Modern cropping systems use substantial amounts of fossil energy in the form of fertilizers, pesticides, and fuel for field operations. An important environmental consequence of this use is the emission of greenhouse gases (GHGs) to the atmosphere, from sources both direct and indirect. Direct sources include fossil fuel used for tillage and other field operations as well as GHGs produced and consumed by microbes in cropped soils. Indirect sources include fossil energy used off-site to produce fertilizers and other agronomic inputs, as well as GHGs produced by microbes in noncropped sites that receive nutrients escaped from cropped fields. Row-crop agriculture can thus be either a net source or sink of GHGs, with the balance (net emission or uptake) influenced greatly by management practices.

All three of the major biogenic GHGs are affected by agriculture: carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). Not including postharvest activities or land-use conversion caused by agricultural expansion, agriculture is responsible for 10–14% of total global anthropogenic GHG emissions (Barker et al. 2007, Smith et al. 2007). This includes ~84% of anthropogenic N₂O emissions and ~53% of anthropogenic CH₄ emissions (Robertson 2004). The manufacture of agrochemicals adds another 0.6–1.5% to the global total (Vermeulen et al. 2012).

Most agricultural CO₂ emissions are from land conversion and fossil fuel use. Methane emissions associated with agriculture are from enteric fermentation by ruminant animals such as cattle, cultivated rice soils, animal wastes, and agricultural biomass burning. In addition, land conversion to agriculture substantially reduces microbial CH₄ oxidation in soil, thereby attenuating an important CH₄ sink and effectively increasing CH₄ in the atmosphere. Nitrous oxide emissions from agriculture are produced mostly from nitrogenous fertilizers, with lesser contributions from animal wastes and biomass burning.
The global importance of GHG fluxes from established cropping systems and their sensitivity to management make agriculture an attractive sector for mitigation measures. And because many of these fluxes are interdependent and sensitive to the same management practices (though often differentially sensitive), there are many opportunities to manage them together. In fact, because management practices

Table 12.1. Description of the KBS LTER Main Cropping System Experiment (MCSE).a

<table>
<thead>
<tr>
<th>Cropping System/Community</th>
<th>Dominant Growth Form</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Cropping Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional (T1)</td>
<td>Herbaceous annual</td>
<td>Prevailing norm for tilled corn–soybean–winter wheat (c–s–w) rotation; standard chemical inputs, chisel-plowed, no cover crops, no manure or compost</td>
</tr>
<tr>
<td>No-till (T2)</td>
<td>Herbaceous annual</td>
<td>Prevailing norm for no-till c–s–w rotation; standard chemical inputs, permanent no-till, no cover crops, no manure or compost</td>
</tr>
<tr>
<td>Reduced Input (T3)</td>
<td>Herbaceous annual</td>
<td>Biologically based c–s–w rotation managed to reduce synthetic chemical inputs; chisel-plowed, winter cover crop of red clover or annual rye, no manure or compost</td>
</tr>
<tr>
<td>Biologically Based (T4)</td>
<td>Herbaceous annual</td>
<td>Biologically based c–s–w rotation managed without synthetic chemical inputs; chisel-plowed, mechanical weed control, winter cover crop of red clover or annual rye, no manure or compost; certified organic</td>
</tr>
<tr>
<td>Perennial Cropping Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa (T6)</td>
<td>Herbaceous perennial</td>
<td>5- to 6-year rotation with winter wheat as a 1-year break crop</td>
</tr>
<tr>
<td>Poplar (T5)</td>
<td>Woody perennial</td>
<td>Hybrid poplar trees on a ca. 10-year harvest cycle, either replanted or coppiced after harvest</td>
</tr>
<tr>
<td>Coniferous Forest (CF)</td>
<td>Woody perennial</td>
<td>Planted conifers periodically thinned</td>
</tr>
<tr>
<td>Successional and Reference Communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Successional (T7)</td>
<td>Herbaceous perennial</td>
<td>Historically tilled cropland abandoned in 1988; unmanaged but for annual spring burn to control woody species</td>
</tr>
<tr>
<td>Mown Grassland (never tilled) (T8)</td>
<td>Herbaceous perennial</td>
<td>Cleared woodlot (late 1950s) never tilled, unmanaged but for annual fall mowing to control woody species</td>
</tr>
<tr>
<td>Mid-successional (SF)</td>
<td>Herbaceous annual + woody perennial</td>
<td>Historically tilled cropland abandoned ca. 1955; unmanaged, with regrowth in transition to forest</td>
</tr>
<tr>
<td>Deciduous Forest (DF)</td>
<td>Woody perennial</td>
<td>Late successional native forest never cleared (two sites) or logged once ca. 1900 (one site); unmanaged</td>
</tr>
</tbody>
</table>

aSite codes that have been used throughout the project’s history are given in parentheses. Systems T1–T7 are replicated within the LTER main site; others are replicated in the surrounding landscape. For further details, see Robertson and Hamilton (2015, Chapter 1 in this volume).
produce different effects on GHG fluxes, it is especially important to consider them together, that is, to take a systems approach toward their understanding and management (Robertson 2014). In this chapter, we describe an ecosystems approach to documenting changes in GHG fluxes in intensive row-crop agriculture. We draw, in particular, on results from the Kellogg Biological Station Long-Term Ecological Research site (KBS LTER), where GHG fluxes have been studied in the Main Cropping System Experiment (MCSE; Table 12.1; Robertson and Hamilton 2015, Chapter 1 in this volume) since 1989. We discuss the value of long-term comparisons of different cropping systems in determining the potential for management practices to contribute to or mitigate GHG fluxes. We end with consideration of the GHG implications of crop production not only for grain but also for cellulosic biomass, which is anticipated to become increasingly important in a future that includes cellulosic biofuels.

Row-Crop Agriculture and GHG Mitigation

Historically, agricultural impacts on atmospheric chemistry have been dominated by land-use change. Since the late eighteenth century, conversion of forests and grasslands to cropland has resulted in emissions of CO$_2$ to the atmosphere on the order of 130 to 170 Pg C (Wilson 1978, Sauerbeck 2001), mostly due to immediate biomass burning and subsequent soil carbon (C) oxidation. Global CO$_2$ emissions from deforestation today amount to ~1.5 Pg C yr$^{-1}$ (Canadell et al. 2007).

In few established croplands today are GHG emissions dominated by soil C oxidation. Rather, emissions now are dominated by CO$_2$ from fossil fuel combustion during farm operations; CO$_2$ produced during the manufacture and transport of fertilizers, pesticides, and other agricultural inputs; N$_2$O emitted when nitrogen (N) fertilizers are applied to soil; and CH$_4$ emitted during flooded conditions in lowland rice. In most of the world’s established agricultural soils (except drained wetlands), soil C is either stable or, if managed appropriately, increasing, though this trend could be reversed by a warming climate (Senthilkumar et al. 2009; Paul et al. 2015, Chapter 5 in this volume).

