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Abstract

Our knowledge of microbial processes—who is responsible for what, the rates at which they occur, and the substrates
consumed and products produced—is imperfect for many if not most taxa, but even less is known about how microsite
processes scale to the ecosystem and thence the globe. In both natural and managed environments, scaling links funda-
mental knowledge to application and also allows for global assessments of the importance of microbial processes. But rarely
is scaling straightforward: More often than not, process rates in situ are distributed in a highly skewed fashion, under
the influence of multiple interacting controls, and thus often difficult to sample, quantify, and predict. To date, quantitative
models of many important processes fail to capture daily, seasonal, and annual fluxes with the precision needed to
effect meaningful management outcomes. Nitrogen cycle processes are a case in point, and denitrification is a prime
example. Statistical models based on machine learning can improve predictability and identify the best environmental
predictors but are—by themselves—insufficient for revealing process‐level knowledge gaps or predicting outcomes under
novel environmental conditions. Hybrid models that incorporate well‐calibrated process models as predictors for machine
learning algorithms can provide both improved understanding and more reliable forecasts under environmental conditions
not yet experienced. Incorporating trait‐based models into such efforts promises to improve predictions and understanding
still further, but much more development is needed.
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INTRODUCTION
Microbes are responsible for many of the life‐sustaining
processes that enable life on Earth. We know a great deal
about the most crucial microbial processes at a funda-
mental metabolic and cellular level, both in vitro and in situ,
but as we move away from the microscale, our knowledge
becomes more diffuse: in few cases do we have the
knowledge to scale processes to entire ecosystems, land-
scapes, and the globe. Yet, it is at these larger scales where
knowledge may be most needed: understanding the re-
gional and global impacts of environmental change—and
the potential for mitigating those impacts—requires the
ability to scale processes with regional and global impact to
regions and the globe.

Scaling is thus a growing challenge in microbial ecology.
It is useful for conceptualizing our understanding of im-
portant processes (Have we identified all the actors and
microsites involved?), for evaluating the importance of

individual processes (Are there impacts at large scales?), for
exploring potentials for intervention (Can we alter large‐
scale impacts via local management change?), and for
testing our process‐level understanding of microbial out-
comes (How well can we model the outcome of a process at
large scales?). The challenge is that we know far too little
about how to do so well: most of our knowledge is at the
scale of microsites, while arguably what we most need to
know for understanding global environmental change is at
landscape to global scales, leaving a knowledge gap that
begs addressing (Figure 1).

Canonical denitrification, the microbial transformation
of nitrate or nitrite to nitrous oxide (N2O) or dinitrogen
(N2), provides an ideal model for illustrating the challenge of
cross‐scale extrapolation. Complete denitrification involves
four major enzyme groups: nitrate reductase, nitrite reduc-
tase, nitric oxide reductase, and N2O reductase, which
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sequentially reduce nitrate, nitrite, nitric oxide, and N2O to
the end product N2

1. Not all denitrifiers possess all enzymes,
however, such that some may express a different end
product or specialize on a different nitrogen substrate. For
example, fungal2 and some bacterial denitrifiers3 lack N2O
reductase, and denitrifier Clade II N2O reducers can directly
consume soil pore N2O

4,5.
That said, canonical denitrifiers in general, whether

bacterial, archaeal, or fungal denitrifiers, play key roles in
regulating the availability of nitrogen to plants, in most
ecosystems a limiting nutrient. At the global scale, de-
nitrification largely closes the nitrogen cycle, initiated by N2

fixation, keeping the world from becoming awash in toxic
levels of nitrogen6. And especially important today, canon-
ical denitrification is the major source of atmospheric N2O, a
major biogenic greenhouse gas with a warming potency
~300 times that of CO2, and with an accelerating rate of
atmospheric accumulation7. That the vast majority of N2O in
the atmosphere is of microbial origin makes its potential
mitigation especially relevant to microbial ecology.

Canonical denitrification also exemplifies scaling chal-
lenges because we know at a conceptual level how controls
on denitrification vary with scale. Tiedje8,9 described a con-
ceptual model for environmental controls on bacterial de-
nitrification in soil and its production of N2O and N2 that
ranged from cellular to regional and global levels (Figure 2).
Controls at the cellular level—primarily but not exclusively
nitrate, oxygen, and carbon—are influenced by higher‐level
controls such as water, soil type, and climate acting at
successively greater scales. But operationalizing such a
model to allow predictions of denitrification rates at different
scales has been difficult.

