Publications for the Biofuel Cropping System Experiment > G9 Early Successional
Publications associated with KBS LTER, GLBRC and LTAR projects. Click on the pdf link to get open access papers or to sign-in (free and immediate) to get other papers. Click on the data link to get formally published datasets (other datasets available as noted within the publications). Other ways to view KBS LTER publications can be accessed by the Research | Publications menu above.
Publications are also available on our KBS LTER Google Scholar page
-
2023
Haan, N. L., G. N. Benucci, C. M. Fiser, G. Bonito, and D. A. Landis. 2023.Contrasting effects of bioenergy crops on biodiversity. Science Advances 9:eadh7960., DOI: 10.1126/sciadv.adh7960
-
Haan, N. L. and D. A. Landis. 2023.Pest suppression potential varies across 10 bioenergy cropping systems. GCB Bioenergy 15:765-775., DOI: 10.1111/gcbb.13053
-
Lei, C., J. Chen, and G. P. Robertson. 2023.Climate cooling benefits of cellulosic bioenergy crops from elevated albedo. GCB Bioenergy 15:1373-1386., DOI: 10.1111/gcbb.13098
-
2022
Kemmerling, L. R. 2022.Diversifying agricultural landscapes for biodiversity and ecosystem services. ,
-
Lei, C. 2022.The analysis of albedo on bioenergy crops: Assessment for climate and global warming impact. ,
-
2021
Kemmerling, L. R., S. R. Griffin, and N. M. Haddad. 2021.Optimizing pollinator conservation and crop yield among perennial bioenergy crops. GCB Bioenergy 13:1030-1042., DOI: 10.1111/gcbb.12826
-
2020
Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Environmental Science & Technology 54:2961-2974., DOI: 10.1021/acs.est.9b07019
-
Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020.Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Dryad, Dataset https://doi.org/10.5061/dryad.44j0zpc8r., DOI: 10.5061/dryad.44j0zpc8r
-
Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Science of the Total Environment 734:139379., DOI: 10.1016/j.scitotenv.2020.139379
-
Hussain, M. Z., G. P. Robertson, B. Basso, and S. K. Hamilton. 2020.Data from: Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest . Dryad, Dataset https://doi.org/10.5061/dryad.0p2ngf1xb., DOI: 10.5061/dryad.0p2ngf1xb
-
Sprunger, C. D., T. Martin, and M. Mann. 2020.Systems with greater perenniality and crop diversity enhance soil biological health. Agricultural & Environmental Letters 5:e20030., DOI: 10.1002/ael2.20030
-
Wang, S., G. R. Sanford, G. P. Robertson, R. D. Jackson, and K. D. Thelen. 2020.Perennial bioenergy crop yield and quality response to nitrogen fertilization. BioEnergy Research 13:157-166., DOI: 10.1007/s12155-019-10072-z
-
2019
Duncan, D. S., L. G. Oates, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2019.Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems. Global Change Biology Bioenergy 11:416-426., DOI: 10.1111/gcbb.12572
-
Griffin, S. R. 2019.Restoring wild bees across fragmented landscapes. ,
-
Kravchenko, A. N., A. K. Guber, B. S. Razavi, J. Koestel, E. V. Blagodatskaya, and Y. Kuzyakov. 2019.Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biology and Biochemistry 135:411-419., DOI: 10.1016/j.soilbio.2019.06.002
-
Kravchenko, A. N., A. K. Guber, B. S. Rasavi, J. Koestel, M. Y. Quigley, G. P. Robertson, and Y. Kuzyakov. 2019.Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications 10:3121., DOI: 10.1038/s41467-019-11057-4
-
2018
Kravchenko, A. N., A. K. Guber, M. Y. Quigley, J. Koestel, H. Gandhi, and N. E. Ostrom. 2018.X‐ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission in contrasting bioenergy cropping systems . Global Change Biology - Bioenergy 10:894-909., DOI: 10.1111/gcbb.12552
-
Landis, D. A., C. Gratton, R. D. Jackson, K. L. Gross, D. S. Duncan, C. Liang, T. D. Meehan, B. A. Robertson, T. M. Schmidt, K. A. Stahlheber, J. M. Tiedje, and B. P. Werling. 2018.Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass and Bioenergy 114:18-29., DOI: 10.1016/j.biombioe.2017.02.003
-
Sprunger, C. D. and G. P. Robertson. 2018.Data from: Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Dryad Digital Repository. https://doi.org/10.5061/dryad.7jq46., DOI: 10.5061/dryad.7jq46
-
Sprunger, C. D. and G. P. Robertson. 2018.Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318:42-51., DOI: 10.1016/j.geoderma.2017.11.040
-
2017
Sanford, G. R., R. D. Jackson, L. G. Oates, G. P. Robertson, S. Roley, and K. D. Thelen. 2017.Biomass production a stronger driver of cellulosic ethanol yield than biomass quality. Agronomy Journal 109:1911-1922., DOI: 10.2134/agronj2016.08.0454
-
Sprunger, C. D., L. G. Oates, R. D. Jackson, and G. P. Robertson. 2017.Plant community composition influences fine root production and biomass allocation in perennial bioenergy cropping systems of the upper Midwest, USA. Biomass and Bioenergy 105:248-258., DOI: 10.1016/j.biombioe.2017.07.007
-
Wang, S. 2017.Biomass production potential, theoretical ethanol yield, environmental sustainability of Miscanthus x giganteus and nitrogen fertilizer effect on quantity and quality in five lignocellulosic biomass crops in north-central U.S.. ,
-
Zhang, B., C. R. Penton, C. Xue, J. F. Quensen, S. S. Roley, J. Guo, A. Garoutte, T. Zheng, and J. M. Tiedje. 2017.Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biology and Biochemistry 112:140-152., DOI: 10.1016/j.soilbio.2017.04.019
-
2016
Duncan, D. S. 2016.Linking soil microbiology and environmental conditions to variability in nitrous oxide production in bioenergy cropping systems. ,
-
Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2016.Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Global Change Biology Bioenergy 8:539-549., DOI: 10.1111/gcbb.12268
-
Sanford, G. R., L. G. Oates, P. Jasrotia, K. D. Thelen, G. P. Robertson, and R. D. Jackson. 2016.Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agriculture, Ecosystems and Environment 216:344-355., DOI: 10.1016/j.agee.2015.10.018
-
2015
Oates, L. G., D. S. Duncan, I. Gelfand, N. Millar, G. P. Robertson, and R. D. Jackson. 2015.Data from: Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.j8227., DOI: 10.5061/dryad.j8227
-
Sprunger, C. D. 2015.Root production and soil carbon accumulation in annual, perennial, and diverse cropping systems. ,
-
2012
Garlock, R. J., B. Bals, P. Jasrotia, V. Balan, and B. E. Dale. 2012.Influence of variable species composition on the saccharification of AFEX™ pretreated biomass from unmanaged fields in comparison to corn stover. Biomass and Bioenergy 37:49-59., DOI: 10.1016/j.biombioe.2011.12.036
-
2010
James, L. K., S. M. Swinton, and K. D. Thelen. 2010.Profitability analysis of cellulosic energy crops compared with corn. Agronomy Journal 102:675-687., DOI: 10.2134/agronj2009.0289
-
2009
James, L. K., S. M. Swinton, and D. Pennington. 2009.Profitability of converting to biofuel crops. MSU Extension Bulletin E-3084 ,