The need for mitigation of agricultural GHG emissions becomes especially important in light of the agricultural intensification yet required to feed an increasing and more affluent world population (Tilman et al. 2011, Mueller et al. 2012). Although intensification to date has improved yields on existing farmland and thereby fed more people at a lower per-capita GHG cost (i.e., at a lower GHG cost per unit yield) (Burney et al. 2010), the efficiency gained has not been sufficient to halt the increase in GHG emissions from agriculture. Growing demands for biofuel feedstocks could further increase agriculture’s GHG footprint: over the next several decades, millions of hectares will likely be converted to biofuel cropping systems that will consume fuel and fertilizer and could—if not carefully managed—exacerbate rather than alleviate atmospheric GHG loading (Melillo et al. 2009). Bioenergy cropping systems correctly
Mitigation of Greenhouse Gases

implemented, on the other hand, provide a substantial opportunity for mitigating anthropogenic GHG contributions as well as providing other environmental benefits (Robertson et al. 2008, NRC 2009, Tilman et al. 2009).

In light of the expectation for worldwide expansion and intensification of agriculture in the coming decades, it seems crucial to pursue opportunities for reducing the GHG contributions of agricultural crop production. Many such opportunities are available, particularly in the areas of soil C conservation (CAST 2011) and better N management (Robertson and Vitousek 2009). Through the strategic adoption of agronomic practices known to attenuate GHG emissions (e.g., Millar et al. 2010), agriculture could contribute significantly to climate change mitigation.

Long-term research such as that conducted at the KBS LTER has a particularly important contribution to make in climate change mitigation because of the variable nature and slow rate of change for many agricultural GHG fluxes. While some emissions are sudden, such as biomass burning during land clearing, and others are episodic but easily quantified, such as fuel used during agronomic operations, others can be difficult to reliably estimate based on short-term observations because they change very slowly or are temporally variable. Changes in soil C sequestration, for example, are normally too gradual to detect on an annual basis: a change of 50 g C m$^{-2}$ (a typical annual gain after conversion to no-till management) cannot be distinguished in 1 year against a spatially variable background pool of 5000 g C m$^{-2}$. Long-term research provides the time necessary to document such changes; detecting an increase of 500 g C m$^{-2}$ over 10 years is much more tractable (Kravchenko and Robertson 2011).

Similarly, changes in N$_2$O emissions are difficult to detect against a background of high temporal variability. Nitrous oxide emissions from soils are notoriously variable and unpredictable: fluxes can change an order of magnitude within a single day (e.g., Ambus and Robertson 1998, Barton et al. 2008) in response to a variety of environmental drivers. Long-term N$_2$O research provides the large set of measurements and hence the statistical power needed to assess differences among agronomic systems and practices against an otherwise confusing backdrop of short-term variability.

Providing a Common Basis for Systemwide Comparisons

The Concept of Global Warming Impact (GWI)

Greenhouse gases vary greatly in radiative forcing and residence time in the atmosphere, so it is not enough to know that one system stores more soil C but liberates more N$_2$O than another system that oxidizes more CH$_4$; a reference is needed to appropriately weight the effect of different gases on the atmosphere’s capacity to hold heat. The Global Warming Potential (GWP; IPCC 2001) index satisfies this need. The GWP is a combined measure of the radiative forcing of a given GHG based on its physical capacity to absorb infrared radiation, its current concentration in the atmosphere, and its atmospheric lifetime.
By convention, CO$_2$ has a GWP of 1; the GWPs of all other gases are expressed relative to this. Because GHGs have different atmospheric lifetimes, their GWPs change differentially after emission—for example, the GWP for a quantity of N$_2$O emitted today is higher than it will be a century from now, when less of it will remain in the atmosphere. Methane, with its briefer atmospheric lifetime (~12 years vs. 114 years for N$_2$O), will have a correspondingly smaller impact a century after emission. To provide a common means for comparison, the IPCC has identified 100 years as an appropriate standard time horizon for comparing mitigation options (Forster et al. 2007). Methane has a 100-year GWP of 23 and N$_2$O, 298. Manufactured halocarbons with atmospheric lifetimes of millennia can have 100-year GWPs greater than 10,000 (Prinn 2004).

We use the term GWI to refer to the effect of a given activity or group of activities on the atmosphere’s heat-trapping capacity. Both GWP and GWI are measured in CO$_2$ equivalents (CO$_2$e). By way of example, a cropping practice that releases 1 g m$^{-2}$ of CO$_2$ has a GWI of 1 g CO$_2$e m$^{-2}$, and a practice that releases 1 g m$^{-2}$ of N$_2$O has a GWI of 298 g CO$_2$e m$^{-2}$; the GWI of both practices combined would be 299 g CO$_2$e m$^{-2}$. Thus, management practices that affect N$_2$O fluxes can disproportionately influence climate forcing relative to practices that affect fluxes of CO$_2$.

GWI in Practice

The literature is rich with estimates for GWIs of individual cropping activities. These include the effects of tillage on soil C sequestration (e.g., no-till management increases soil organic C; Paul et al. 2015, Chapter 5 in this volume); the amount of CO$_2$ emitted by the manufacture, transport, and application of agrochemicals; and the amount of N$_2$O emitted from fertilized fields as a function of the rate, timing, and formulation of N fertilizer (Millar and Robertson 2015, Chapter 9 in this volume). Still rare, however, are full-cost accountings of entire cropping systems or farms, in which GWIs from all significant sources are tallied to provide a systemwide net GWI.

Cropping systems with a net positive GWI are net emitters of GHGs and thus drivers of anthropogenic climate change, whereas systems with a net negative GWI mitigate climate change. Important to realize, however, is that any system or practice with a GWI lower than that which is currently the norm will represent mitigation relative to business as usual—even if the GWI of the new system or practice remains positive. Equally important is the notion that only by placing GWIs for different practices in an ecosystem context can the net benefits of any change be assessed. No-till practices, for example, will save fuel and store more soil C relative to conventional tillage, but the need for additional herbicide use has a C cost that will offset some of the fuel savings and soil C gain, and in some soils no-till practices may increase N$_2$O emissions (van Kessel et al. 2013).

Results from a full-cost analysis of GWI in the MCSE (Table 12.2) illustrate both tradeoffs and synergies. In one of the first whole-system analyses of the contribution of different GHGs to agriculture’s GWI, Robertson et al. (2000) showed that the GWI of MCSE cropping systems differed markedly—and for different reasons.
Net GWIs over a 9-year period (Table 12.2) ranged from 114 g CO₂e m⁻² yr⁻¹ (net emission) in the conventionally managed corn–soybean–wheat rotation to −211 g CO₂e m⁻² yr⁻¹ (net mitigation) in the Early Successional community abandoned from agriculture 9 years earlier. Net GWIs also differed substantially among the annual cropping systems: net GWI was low in the No-till system (14 g CO₂e m⁻² yr⁻¹) and intermediate in the Reduced Input and Biologically Based systems (63 and 41 g CO₂e m⁻² yr⁻¹, respectively), suggesting the potential for substantial mitigation relative to the Conventional management.