In the pages that follow, I use canonical bacterial de-
nitrification and its production of N2O in terrestrial habitats to
illustrate the particular challenges of crossing scales for un-
derstanding and predicting denitrifier‐derived N2O at local to
global scales. While there are other microbial processes
known to influence N2O emissions—notably fungal de-
nitrification and Clade II N2O reduction—their importance is

either minor or insufficiently known to be major factors in
global N2O budgets. Three transitions are particularly im-
portant: from cells to microsites, from microsites to fields and
landscapes, and from landscapes to the globe. Ultimately,
our aim should be to link the rate of atmospheric change in
N2O concentrations to the underlying microbial processes in
such a way that we can inform land management policies
that contribute to climate change mitigation11,12.

FROM CELLS TO MICROSITES
It was not until the 1950s' advent of ecosystem N budgets
based on mass balance calculations and the availability of 15N
stable isotope compounds for tracing the fate of N fertilizer in
cropping systems13 that the potential importance of de-
nitrification in nonhydric soils was recognized. Previously, it was
thought that terrestrial denitrification occurred only in wetland
and other saturated soils. In the 60 years hence, we have
learned that denitrification is a major nitrogen cycle process in
most well‐aerated upland soils as well, largely due to the
presence of three distinct types of microsites: soil aggregates,
plant residue also known as particulate soil organic matter, and
soil pores of a particular size. In each of these microsites, the
proximal controls on denitrification are relaxed—oxygen stress
creates a demand for alternative electron acceptors, while
sufficient C and nitrate are available for denitrifiers to respire
nitrate to N2O and thence perhaps to N2 (Figure 2).

The potential importance of denitrification in soil ag-
gregates was predicted in 1980 by diffusion models14,15

that predicted aggregate interiors sufficiently anaerobic to
favor denitrifiers. Soil aggregates are comprised in general
of soil mineral and organic particles held together with
biologically derived polysaccharides16, and range in size
by orders of magnitude, from <50 to >2000 μm. A thin
surrounding water film usually impedes gas exchange,
such that oxygen within the aggregate is consumed faster
than it can be replaced by diffusion through the film.
Oxygen diffuses through water about 10,000 times more
slowly than through air. This results in concentric bands of
increasingly lower oxygen concentrations toward the
center of the aggregate, as first measured by Sexstone
et al.17 (Figure 3). This stratification also helps to explain
why decomposition is attenuated inside aggregates,
leading to soil C accrual18–20.

A similar phenomenon likely powers denitrification in small
pieces of soil organic matter more often called particulate
organic matter (POM). For example, in a 1987 paper, Parkin21

segmented 15 cm soil cores into progressively smaller por-
tions to show, in one typical case, that 85% of the core's
denitrification capacity could be isolated to a single leaf
fragment of Amaranthus sp. More recently, Loecke and
Robertson22 documented a similar finding for 15N‐labeled
clover residue, where the same amount of litter clumped into
fewer patches in a succeeding maize crop produced vastly
different amounts of N2O (Figure 4). Again, microsites with
ample carbon and nitrogen protected from oxygen were
responsible for much of the soil's denitrification capacity.

Figure 1. Microbial knowledge across scales. While we have the
greatest fundamental knowledge at the microscale (left), it is the
macroscale at which knowledge is often needed for decision‐making.
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The converse of soil aggregates—soil pores—is a surprising
third type of denitrification hot spot in upland soils. Using X‐ray
microtomography, Kravchenko et al.23 imaged the interior of
3 cm3 intact soil cores to reveal differences in soil pore struc-
tures among soils planted to annual versus perennial crops,
with pores in the perennial crops more connected and con-
tinuous and with a lower proportion of large pores. The im-
portance of these pore size differences for decomposition and

denitrification became clear in subsequent experiments, which
showed POM more likely to absorb water from adjacent large
pores than from small pores: in pores >35 μm in size, POM
absorbed water like a sponge—to 200% moisture content—as
compared to POM adjacent to smaller pores (Figure 5A). And
these differences led to a 30% higher decomposition rate in the
larger pores (Figure 5B) and effectively doubled rates of N2O
production (Figure 5C). In the absence of POM, pore size had
no effect. Both of these results confirm the importance of
POM hotspots for denitrification in soil and the role of soil
pores of a particular size for providing absorbable water to
POM particles. Differences among soils in their distributions of

Figure 2. Influence of different environmental factors on canonical bacterial denitrification at different scales. Adapted from Robertson10.
AEC, anion exchange capacity.

