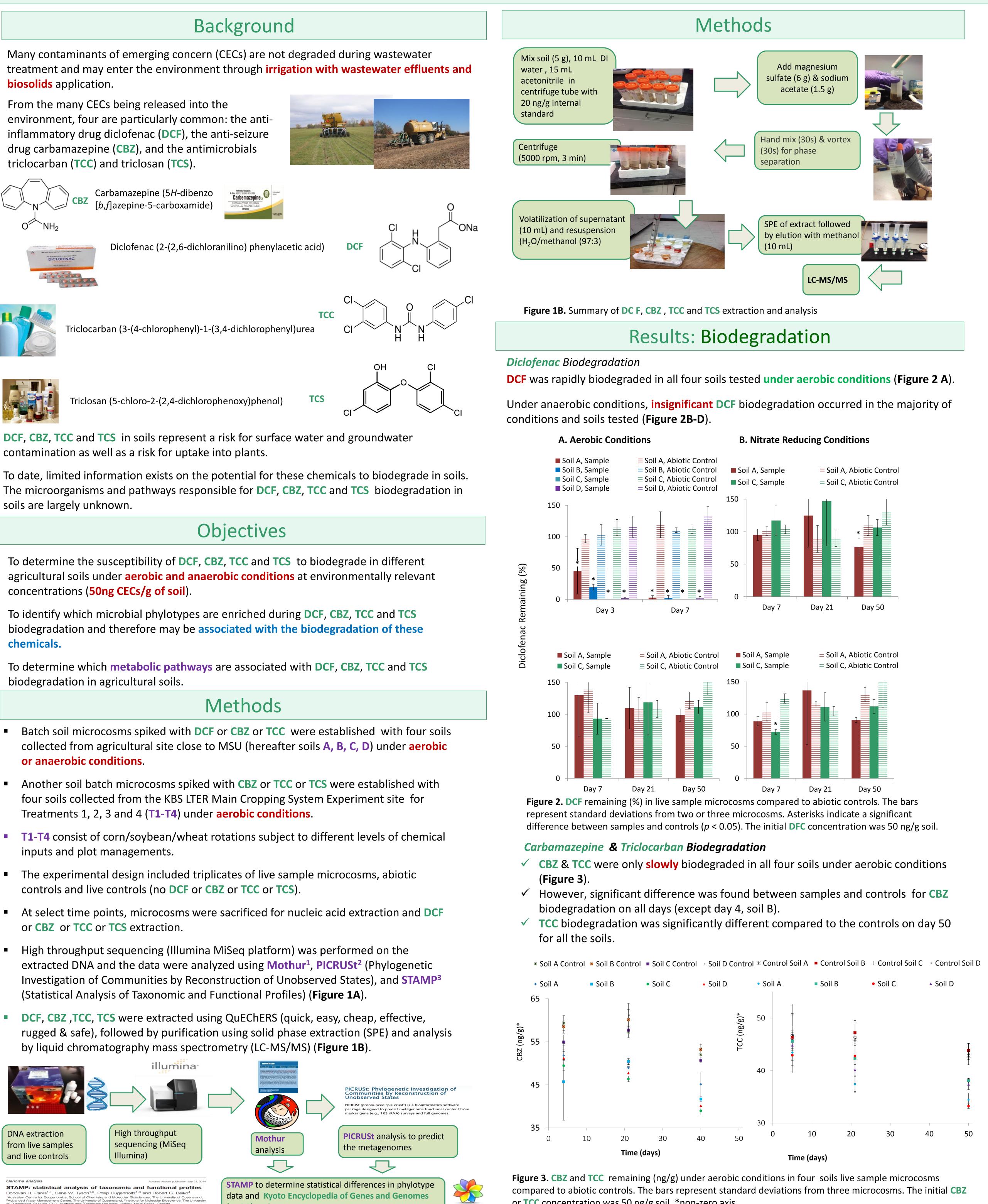


Determining the Potential of Soil Communities to Metabolize Emerging Environmental