Close analysis shows the source of these differences. While in all the annual crops, N₂O production was the largest single source of GWI, in the No-till system soil C storage more than offset the GWI of N₂O emissions, although additional contributions from N fertilizer manufacture, lime and fuel, and GHG exchanges of nitrous oxide (N₂O) and methane (CH₄) with the atmosphere. Although not enough C was stored in the Reduced Input and Biologically Based systems to offset N₂O production, savings from lower N fertilizer and lime use helped to reduce their net GWI to about half that of the Conventional system.

The hybrid Poplar system’s combination of low N₂O emissions and enhanced soil C accumulation over 9 years resulted in a substantial mitigation capacity of −105 g CO₂e m⁻² yr⁻¹ (Table 12.2). Although Alfalfa, the other perennial system
evaluated, also had substantial soil C accumulation, much of this was offset by agricultural lime applications and high N₂O emissions—both related to alfalfa’s N fixation capacity. Nitrogen fixation provides inorganic N to nitrifying bacteria, which in turn provide nitrate (NO₃⁻) to denitrifiers, and both nitrifiers and denitrifiers produce N₂O (Ostrom et al. 2010). Nitrifiers also produce acidity, increasing the need for lime application. As a result, alfalfa possessed only a modest net mitigation capacity in spite of high rates of soil C sequestration.

Results from the full-cost analysis of GWI in the MCSE (Table 12.2) also suggest an eventual diminution of the Early Successional community’s strong mitigation potential. Older successional communities had a substantially higher net GWI (though still negative), primarily because of lower soil C accumulation (Table 12.2). For example, in the late successional Deciduous Forest net soil C accumulation was nil, and although CH₄ oxidation was significant, it was largely offset by N₂O emissions, leading to an overall GWI close to zero.

Gelfand et al. (2013) extended the GWI analysis of the MCSE by an additional decade, and although results showed similar trends, there were two important differences (Table 12.3). First, Hamilton et al. (2007) found that lime contributions to GWI are likely far less than calculated earlier due to how lime is dissolved in these soils. Dissolution by strong acids such as nitric (HNO₃) leads to immediate CO₂ release—as was assumed in the earlier analysis. However, dissolution by carbonic acid (H₂CO₃)—a weak acid existing in equilibrium with dissolved CO₂—leads to net CO₂ capture by the soil solution and its hydrologic export as bicarbonate (HCO₃⁻), which resides in the groundwater system for long periods. Thus, the net GWI in KBS soils, where dissolution by the two reactions tends to occur in about equal proportions, is likely nil. And second, a more recent and deeper soil C sampling (Syswerda et al. 2011) showed that soil C sequestered by the hybrid Poplar system was largely lost during reestablishment after harvesting, when for ~2 years soils were warmer and moister as a result of greater insolation and reduced transpiration due to lack of canopy cover. These results revise but do not substantially alter the original study’s conclusion that different cropping practices contribute differentially to a given cropping system’s GWI, and they illustrate how a long-term systems approach is necessary to fully partition the benefits and liabilities of specific management systems.

Biofuel and Energy Flux Considerations

Neither Robertson et al. (2000) nor others (e.g., Mosier et al. 2004) considered the end use of the biomass produced by cropping systems in their calculations of GWI—all harvested biomass was assumed to be oxidized to CO₂, thereby providing no further mitigation capacity. If, on the other hand, harvested biomass is used for energy that would otherwise be provided by fossil fuel, then an additional mitigation credit must be added to the GWI of the cropping system that produced it, so long as additional GHGs are not produced elsewhere by land cleared to offset a potential loss of food production (Searchinger et al. 2008, 2009). For example, the MCSE Poplar system discussed above would gain an additional mitigation credit of ~319 g CO₂e m⁻² yr⁻¹ were those trees grown on previously unforested land not
Table 12.3. GWIs over two decades of the MCSE.a

<table>
<thead>
<tr>
<th>System</th>
<th>Soil C</th>
<th>N Fertilizer</th>
<th>Lime</th>
<th>P</th>
<th>K</th>
<th>Seed</th>
<th>Pest</th>
<th>Fuel</th>
<th>N\textsubscript{2}O</th>
<th>CH\textsubscript{4}</th>
<th>Net GWI Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Crops</td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>0 (31)</td>
<td>33</td>
<td>3</td>
<td>0.4</td>
<td>1.3</td>
<td>7.3</td>
<td>7.1</td>
<td>13</td>
<td>37 (6)</td>
<td>-1 (0)</td>
<td>101 (32)</td>
</tr>
<tr>
<td>No-till</td>
<td>-122 (31)</td>
<td>33</td>
<td>4</td>
<td>0.3</td>
<td>1.3</td>
<td>7.0</td>
<td>15.5</td>
<td>9</td>
<td>39 (3)</td>
<td>-1 (0)</td>
<td>-14 (31)</td>
</tr>
<tr>
<td>Reduced Input</td>
<td>-92 (122)</td>
<td>11</td>
<td>2</td>
<td>0.2</td>
<td>1.0</td>
<td>7.9</td>
<td>4.3</td>
<td>21</td>
<td>35 (2)</td>
<td>-1 (0)</td>
<td>-11 (122)</td>
</tr>
<tr>
<td>Biologically Based</td>
<td>-183 (31)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.9</td>
<td>0</td>
<td>20</td>
<td>32 (3)</td>
<td>-1 (0)</td>
<td>-124 (31)</td>
</tr>
<tr>
<td>Perennial Crops</td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>-122 (92)</td>
<td>0</td>
<td>14</td>
<td>0.3</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>46 (4)</td>
<td>-1 (0)</td>
<td>-39 (92)</td>
</tr>
<tr>
<td>Poplar</td>
<td>61 (53)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6 (1)</td>
<td>-1 (0)</td>
<td>73 (53)</td>
</tr>
<tr>
<td>Successional Communities</td>
<td></td>
</tr>
<tr>
<td>Early Successional</td>
<td>-397 (31)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>1 (1)</td>
<td>-1 (0)</td>
<td>-387 (31)</td>
</tr>
<tr>
<td>Mid-successional</td>
<td>-214 (275)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16 (3)</td>
<td>-3 (1)</td>
<td>-201 (275)</td>
</tr>
<tr>
<td>Mown Grassland (never tilled)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>2 (2)</td>
<td>-4 (0)</td>
<td>7 (2)</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>2 (2)</td>
<td>-5 (1)</td>
<td>7 (2)</td>
</tr>
</tbody>
</table>

aSee Table 12.2 for further explanation. Mean values (±SE) are based on data from 1989 to 2009, except mean values of N\textsubscript{2}O and CH\textsubscript{4} are based on data from 1991 to 2011.
Source: Revised from data in Gelfand et al. (2013).
now used for food crops and were the harvested biomass used to make biofuel that offsets fossil fuel use (Gelfand et al. 2013).