Figure 3. The oxygen profile through a 12mm soil aggregate.
Redrawn from Sexstone et al.17

Figure 4. N2O emissions from clumped versus dispersed clover
litter in a field mesocosm planted to maize. Redrawn from Loecke
and Robertson22.
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water in pores of different sizes help, then, to explain differ-
ences in microbial process rates like C processing24 and N2O
production.

What all of these microsites have in common is ample
C and nitrate together with low oxygen concentrations con-
verging for some period of time over some proportion of soil
volume to produce meaningful fluxes of N2O and N2. Clearly,
we have a good handle on scaling canonical denitrification
from cells to microhabitats. Where it gets trickier is scaling
from microhabitats to ecosystems.

FROM MICROSITES TO ECOSYSTEMS
The N2O and N2 emitted by denitrifiers are highly episodic
in all terrestrial ecosystems thus far examined. Likewise,
these N gas fluxes tend to be highly localized at scales
larger than microsites, perhaps as a function of microsite
distributions in soil: measured denitrification rates in in-
tensively sampled field sites are among the most spatially
variable of any major C and N cycle process. For example,
in a 0.5 ha portion of a southern Michigan, USA, grassland,
Robertson et al.25 found rates of denitrification that were
lognormally skewed, ranging over three orders of magni-
tude with a coefficient of variation four to five times that for
soil respiration and N mineralization (Table 1).

Yet, despite such variability, we can often detect dif-
ferences in rates of denitrification and N2O production
among ecosystems, especially following disturbance26,27,
or among different management intensities. For example,
in a synthesis of 25 years of flux measurements at the
KBS Long‐term Ecological Research site, Gelfand et al.28

documented significant, several‐fold differences between
an annual crop rotation, whether managed as conven-
tional, no‐till, reduced input, or biological based systems;
perennial crops both N fixing and non‐N fixing; and

unmanaged grasslands and forests (Figure 6). Consistent
long‐term sampling like this is rare but allows greater
confidence in the relative magnitude of flux differences
that might not be consistent year to year. In this case, the
similarity in fluxes between the conventional system,
which received synthetic N fertilizer, and the organic
system, which received exogenous N only from N‐fixing
cover crops, was particularly surprising, underscoring the
fact that it is the amount of N cycling through the system
that matters most to annual fluxes rather than the source
of N. Subsequent analyses29 identified denitrifiers rather
than nitrifiers as the dominant source of N2O emissions.

Despite the long‐term nature of these and other analyses,
the annual fluxes represented remain only estimates at best. In
situ measurements of N2O fluxes at weekly to monthly inter-
vals, even with careful interpolation between sampling events,
are really just best guesses—in most cases, we have high
confidence only in the relative magnitudes of such fluxes, not
the absolute magnitudes. This is because we rarely sample

(A) (C)(B)

Figure 5. Pore size effects on leaf residue moisture content, decomposition rate, and N2O emissions. (A) Leaf residue water content in
particles adjacent to large versus small soil pores in soil cores at 15% and 24% gravimetric moisture. (B) Decomposition of residue after 24‐day
incubation. (C) N2O production from residue adjacent to large pores. 1.3× and 2× refer to the effect magnitudes. Redrawn from Kravchenko
et al.23

Table 1. Rates of denitrification across a 0.5 ha old field in southern
Michigan, USA as compared to other C and N cycle processes.

Measure Mean SD CV (%)

N mineralization
(μgN cm−2 day−1)

3.36 1.95 57.9

Nitrification (μgNO3
−‐

N cm−2 day−1)
2.52 1.69 67.0

Denitrification (μgN cm−2 day−1) 4.73 13.0 275
CO2 production
(μgC cm−2 day−1)

55.5 33.7 60.7

pH as [H+] (μmol l−1) 5.77 3.27 56.6
Moisture (μg H2O cm−2) 0.65 0.38 58.7
Soil nitrate‐N (μg NO3

−‐N cm−2) 5.90 3.84 65.0

n = 201 soil cores. CV, coefficient of variation; SD, standard deviation.
Source: From Robertson et al.25
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with sufficient temporal intensity to know that we have cap-
tured a representative number of flux events. For N2O pro-
duction, temporal variability is usually as extreme as spatial
variability and further complicates scaling to larger geographic
areas. Short bursts of N2O emissions can be responsible for
most of an annual flux, especially in intensively managed
systems amended with exogenous N from fertilizers, compost,
or leguminous cover crops.