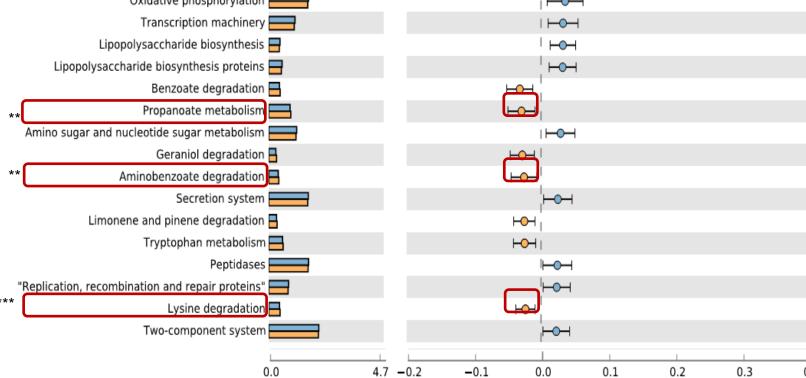


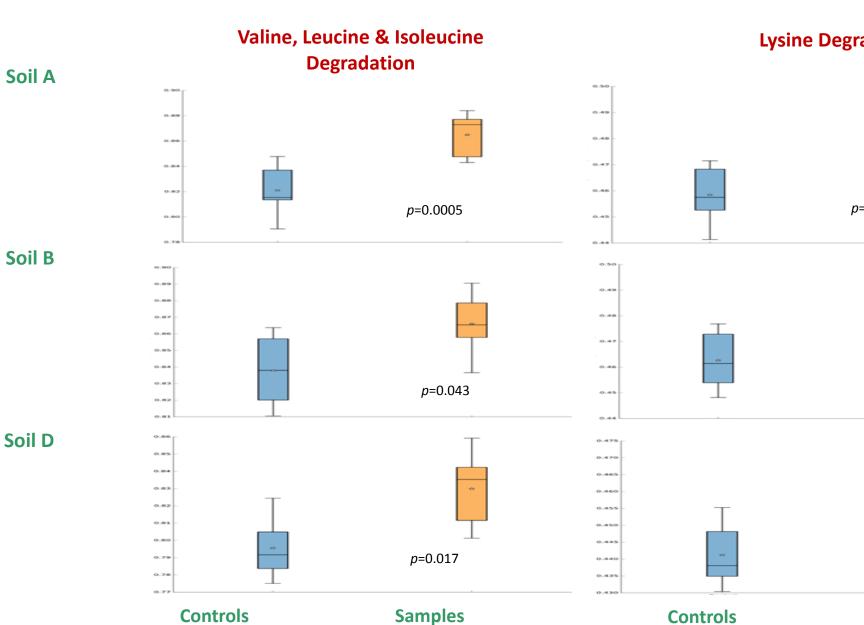
- or anaerobic conditions.
- four soils collected from the KBS LTER Main Cropping System Experiment site for Treatments 1, 2, 3 and 4 (T1-T4) under aerobic conditions.
- inputs and plot managements.
- controls and live controls (no DCF or CBZ or TCC or TCS).
- or CBZ or TCC or TCS extraction.
- extracted DNA and the data were analyzed using Mothur¹, PICRUSt² (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), and **STAMP³** (Statistical Analysis of Taxonomic and Functional Profiles) (Figure 1A).
- by liquid chromatography mass spectrometry (LC-MS/MS) (Figure 1B).

(**KEGG**) pathways

Figure 1A. Summary of molecular analysis

Queensland, St Lucia, QLD, Australia and ⁴Dalhousie University, Halifax, Nova Scotia, Canada


The University of Queensland, ³Institute for Molecular Bioscience, The Universit


Jean-Rene Thelusmond, Alison M. Cupples (Michigan State University, East Lansing, Timothy Strathmann (Colorado School of Mines, Golden, CO, USA)

or **TCC** concentration was 50 ng/g soil. *non-zero axis.