Energy balance can also provide a common basis for comparing the GWIs of different cropping systems because of the interconnection between GHG emissions and energy use (West and Marland 2002). An accurate estimate of agricultural energy efficiency—the ratio of useable energy in the end products to the energy used for production (Gelfand et al. 2010)—can, in addition to illustrating GWI differences, provide insights into how society can meet food and fuel security needs most energy efficiently. Energy efficiency can be calculated using energy balance tools (e.g., Kim and Dale 2003), and becomes especially useful when assessing the potential for bioenergy crops to offset fossil fuel use.

Table 12.4 shows the large range in annual energy inputs and food energy outputs for the MCSE annual cropping systems (Gelfand et al. 2010). While the Conventional system produced more than 10 times the energy in food than was used in farming (72.7 vs. 7.1 GJ ha⁻¹ yr⁻¹), the No-till system produced even more energy (78.5 GJ ha⁻¹ yr⁻¹) and at two-thirds of the energy input (4.9 GJ ha⁻¹ yr⁻¹), for a net energy efficiency (energy output:input ratio) of 16, far higher than that of the Conventional (10). High energy costs of tillage account for most of the difference. Gelfand et al. (2010) also showed that the energy efficiency for food production was always higher than for liquid fuel production from the same crops, even when crop residues were to be used for fuel. However, this analysis assumes that food is produced for direct human consumption; allocating a portion of food crops to support livestock for meat and dairy production would change the energy balance because of the inherent inefficiency of energy transfer through food chains.

The Importance of System Boundaries for GWI Comparisons

A full accounting of the GWI or energy balance of an agricultural ecosystem requires a clear definition of the boundaries that meet the purpose and needs of the analysis. Inclusion of solar energy inputs, for example, would make fossil fuel

Table 12.4. Crop yields and energy balances for the annual cropping systems of the MCSE from 1989 to 2007.

<table>
<thead>
<tr>
<th>Annual Cropping System</th>
<th>Crop Yield (Mg ha⁻¹ yr⁻¹)</th>
<th>Crop Rotation Energy Balance (GJ ha⁻¹ yr⁻¹)</th>
<th>Net Energy Efficiency¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corn</td>
<td>Wheat</td>
<td>Soybean</td>
</tr>
<tr>
<td>Conventional</td>
<td>5.9</td>
<td>3.5</td>
<td>2.3</td>
</tr>
<tr>
<td>No-till</td>
<td>6.3</td>
<td>3.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Reduced Input</td>
<td>5.2</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Biologically Based</td>
<td>4.1</td>
<td>2.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

¹See Table 12.1 for a description of systems.
²Food produced for direct human consumption (i.e., not via livestock production for human consumption).
³Net Energy Efficiency calculated as output to input ratio.
energy inputs insignificant even though they are often the component of greatest interest. Energy in human labor and machinery manufacture (Hulsbergen et al. 2001) could similarly be included, but these inputs do not significantly differ among production-scale farming systems regardless of the final products (Pimentel and Patzek 2005). Thus, if one is calculating an energy balance to determine the most energy-efficient system, only significant sources of manageable energy need be included, that is, energy inputs that differ and are affected by various management options. Such comparisons assume that differences outside the farm gate are negligible, that is, that the energy costs of labor inputs, farm implements, and storing or transporting crop yields are identical or sufficiently similar to be an insignificant part of the overall system budget. This makes analyses more tractable, as measurements of fluxes and pools at the farm scale are relatively straightforward.

Thus, the choice of system boundaries should be explicit and based on the needs of the study. As for nutrient budgets or biogeochemical cycles (Robertson 1982), boundaries should be expanded only as far as necessary to encompass the fluxes relevant to the question under study. In a comparative analysis of biofuel cropping systems, for example, it make sense to expand the boundary to include the cost of transporting harvested grain and cellulosic biomass, as does inclusion of the fate of grain ethanol end-products such as dry distillers grain.

Components of GHG Balances in Cropping Systems

The primary purpose of an agricultural GHG balance is to track the exchanges of GHGs between cropping systems and the atmosphere. Figure 12.1 summarizes major fluxes between these two pools. The cropping system contains three main compartments: agricultural inputs that cost CO$_2$e to manufacture and transport, GHG production and consumption by soil microbes, and CO$_2$ captured by the cropping system and ultimately emitted in consumption of the harvested biomass. All three compartments are interrelated and influenced by management decisions.

The GWI of a given system can be studied using a mass-balance approach, which accounts for fluxes into and out of the system and provides estimates of change in the pool of interest—ultimately resulting in GHG exchanges (expressed as CO$_2$e) with the atmosphere:

$$\frac{dX}{dt} = Flux\, In\, X(t) - Flux\, Out\, X(t)$$

where X is the pool of interest, and $Flux\, In$ and $Flux\, Out$ are the sum of all measured and estimated fluxes into or out of the studied system over a given time period t. Although t is usually annualized, when processes involve different time scales, it is important that t be appropriately normalized, such as over the length of a rotation. A comparison of a 1-year continuous corn rotation to a 3-year corn–soybean–wheat rotation, for example, should be performed over at least one 3-year period to capture different crop effects, and preferably more in order to capture climatic variation. The same is true for other periodic management practices as well; for example, if
a no-till system is plowed every few years to solve a management problem or reap mineralizable N benefits, then \(t \) needs to span one or more of these tillage cycles.

Agricultural Inputs

Management decisions have a strong influence on the magnitude of CO\(_2\)e emissions associated with agricultural inputs including seed production, agrochemicals, and fuel use in farm operations. For example, the MCSE Conventional system, which is tilled, emits 35% more CO\(_2\) from fuel use than does the No-till system (Fig. 12.2). Although the No-till system lacks soil preparation, the additional herbicides and energy required at planting (because the soil is more resistant than had it been plowed) partly offset the CO\(_2\)e savings associated with reduced fuel use by not tilling (Fig. 12.2). Likewise, synthetic N fertilizer can be a large source of CO\(_2\)e because of CO\(_2\) emitted during its manufacture (Table 12.2), but this cost is avoided in alfalfa, which acquires its N from the atmosphere through biological N fixation. However, this savings is almost entirely offset by the CO\(_2\)e costs of alfalfa’s increased agricultural lime and potassium (K) requirements. Thus, overall CO\(_2\)e emissions of the Alfalfa system are ~60% of those of the No-till and Conventional systems, despite the absence of N fertilizer use (Fig. 12.2).