Figure 7 illustrates the challenge: high‐frequency measure-
ments of fertilized cropland such as those for a maize field in
the upper USMidwest typically reveal extraordinarily high fluxes
following management events like N fertilization that persist for
only a short while, in this case for only a two 2‐week period
annually. Temporally intensive measurements such as these are
becoming more common with the advent of automated flux
chambers that sample at subdaily intervals31, and automated
measurements in targeted ecosystems are revealing the

importance of episodic emissions in even less intensively
managed systems such as dryland wheat farming in Western
Australia and conifer forests in southern Germany (Figure 8A,C).
Barton et al.32 showed that in these and other systems for
which there are high‐frequency measurements, more frequent
sampling—on the order of 3−7‐day intervals throughout the
year—may be necessary to estimate annual fluxes with useful
precision (Figure 8B,D).

This kind of knowledge is important because it is
the annual fluxes that we need to build credible global
N2O budgets33 and to evaluate whether management inter-
ventions to mitigate N2O will have significant effects at the
landscape and global scales.

FROM ECOSYSTEMS TO THE GLOBE
Estimates of the global N2O budget appear less out of bal-
ance now than in the 1990s, when less than half of known
atmospheric sinks (14.1 Tg N2O‐N yr−1) could be ascribed to
known sources34,35. More recent efforts33 combining bottom‐
up (mainly inventory and statistical extrapolations) and top‐
down (atmospheric inversion modeling) approaches provide
greater agreement and identify fertilized soils as the main
source of the 2% per decade increase in the atmosphere's
N2O burden.

The agreement between bottom‐up and top‐down ap-
proaches is not to say that we are accurately estimating
cropland N2O emissions: bottom‐up IPCC budgets continue
to rely mainly on the linear relationship between N inputs and
N2O emissions as identified in a 1996 cross‐ecosystem anal-
ysis of different fields fertilized at various rates36. The slope of
this relationship is the basis for the IPCC's Tier I 1.25%
emission factor37. Yet, more recent studies of individual fields
fertilized at different rates suggest that a 1.25% emission
factor often severely underestimates emissions at input rates
that exceed crop N demand38–41, common in the Global North
and elsewhere42 due to insufficiently precise or insufficiently
followed on‐farm N recommendations43 and because of in‐
field spatial variability44. Within‐field variability plays a role
because in only a portion of evenly fertilized fields are yields
consistently high; everywhere else in the field, lower pro-
ductivity will result in some larger amount of N remaining in the
soil available to denitrifiers. Once inputs exceed crop N needs,
denitrifiers and other N2O producers no longer compete with
plants for available N, and N2O emissions increase ex-
ponentially (Figure 9).

Despite the generality of this N2O‐fertilizer response45, no
process‐level N2O models can currently reproduce it, likely
because we do not yet know its microbial basis, which
probably is more complex than simple resource availability.
Process‐based N2O models such as DayCent46 and DNDC47

are usually developed from microcosm incubations and in-
frequent chamber‐based field responses to individual envi-
ronmental factors, so this is probably to be expected. This
approach necessarily (and by design) simplifies the complex
biophysical interactions typical of field settings but com-
promises the models' abilities to make short‐term predictions
for sites or experimental conditions for which the model

Figure 6. Annual N2O fluxes from Michigan, USA ecosystems on
the same soil series sampled at weekly to monthly intervals for 25
years. Different lowercases represent significant differences. From
Gelfand et al.28

Figure 7. Short bursts of N2O fluxes can drive annual emissions.
Daily N2O fluxes in a Michigan, USA maize cropping system fertilized
at planting (25 kg N ha−1) and then side‐dressed 6 weeks later
(150 kg N ha−1) are shown. Data from Saha et al.30
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parameters have not been tailored. Moreover, process‐based
models do not yet account for new knowledge of microbial
processes that affect N2O emissions, such as Clade II N2O
reducers4,5.

Thus, when compared with measured data, current
process‐based models of N2O fluxes do a relatively poor job
of predicting daily fluxes in novel sites—in one synthesis with
only 20% accuracy in the 15 cropping system studies for
which the models had not been previously tuned30. Likewise,
an ensemble of 24 process‐based N2O models showed
equally large uncertainties48. This limits their utility for pre-
dicting short‐term impacts of management change that might
mitigate N2O emissions, and by extension, their ability to
predict annual fluxes with certainty.

