://doi.org/10.5061/dryad.8sf7m0cpx ., DOI: 10.5061/dryad.8sf7m0cpx
-
Hussain, M. Z., S. K. Hamilton, G. P. Robertson, and B. Basso. 2021.Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Scientific Reports 11:20367., DOI: 10.1038/s41598-021-99877-7
-
Kravchenko, A. N., A. K. Guber, A. Gunina, M. A. Dippold, and Y. Kuzyakov. 2021.Pore-scale view of microbial turnover: combining 14C imaging, μCT, and zymography after adding soluble carbon to soil pores of specific sizes. European Journal of Soil Science 72:593-607., DOI: 10.1111/ejss.13001
-
2020
Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Environmental Science & Technology 54:2961-2974., DOI: 10.1021/acs.est.9b07019
-
Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Dryad, Dataset https://doi.org/10.5061/dryad.44j0zpc8r., DOI: 10.5061/dryad.44j0zpc8r
-
Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Science of the Total Environment 734:139379., DOI: 10.1016/j.scitotenv.2020.139379
-
Sprunger, C. D., T. Martin, and M. Mann. 2020.Systems with greater perenniality and crop diversity enhance soil biological health. Agricultural & Environmental Letters 5:e20030., DOI: 10.1002/ael2.20030
-
2019
Duncan, D. S., L. G. Oates, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2019.Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems. Global Change Biology Bioenergy 11:416-426., DOI: 10.1111/gcbb.12572
-
Griffin, S. R. 2019.Restoring wild bees across fragmented landscapes. ,
-
Hussain, M. Z., A. K. Bhardwaj, B. Basso, G. P. Robertson, and S. K. Hamilton. 2019.Nitrate leaching from continuous corn, perennial grasses, and poplar in the US Midwest. Journal of Environmental Quality 48:1849-1855., DOI: 10.2134/jeq2019.04.0156
-
Kravchenko, A. N., A. K. Guber, B. S. Razavi, J. Koestel, E. V. Blagodatskaya, and Y. Kuzyakov. 2019.Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biology and Biochemistry 135:411-419., DOI: 10.1016/j.soilbio.2019.06.002
-
Kravchenko, A. N., A. K. Guber, B. S. Rasavi, J. Koestel, M. Y. Quigley, G. P. Robertson, and Y. Kuzyakov. 2019.Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications 10:3121., DOI: 10.1038/s41467-019-11057-4
-
Szymanski, L. M., G. R. Sanford, K. A. Heckman, R. D. Jackson, and E. Marín-Spiotta. 2019.Conversion to bioenergy crops alters the amount and age of microbially-respired soil carbon. Soil Biology and Biochemistry 128:35-44., DOI: 10.1016/j.soilbio.2018.08.025
-
von Haden, A. C., C. J. Kucharik, R. D. Jackson, and E. Marín-Spiotta. 2019.Litter quantity, litter chemistry, and soil texture control changes in soil organic carbon fractions under bioenergy cropping systems of the North Central U.S. Biogeochemistry 143:313-326., DOI: 10.1007/s10533-019-00564-7
-
2018
Hamilton, S. K., M. Z. Hussain, C. Lowrie, B. Basso, and G. P. Robertson. 2018.Evapotranspiration is resilient in the face of land cover and climate change in a humid temperate catchment. Hydrological Processes 32:655-663., DOI: 10.1002/hyp.11447
-
Hamilton, S. K., M. Z. Hussain, C. Lowrie, B. Basso, and G. P. Robertson. 2018.Data from: Evapotranspiration is resilient in the face of land cover and climate change in a humid temperate catchment. Dryad Digital Repository, https://doi.org/10.5061/dryad.6fm52., DOI: 10.5061/dryad.6fm52
-
Kravchenko, A. N., A. K. Guber, M. Y. Quigley, J. Koestel, H. Gandhi, and N. E. Ostrom. 2018.X‐ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission in contrasting bioenergy cropping systems . Global Change Biology - Bioenergy 10:894-909., DOI: 10.1111/gcbb.12552
-
Landis, D. A., C. Gratton, R. D. Jackson, K. L. Gross, D. S. Duncan, C. Liang, T. D. Meehan, B. A. Robertson, T. M. Schmidt, K. A. Stahlheber, J. M. Tiedje, and B. P. Werling. 2018.Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass and Bioenergy 114:18-29., DOI: 10.1016/j.biombioe.2017.02.003
-
Sprunger, C. D. and G. P. Robertson. 2018.Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318:42-51., DOI: 10.1016/j.geoderma.2017.11.040
-
Sprunger, C. D. and G. P. Robertson. 2018.Data from: Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Dryad Digital Repository. https://doi.org/10.5061/dryad.7jq46., DOI: 10.5061/dryad.7jq46
-
2017
Sanford, G. R., R. D. Jackson, L. G. Oates, G. P. Robertson, S. Roley, and K. D. Thelen. 2017.Biomass production a stronger driver of cellulosic ethanol yield than biomass quality. Agronomy Journal 109:1911-1922., DOI: 10.2134/agronj2016.08.0454
-
Sprunger, C. D., L. G. Oates, R. D. Jackson, and G. P. Robertson. 2017.Plant community composition influences fine root production and biomass allocation in perennial bioenergy cropping systems of the upper Midwest, USA. Biomass and Bioenergy 105:248-258., DOI: 10.1016/j.biombioe.2017.07.007
-
Zhang, B., C. R. Penton, C. Xue, J. F. Quensen, S. S. Roley, J. Guo, A. Garoutte, T. Zheng, and J. M. Tiedje. 2017.Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biology and Biochemistry 112:140-152., DOI: 10.1016/j.soilbio.2017.04.019
-
2016
Duncan, D. S. 2016.Linking soil microbiology and environmental conditions to variability in nitrous oxide production in bioenergy cropping systems. ,
-
Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2016.Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Global Change Biology Bioenergy 8:539-549., DOI: 10.1111/gcbb.12268
-
Sanford, G. R., L. G. Oates, P. Jasrotia, K. D. Thelen, G. P. Robertson, and R. D. Jackson. 2016.Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agriculture, Ecosystems and Environment 216:344-355., DOI: 10.1016/j.agee.2015.10.018
-
2015
Hamilton, S. K., M. Z. Hussain, A. K. Bhardwaj, B. Basso, and G. P. Robertson. 2015.Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environmental Research Letters 10:064015., DOI: 10.1088/1748-9326/10/6/064015
-
Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2015.Data from: Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.j8227., DOI: 10.5061/dryad.j8227
-
Sprunger, C. D. 2015.Root production and soil carbon accumulation in annual, perennial, and diverse cropping systems. ,
-
Szymanski, L. 2015.Soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils. Thesis ,
-
2010
James, L. K., S. M. Swinton, and K. D. Thelen. 2010.Profitability analysis of cellulosic energy crops compared with corn. Agronomy Journal 102:675-687., DOI: 10.2134/agronj2009.0289
-
2009
James, L. K., S. M. Swinton, and D. Pennington. 2009.Profitability of converting to biofuel crops. MSU Extension Bulletin E-3084 ,