The CO\(_2\)e cost of producing agricultural lime (0.04 g CO\(_2\)e kg\(^{-1}\); West and Marland 2002) is independent of its fate. As noted earlier, Hamilton et al. (2007) estimate that CO\(_2\) emissions from agricultural lime applied to KBS soils are fully offset by CO\(_2\) capture when at least 50% of the lime is dissolved by carbonic acid rather than by a strong mineral acid. Nitric acid in agricultural soils is largely produced by nitrifying bacteria that produce 2 moles of H\(^+\) for every mole of ammonium oxidized to NO\(_3^-\) (Robertson and Groffman 2015), and this can be
Mitigation of Greenhouse Gases

Pesticides have high CO₂e production costs (4–5 kg CO₂e kg⁻¹) but a disproportionately low impact on ecosystem CO₂e fluxes because usually only a few grams of active ingredient are applied per hectare; they thus represent only ~10% of total agricultural inputs, except in the No-till system, where they represent ~20% of total inputs (Fig. 12.2). Seeds have a larger impact on GWI due to their high production costs and seeding rates of ~20, 70, and 170 kg ha⁻¹ for corn, soybean, and wheat, respectively (Gelfand et al. 2013). Estimates of GWI for seeds vary widely, however, depending on how seed production costs are estimated: West and Marland (2002) used a dollar value method to estimate a cost of 0.25 kg CO₂e kg⁻¹ soybean seed (Table 12.5); and Sheehan et al. (1998) estimate a cost of 2.62 kg CO₂e kg⁻¹ soybean seed based on 150% of the soybean energy content of 23.8 MJ kg⁻¹ (Rathke et al. 2007). Based on average actual production costs for irrigated soybean, we estimate a cost of 0.31 kg CO₂e kg⁻¹ soybean seed (Table 12.5; West and Marland 2002).

Other inputs not common to KBS cropping systems can also have significant GHG costs. Most notable among these is irrigation. Pumped irrigation uses energy to move water from lower landscape positions or groundwater to the crop, and the electricity or diesel used for this can readily become the dominant component of the GWI of irrigated systems (Mosier et al. 2005). Irrigation scheduling
can also affect the amount of NO$_3^-$ driven from the root zone into surface water and groundwater systems (Gehl et al. 2005), where it can be denitrified to N$_2$O (Beaulieu et al. 2011).

Nitrous Oxide and Methane Fluxes

Soil N$_2$O emissions are directly related to soil N availability and therefore to N fertilization and N fixation. In KBS LTER systems, those with high soil N availability—either from fertilizer inputs (e.g., in the Conventional and No-till systems) or from N fixed by leguminous cover crops (e.g., by red clover in the Reduced Input and Biologically Based systems) or by the primary crops themselves (e.g., soybean and alfalfa)—showed higher N$_2$O emissions than did systems with lower N inputs and availability (Fig. 12.3). This is a common finding in the N$_2$O literature (see Robertson and Vitousek 2009, Millar et al. 2010); in fact, global GHG inventories for agricultural N$_2$O emissions are largely based on a simple percentage of national fertilizer N inputs (IPCC 2006). Higher N$_2$O emissions in crops with lower N availability (i.e., wheat vs. soybeans, Fig. 12.3) suggest, however, that not only N availability but also specific crop (i.e., rotation type) may have an effect.

Nitrous oxide emissions appear to be especially high where N fertilization exceeds crop N requirements. McSwiney and Robertson (2005) found a nonlinear, exponentially increasing N$_2$O emission rate from KBS soils in continuous corn as fertilization levels increased beyond the point required for maximum yield. Others have since found similar responses (Grant et al. 2006, Ma et al. 2010, Millar et al. 2010, Hoben et al. 2011), suggesting that mitigation efforts directed toward more precise fertilizer use may have greater payoffs than those estimated by inventory methods based on a simple percentage of inputs. Millar et al. (2010, 2012, 2013) incorporated this relationship into C market incentives that can compensate farmers for more conservative N fertilizer use, which in theory is a promising way to promote fertilizer conservation in general, with both climate and water quality (Hamilton 2015, Chapter 11 in this volume) benefits.

Table 12.5. Estimation of the GHG cost of producing 1 kg of soybean seeds using three different approaches.

<table>
<thead>
<tr>
<th>Approach</th>
<th>GHG Cost (kg CO$_2$e kg$^{-1}$ seeds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. dollar valuea</td>
<td>0.25</td>
</tr>
<tr>
<td>Energy contentb</td>
<td>2.62</td>
</tr>
<tr>
<td>Direct estimationc</td>
<td>0.31</td>
</tr>
</tbody>
</table>

aFrom West and Marland (2002).
bAssumes all energy for soybean production is derived from fossil diesel with an energy content of 36.4 MJ L$^{-1}$; the energy content of soybean seeds is 23.8 MJ kg$^{-1}$; CO$_2$ emission from burning fossil diesel is 2.67 kg CO$_2$ L$^{-1}$.
cBased on CO$_2$e emissions from irrigated soybean production (239.9 kg C ha$^{-1}$ yr$^{-1}$; West and Marland 2002) and average U.S. soybean yield (2.8 Mg ha$^{-1}$; http://www.nass.usda.gov/).
Nitrous oxide is also emitted from aquatic systems that drain agricultural watersheds. Considerable NO$_3^-$ is lost from intensively fertilized fields (Syswerda et al. 2012, Hamilton 2015, Chapter 11 in this volume), and based on watershed mass balances, most of this NO$_3^-$ appears to be denitrified to N$_2$O and N$_2$. A recent cross-site study of stream N cycling that includes the broader watershed around KBS (Beaulieu et al. 2008, 2011) suggests that streams and rivers play a particularly important role in N transformations, and may be responsible for a surprising proportion of global anthropogenic N$_2$O emissions.

Methane is consumed by—rather than emitted from—most field crop systems other than flooded rice. In most well-aerated soils, more CH$_4$ is oxidized to CO$_2$ by methanotrophic bacteria than is produced by methanogenic bacteria. This means that soil methanotrophs also consume atmospheric CH$_4$, helping to attenuate atmospheric concentrations that would otherwise build at even higher rates than are occurring today. Methane oxidation by soil methanotrophs is estimated to consume around 30 Tg yr$^{-1}$. Although this is only ~5% of the total global CH$_4$ flux (Forster et al. 2007), it is close to the rate at which CH$_4$ is accumulating in the atmosphere (37 Tg yr$^{-1}$), suggesting that were consumption reduced—or intensified—atmospheric concentrations might be likewise affected.
Conversion of forest and grassland soils to agriculture reduces rates of soil CH$_4$ oxidation by 80–90% (Mosier et al. 1991, Smith et al. 2000, Del Grosso et al. 2000). In the MCSE, CH$_4$ oxidation in the Conventional system is about 20% of the rate in the Deciduous Forest (Robertson et al. 2000, Suwanwaree and Robertson 2005). Much of this suppression appears to stem from greater N availability in cropped soils rather than N fertilizer per se or tillage-induced changes in soil structure: oxidation was equally low in the unfertilized Biologically Based system, and fertilizing Deciduous Forest plots immediately reduces oxidation rates for the period that inorganic N pools are elevated, while tilling them has no discernible effect (Fig. 12.4; Suwanwaree and Robertson 2005). Gulledge and Schimel (1998) showed that much of the effect of N appears related to the competitive inhibition of CH$_4$ oxidation enzymes by ammonium ions. A longer time period of measurements of GHG fluxes from KBS soils shows, however, some recovery of CH$_4$ oxidation in the Biologically Based, Alfalfa, and Early successional systems 20 years after establishment (Table 12.6), despite relatively high N availability.