The greater power of machine learning approaches for
predicting short‐term fluxes may resolve some of the precision
missing from process‐level models. Saha et al.30 used data
from automated chambers (~3000 subdaily fluxes from a
continuous maize system) together with conventional non-
automated static chambers to train a machine learning model
capable of predicting daily fluxes with ~50% accuracy for a
completely novel site with a different rotation (Figure 10). This
is a step in the right direction—two to three times better ac-
curacy than untrained process‐level models, but of course,
machine learning models are statistical so they cannot predict
fluxes under novel conditions, that is, fluxes that exceed the

Figure 8. N2O response to fertilizer levels. Daily N2O fluxes in an Australian wheat field (A), a German forest (C), and respective annual fluxes
estimated by subsampling the data in (A) and (C) at successively smaller daily intervals (B, D). From Barton et al.32

Figure 9. Soil N2O fluxes are exquisitely sensitive to nitrogen fertilizer
inputs. Once N inputs exceed crop N needs (~130 kgN ha−1), N2O
fluxes are exponentially greater in this maize‐based cropping system in
the US Midwest. Mg, megagram. From McSwiney and Robertson.38
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bounds of the training data. Nor can they be used to test our
understanding of key process‐level interactions. That said, they
do have the additional advantage of identifying the factors
that best predict model outcomes, in this case, water‐filled
pore space, soil inorganic N as predicted by a process‐based
model, temperature, and precipitation (Figure 11). Hybrid
models that use machine learning to predict N2O coupled to
process‐based models to estimate more readily predicted
factors like N pools30 may be a promising way forward.

Additionally, however, 30 years of denitrification research
suggests that better predictions of denitrification and N2O
fluxes may require incorporating population or even genome‐
level biological traits. Identifying the distribution of life history

traits that influence N2O production, and incorporating in-
formation about the presence of these traits into microbial
models of ecosystem functioning, as Malik et al.49 did for
carbon acquisition strategies and others50–54 for decom-
position and soil carbon change, could go far toward pro-
viding the precision needed for more credible N2O fluxes.
Cavigelli and Robertson55, for example, showed that de-
nitrifiers from different sites on the same soil series differ in
their mole ratio (N2O:N2) response to low oxygen, with some
denitrifiers producing mainly N2O and others producing
mainly N2, and a fourfold range overall (Figure 12). That they
used isolates grown under conditions known to favor can-
onical denitrification—and thus represent only a fraction of
likely denitrifier diversity in these soils—only serves to un-
derscore the wide range of physiological responses inherent
in natural populations. Note that this approach does not in-
volve the inclusion of detailed genomic data in such models,
but rather the relative importance of different life history traits
as revealed, in part, by genomic data.

Are we ready to incorporate such traits into our N2O
modeling efforts? Not yet, though capturing traits such as the
distribution of nosZ gene clades as revealed by genomic
analyses and then relating them to functional activity (i.e.,
traits) under different soil conditions may—coupled with
machine learning—allow us to better scale denitrification
effectively. Such an approach would be analogous to that
used to model soil carbon change in response to global
change factors such as warming or nitrogen enrichment.
Wieder et al.50,56, for example, showed how inclusion in their

(C)

(B)

(A)

Figure 10. Machine learning predictions for N2O emitted from
continuous maize cropping systems. Alfisol (A) and Mollisol (B) soils
that were used to train and validate the model and for a naïve site on
an Alfisol oil (C). From Saha et al.30

Figure 11. Environmental predictors in rank order for estimating
N2O fluxes in Figure 10. From Saha et al.30
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MIMICS model of copiotrophic and oligotrophic microbes as
two different C pools can better capture soil warming re-
sponses as compared to conventional single microbial pool
models, though challenges remain57.

CONCLUDING REMARKS
To summarize, three points follow. First, scale matters: Both
for linking fundamental understanding to application
(Figure 1), and for scaling processes to planetary domains to
assess the global importance of a process and what might be
gained (or lost) when microbial populations are altered at
local scales, whether intentionally or inadvertently.

Second, scaling is seldom straightforward. Rarely can
simple multiplication of an average rate for an average period
produce truly robust results at large scales. Understanding
the full range of responses to key environmental controls
acting at different spatial (Figure 2) and temporal (Figures 7
and 8) scales seems crucial for addressing questions at
progressively greater scales.

And third, we need better quantitative models to better
scale. By themselves, process‐level models can be suffi-
cient for very cosmopolitan or very discrete microbial
processes, and can be useful everywhere for narrowing our
process‐level understanding of microbial process rates.
Machine learning may improve predictability and more
readily identify best predictors of processes that evade

accurate prediction by quantitative models, and thus can
be highly informative, but machine learning cannot be
relied upon to forecast process rates into novel futures.
Hybrid models that include both process‐level and
machine learning algorithms might better predict existing
rates, as well as forecast future rates, and inclusion
of working life history traits in these models might be
particularly fruitful, but it is still early days yet.
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