Nitrogen availability alone also does not explain the very slow recovery of CH$_4$ oxidation rates in abandoned cropland or in cropland converted to unfertilized perennial crops. After 10 years, there was no recovery of oxidation rates in either the Poplar system or in the Early Successional community (Robertson et al. 2000)—two systems in which soil NO$_3^-$ levels and NO$_3^-$ leaching rates are vanishingly low.

![Figure 12.4](image-url)

Figure 12.4. The reduction of methane (CH$_4$) oxidation upon soil disturbance and ammonium nitrate fertilization (100 kg N ha$^{-1}$) in the No-till (planted in corn), Mid-successional, and Deciduous Forest systems of the MCSE. Vertical bars are standard errors of the mean (SE, n = 3 sites × 7 sampling dates). Different uppercase and lowercase letters represent significant treatment differences (p < 0.05) among and within sites, respectively. Modified from Suwanwaree and Robertson (2005).
Mitigation of Greenhouse Gases

(Syswerda et al. 2012). After 20 years of abandonment, however, CH$_4$ oxidation does begin to recover slightly in these systems (Table 12.6; Gelfand et al. 2013). Measurements in our Mid-successional community suggest that it takes 50 years or more for CH$_4$ oxidation to exceed 50% of preconversion rates (Robertson et al. 2000, Suwanwaree and Robertson 2005).

Why does CH$_4$ consumption take so long to recover to preconversion levels? Part of the explanation may be related to methanotroph community composition and, in particular, methanotroph diversity (Gulledge et al. 1997). Levine et al. (2011) found substantially higher methanotroph diversity in MCSE systems with higher oxidation rates, suggesting that microbial community composition (see Schmidt and Waldron 2015, Chapter 6 in this volume) may matter for CH$_4$ oxidation in the same way that it matters for N$_2$O production via denitrification (Cavigelli and Robertson 2000, 2001; Schmidt and Waldron 2015, Chapter 6 in this volume).

Soil CH$_4$ oxidation is not known to be affected by any existing agronomic practice; it is as low in the MCSE No-till and Reduced Input systems and in various organic systems of the Living Field Lab Experiment (Robertson and Hamilton 2015, Chapter 1 in this volume; Snapp et al. 2015, Chapter 15 in this volume) as it is in the fertilized Conventional system (Suwanwaree 2003). Alternative agronomic practices that increase the capacity for CH$_4$ oxidation could have the potential for significant GWI mitigation (Gelfand et al. 2013).

Table 12.6. Nitrous oxide (N$_2$O) and methane (CH$_4$) fluxes and GWIs from 1991 to 2010 of the MCSE.*

<table>
<thead>
<tr>
<th>System</th>
<th>GHG Flux†</th>
<th>GWI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N$_2$O-N</td>
<td>CH$_4$-C</td>
</tr>
<tr>
<td></td>
<td>(g ha$^{-1}$ d$^{-1}$)</td>
<td>(g CO$_2$e m$^{-2}$ y$^{-1}$)</td>
</tr>
<tr>
<td>Annual Crops (corn–soybean–wheat rotation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>2.15 (0.33)a</td>
<td>−0.69 (0.09)a</td>
</tr>
<tr>
<td>No-till</td>
<td>2.27 (0.15)a</td>
<td>−0.65 (0.06)a</td>
</tr>
<tr>
<td>Reduced Input</td>
<td>2.06 (0.13)a</td>
<td>−0.57 (0.05)a</td>
</tr>
<tr>
<td>Biologically Based</td>
<td>1.91 (0.15)a</td>
<td>−0.85 (0.03)b</td>
</tr>
<tr>
<td>Perennial Crops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>2.72 (0.24)a</td>
<td>−0.87 (0.08)b</td>
</tr>
<tr>
<td>Poplar</td>
<td>0.38 (0.04)b</td>
<td>−0.81 (0.05)a,b</td>
</tr>
<tr>
<td>Successional Community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Successional</td>
<td>0.66 (0.05)c</td>
<td>−0.89 (0.05)b</td>
</tr>
</tbody>
</table>

†Statistically significant differences (ANOVA repeated measures, $p < 0.05$) are indicated by different letters within columns. GHG fluxes are based on untransformed values and GWIs are carbon dioxide equivalents (CO$_2$e), calculated using a 100-year time horizon (IPCC 2007), and all are expressed as mean (±SE, $n = 4$ replicates).

†Soil GHG fluxes were sampled April–December, 1991–2010. Positive values indicate emission to the atmosphere; negative values are uptake.

Source: Gelfand et al. (2013).
Crop Carbon Dioxide Capture

Crop production goals, that is, crop productivity and how its biomass is used, have great influence on the GWI of agricultural systems. Net Ecosystem Productivity (NEP; Fig. 12.1) is the net annual uptake of CO$_2$ from the atmosphere by the plant–soil system, defined as gross primary production (total CO$_2$ uptake) less ecosystem respiration (total CO$_2$ produced) (Randerson et al. 2002). Net Ecosystem Productivity thus represents the overall C balance, with a few caveats (Chapin et al. 2006). In long-established annual cropping systems, NEP is typically zero—as much CO$_2$ is respired as is captured annually. Although not all the biomass may be consumed in the year produced—a portion of the crop residue, for example, may persist as soil organic matter (SOM) C for decades or centuries (see Paul et al. 2015, Chapter 5 in this volume)—for ecosystems at C-balance equilibrium an equivalent amount of older SOM C may be respired. Thus on an annual basis, as much CO$_2$ will leave the ecosystem as enters.

Cropping systems recently converted from forests or grasslands have a negative NEP, annually releasing more CO$_2$ to the atmosphere than they capture. More CO$_2$ is respired than fixed because the original vegetation left on-site, including roots, will decompose and long-stored SOM will be rapidly oxidized when tillage breaks up soil aggregates and exposes protected C to microbial attack (Grandy and Robertson 2006, 2007; Paul et al. 2015, Chapter 5 in this volume). In most temperate regions, the SOM content of recently converted soils will approach a new steady-state equilibrium at 40–60% of original levels in 40–60 years (Paul et al. 1997).

Conversely, cropping systems that are gaining C have a positive NEP. In annual cropping systems, this occurs when SOM accumulates with the adoption of no-till cultivation or cover crops. When left untilled, soil aggregates that form around small particles of organic matter are more stable and protect the organic matter from microbial oxidation (Six et al. 2000, Grandy et al. 2006)—thereby allowing soil C pools to rebuild to some proportion of their original C content (West and Post 2002). At KBS, rates of soil C gain in the No-till system are typical of gains elsewhere in the Midwest (West and Post 2002): ~33 g C m$^{-2}$ yr$^{-1}$ in the Ap horizon, with no significant change in deeper layers to 1 m (Syswerda et al. 2011).

Even in tilled soils, cover crops can build SOM quickly—in the unfertilized Biologically Based system, C was sequestered in the surface soil (A/Ap horizon) at ~50 g C m$^{-2}$ yr$^{-1}$ over the first 12 years of establishment (Syswerda et al. 2011). The mechanisms underlying cover crop gains are not yet clear, but may be related to the greater polyphenolic content in legume residue that could slow its decomposition (Palm and Sánchez 1991). Chemical protection may also be occurring in the Early Successional community, where in addition to the cessation of tillage, plant residue diversity and perennial roots help to explain C sequestration rates in the surface soil of >100 g C m$^{-2}$ yr$^{-1}$ over the first 12 years of abandonment (Syswerda et al. 2011).

Perennial crops provide an additional soil C advantage by having permanent deep roots, which both sequester C in long-lived belowground tissue and produce
exudates that microbes at depth can transform into recalcitrant organic matter (Wickings et al. 2012). In the Early Successional community, soils below the Ap horizon accumulated ~33 g C m−2 yr−1 over the first 12 years of establishment, and SOM also increased at depth in the Alfalfa and Poplar systems during this time (Syswerda et al. 2011).

Climate Change Mitigation through Sustainable Biofuel Production

Projections of reduced fossil fuel availability and growing concerns about the environmental impacts of fossil fuel use have stimulated interest in renewable energy sources from agricultural crops (Robertson et al. 2008, Tilman et al. 2009), which would result in the concomitant expansion of cropland to satisfy new production demands (Field et al. 2008, Feng and Babcock 2010). Biofuels produced from crops could provide climate benefits by offsetting fossil fuel use. Offsets are created when fuels produced from harvested crop biomass are used instead of fossil fuels. A fossil fuel CO₂ offset credit is equivalent to the amount of CO₂ in the avoided fossil fuel use. A full cost accounting or life cycle analysis is necessary to determine the net amount of fossil fuel CO₂ actually avoided: feedstocks can greatly differ in their net C balance (Fargione et al 2010, Gelfand et al. 2013), and calculations must include both the direct C debt accrued from creating a new biofuel cropping system (Fargione et al. 2008, Gelfand et al. 2011) as well as the indirect debt created by the need to clear land elsewhere to replace lost food production (Searchinger et al. 2008). Moreover, crop residue removed to produce biofuel is residue that would otherwise have contributed to maintain or build soil C (Wilhelm et al. 2007), such that its removal can be a net GWI cost as foregone soil C sequestration. Although the mitigation impact of a biofuel cropping system can be substantial, benefits depend entirely on where and how and which crops are grown. Two examples from KBS serve to illustrate this point: one based on the use of existing cropping systems for biofuel production, and the other on the conversion of former cropland enrolled for 22 years in the USDA's Conservation Reserve Program (CRP).

The GWI of Established Biofuel Crops

Currently, most U.S. biofuel production is ethanol made from corn grain. A small amount of biodiesel is produced from soybean and other oil seed crops. In other parts of the world, sugarcane and oil seed crops such as palm oil are used to produce biofuels, and in the future cellulosic ethanol will likely be produced from agricultural wastes and residues, perennial grasses, and woody vegetation (NRC 2009). Future fuels will likely also include butanol, alkanes, and other so-called drop-in hydrocarbons, and biomass is also likely to be combusted directly to produce electricity and heat, avoiding some of the energy loss associated with biorefining and with burning fuel in internal combustion engines of individual automobiles.

Over the next several decades, then, agricultural biomass will increasingly be used as feedstocks to produce a variety of energy sources. This will place
unprecedented demands on croplands globally; in the United States, agricultural
biomass needs are expected to approach 700 Tg (Perlack et al. 2005, NRC 2009),
which could take as much as 90 million ha (222 million acres) of additional crop-
land (CAST 2011, Robertson et al. 2011)—about half as much U.S. land as we
use today for all annual crops. Impacts on the biogeochemistry (Robertson et al.
2011) and biodiversity (Fletcher et al. 2011) of agricultural landscapes are likely to
be correspondingly high. The climate change implications of these impacts make it
all the more important that policy and landowner decisions be based on accurate
GWI assessments.

Gelfand et al. (2013) used 20 years of observations from the MCSE to analyze
the life-cycle C balances of systems that could potentially be harvested for use as
biofuel feedstocks. For the two annual crop systems evaluated—the Conventional
and No-till systems—they assumed grain was used for grain-based ethanol (corn,
wheat) or biodiesel (soybean), and that 60% of wheat straw was used for cellulosic
ethanol. No residue was removed from the corn or soybean portions of the rotations
in order to protect existing SOM stores (NRC 2009). Three perennial cropping
systems provided biomass for cellulosic ethanol—Alfalfa, Poplar, and the Early
Successional community, which was either fertilized or unfertilized.

Resulting GHG balances (Fig. 12.5B) show a negative (net mitigating) GWI for
all biofuel cropping systems. Fossil fuel offset credits were greatest in the Alfalfa
and fertilized Early Successional communities and lowest in the more intensively
managed systems. The differences were related to both yield and management. For
an example, high yields of the No-till system were balanced by relatively high
management inputs, which decreased total fossil fuel offset credits. On the other
hand, cellulosic biomass produced in the less productive Early Successional sys-
tem lacked significant management inputs and therefore provided more fossil fuel
offset credits (Fig. 12.5A). Credits for the Early Successional community would
be substantially higher were technology developed to improve harvest efficiency
for perennial grasses, now only 55% (Monti et al. 2009). Nevertheless, the Early
Successional community still exhibited the highest net mitigation potential with a
GWI of about −851 g CO₂e m⁻² yr⁻¹, while the more productive No-till system was
only fourth, with a net GWI of −397 g CO₂e m⁻² yr⁻¹. Alfalfa was intermediate to
these with a mitigation potential of about −605 g CO₂e m⁻² yr⁻¹ because of the high
GWI cost of increased N₂O emissions and lower SOC accumulation (Fig. 12.5B).
The net mitigation potential of the Poplar system was low, owing to the lack of
net soil organic C gain over its rotation including the subsequent break period.
Fertilizing the Early Successional community increased its productivity and thus
its fossil fuel offset by ~35%, though net GWI remained basically unchanged due
to the greater CO₂e cost of the fertilizer N and increased soil N₂O emissions associ-
ated with fertilization. Nevertheless, by increasing productivity with no net change
in GWI, N fertilization would reduce the amount of land needed to produce a given
amount of biofuel feedstock.

The boundary of this analysis includes the full life cycle of biofuel and fos-
sil fuel production. Expanding the boundary to include indirect land-use effects
could change GWIs significantly for the worse. More specifically, the GWI of
these systems will be significantly less mitigating if biofuel crops were to displace
Mitigation of Greenhouse Gases

food crops that must then be grown elsewhere on land not otherwise in agricultural production—what C markets call leakage. To avoid leakage, biofuel crops could be grown on marginal land, that is, land not now used for food crops or grazing. This could also avoid the ethical issue of food vs. fuel when feedstocks are grown on arable cropland.

Perennial grasses are particularly well suited for such marginal lands—after establishment, they require no agronomic attention other than harvest and perhaps low rates of fertilization, and thus should have few environmental liabilities.

Figure 12.5. Components of Global Warming Impact (GWI, A) and the net impact (B) for agricultural and successional ecosystems in the MCSE, if harvested for cellulosic biofuel feedstock production. Error bars represent standard error (n = 6). Conventional and No-till are in a corn-soybean-wheat rotation. Redrawn from Gelfand et al. (2013).
Moreover, the right mixture of grasses could provide habitat for beneficial insects as well as for birds and other wildlife, providing additional environmental benefits especially if the marginal land were otherwise degraded due to prior management. Using land-use databases and the EPIC model (Zhang et al. 2010) to scale KBS results for the fertilized Early Successional community to a 10-state U.S. North Central region, Gelfand et al. (2013) estimated that marginal lands could produce at least 21×10^9 L of biofuel annually, or about 25% of the 80 billion L 2022 target legislated for advanced biofuels by the U.S. Energy Independence and Security Act of 2007.

The GWI of Land-Use Conversion for Biofuel Production

In 2014, about 10 million ha of former U.S. cropland were enrolled in the USDA Conservation Reserve Program (CRP) (USDA-FSA 2014). Converting these conservation plantings—most commonly in grassland vegetation—back to cropland risks the release of substantial amounts of stored soil organic C, effectively creating a C debt that models suggest could wipe out the benefits of up to 48 years of subsequent grain-based feedstock production (Fargione et al. 2008). Actual measurements of C debt following conversion, however, are not yet available, and theory suggests that the debt could be significantly less than this with careful management.

In 2009 three KBS fields enrolled in the CRP program since 1987 were converted from long-term brome grass (*Bromus inermis*) to no-till soybean as a recommended break crop prior to growing various cellulosic feedstocks. The advantage of soybeans as a break crop is that glyphosate-tolerant soybeans can be sprayed multiple times during the growing season to kill any remnants of the preexisting vegetation (brome grass, in this case). A CO$_2$ eddy covariance tower was placed in each field and in an unconverted CRP reference field (Zenone et al. 2011). Eddy covariance towers measure net ecosystem CO$_2$ flux by observing CO$_2$ concentrations and the movement of air between the atmosphere and the plant canopy at intervals of one-tenth of a second, allowing estimation of CO$_2$ fluxes that are then summed over a 30-minute period to provide half-hour snapshots of net ecosystem C gain and loss. Summing the half-hour snapshots over days and weeks provides, ultimately, the annual NEP of the studied ecosystem. In this way, total soil C change can be inferred long before it can be measured directly with soil sampling.

Figure 12.6A shows seasonal patterns of NEP in the converted and reference CRP systems during the year of conversion. Net Ecosystem Productivity was negative in both systems at the beginning of the year, reflecting net emissions of CO$_2$ as soil respiration exceeded wintertime photosynthesis by brome grass, which was nil. The negative fluxes turned positive beginning in the spring (around Day 100) as brome grass CO$_2$ fixation began to exceed total respiration. The CRP reference system continued to gain CO$_2$ until ca. Day 220, when brome grass senescence in the fall led to reduced photosynthesis, and respiration again dominated the CO$_2$ flux. By the end of the year, however, the cumulative NEP was still positive (above the origin in Fig. 12.6A), indicating net sequestration of CO$_2$ within the ecosystem. In the CRP converted system, on the other hand, an herbicide application around Day 120 interrupted CO$_2$ fixation by the brome grass, and the system continued to lose more
Figure 12.6. Cumulative fluxes of greenhouse gases from Conservation Reserve Program (CRP) grasslands converted to no-till soybean crops. A) Average cumulative net ecosystem productivity (NEP) during 2009 for the CRP reference field (top solid line) and converted field (bottom dashed line). Positive values indicate net CO₂ sequestration. Shaded area represents the standard deviation of cumulative NEP. B) Average net cumulative fluxes of N₂O (circles) and CH₄ (squares) at the study sites over the same period. Error bars represent standard errors (n = 3 replicate fields for CRP converted and n = 4 replicates within one field for CRP reference). Redrawn from Gelfand et al. (2011).
CO$_2$ than it gained until around Day 200, when net photosynthesis by the recently planted soybeans exceeded the respiration of the herbicide-treated grasses. Once the soybeans senesced around Day 260, respiration again dominated the system’s CO$_2$ flux, and the cumulative NEP remained negative (i.e., net CO$_2$ release) until the end of the year, by which time some 500 g CO$_2$ m$^{-2}$ had been emitted by the system.

Overall, during the first year of the conversion study, converted fields lost ~520 g CO$_2$ m$^{-2}$, mostly from the decomposition of killed grasses and soil C oxidation. This compares to a gain of ~300 g CO$_2$ m$^{-2}$ by the reference field, which sequestered C into belowground biomass and SOM (Zenone et al. 2011, Gelfand et al. 2011).

Combining eddy covariance results with the other major sources of GWI in the system—farming inputs and N$_2$O and CH$_4$ fluxes, in particular—provides a measure of net GWI analogous to other, less continuous methods. N$_2$O emissions were also substantially higher in the converted sites (Fig. 12.6B), contributing to a total GWI or C debt of 68±7 Mg CO$_2$e m$^{-2}$ (Gelfand et al. 2011). This measured C debt (from no-till conversion of CRP fields to agricultural production) is substantial but stands at the lower end of previously modeled estimates of 75–305 Mg CO$_2$e m$^{-2}$ (Fargione et al. 2006, Searchinger 2008). No-till continuous corn or corn–soybean rotations, when used for grain ethanol production, could repay this C debt in 29–40 years, which is somewhat shorter than previously estimated (Fargione et al. 2008).

Summary

Intensively managed crop production systems contribute substantially to anthropogenic climate change, but changing how systems are managed could mitigate their impact. GWI analyses provide a measure for comparing the climate benefits and costs of different management practices and, by summation, of entire cropping systems. Major components of GWI include land-use change (where appropriate), farming inputs (fuel, fertilizers, pesticides), soil C change, and fluxes of the non-CO$_2$ GHGs N$_2$O and CH$_4$. Nitrous oxide emissions represent the largest GWI in the MCSE annual cropping systems, mainly stemming from high fertilizer inputs but also from the cultivation of N-fixing crops. Improved N management thus represents one of the largest potentials for the mitigation of agricultural GHG emissions. Soil organic C gain represents an equally large mitigation potential where soils could be managed to sequester C via no-till management, cover crops, and the cultivation of perennial crops. Perennial, cellulosic biofuel crops offer substantial climate change mitigation potential so long as their production does not cause food crops with a higher GWI to be planted elsewhere.

References

Barker, T., I. Bashmakov, L. Bernstein, J. E. Bogner, P. R. Bosch, R. Dave, O. R. Davidson, B. S. Fisher, S. Gupta, K. Halsnæs, G. J. Geij, S. Kahn Riveiro, S. Kobayashi,
Mitigation of Greenhouse Gases

IPCC (Intergovernmental Panel on Climate Change). 2006. \(N_2O\) emissions from managed soils, and \(CO_2\) emissions from lime and urea application Pages 11.11–11.54 in H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, editors. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IGES (Institute for Global Environmental Strategies), Hayama, Japan.

Mitigation of Greenhouse Gases