Cont MI, USA)		nts us	ing Me			
vii, USA)		1874 COLORADO	USI		KBSL Kellogg Biolog Long-term Ecolo	gical Station
		Results:	KEGG Pa	athways		
		nac Biodegra				+ la a a
enriched c	-				which KEGG pa red to the contr	-
e 5).	Controls 🗖 Sampl	DFC amende	ed > controls DF	C amended < cor	ntrols	
	Tran ABC tran	sporters			3.21e-3 4.75e-3	
*** "Valin	Bacterial motility e, leucine and isoleucine degra Butanoate met	adation"			0.038 5.37e-3 0.013	
	Fatty acid met Oxidative phospho	rylation		4	4.13e-3 0.014	
Lip	Transcription ma Lipopolysaccharide biosy opolysaccharide biosynthesis	nthesis 🚽			8.81e-3 3.71e-3 5.64e-3	
** Amino su	Benzoate deg Propanoate met ugar and nucleotide sugar met	abolism			5.22e-3 0.010 0.014	
**	Geraniol deg Aminobenzoate deg Secretion	radation			6.55e-3 0.016 0.025	
	Limonene and pinene deg Tryptophan me	adation 📕			6.30e-3 8.74e-3	
"Replicatio	Pe on, recombination and repair p Lysine deg				0.030 0.028 5.08e-3	
	Two-component	0.0 4.7	-0.2 -0.1 0.0	0.1 0.2 0.3	0.030	
	Mean pro	Mean proportion (%) portions (%)	Differ	rence in mean proportions (%) rence in mean p		
9	on" (Figure 5				pradation" and Degradation	"Iysine
Soil A	0.90	Degradation	0.50		<u> </u>	
	0.86	-	0.48 -	Ť	•	
	0.82	p=0.000	0.45		<i>p</i> =0.0005	
Soil B	0.90 0.89 0.88		0.50		T	
	0.87 -		0.47			
	0.84 - 0.83 - 0.82 -	ρ=0.0	043 0.45		<i>p</i> =0.046	
Soil D	0.86 0.85 - 0.84 - 0.83 - 0.82 - 0.82 -		0.473 0.470 0.465 0.465 0.455	Т	•	
	0.80	<i>p</i> =0.01	0.450 0.445 0.440 0.433	-	p=0.036	
EGG pathwa	ys valine, leuci	ne, isoleucine d nents for CBZ	equences (%) be egradation (left) a , TCC and TCS	and lysine degrad	Samples es and controls (n dation (right) for s collected from d 4 are still ong	oils A, B and D. the KBS LTER
he average	e percent red	covery (%) for	these chemic	als is presente	•	
	-		nts 1, 2, 3 & 4. * T			
reatments		Carbam	azepine	Tricloca	rban	Triclosan
		83.5	±6.5	93.4±	3.5	TBD*
			±2.4	89.6±		TBD
		84.7 96.2		99.6± 93.5±		TBD TBD
		50.2	±7.0	JJ.J±	0.0	
	Cor	clusions	s & Ongo	oing Rese	earch	
 Aerobic I common biodegrad Aerobic I Aerobic I Aerobic I biodegrad 	DCF biodegra ly present in dation). CBZ and TCC umber of ph Dngoing reso dation as we	adation was ra soils (those biodegradation ylotypes wer earch is explo ell as the path	encoding for v on was slow (2 re associated v ring the micro ways involved	and associate aline, leucine, 20-30% in 40-5 vith DCF biode organisms ass for soils A,B ,	egradation. ociated with C	lysine BZ and TCC
sing soils fi ⁻ his work w	rom the KBS vas funded b	LTER Main Cr	ropping Systen nt awarded to	n Experiment : Dr. Strathmar	site for T1-T4 . In & Dr. Cupple	
ichloss PD. A high-thr angille MGI, Zanevelo otechnology 2013; 3 Parks, DH and Beiko R	• oughput DNA sequence d J, Caporaso JG, McDor 1: 814-+. G. Identifying biological	aligner for microbial ecolo ald D, Knights D, Reyes JA, ly relevant differences betv	gy studies. Plos One 2009; 4 et al. Predictive functional p veen metagenomic commun	rofiling of microbial commu ities. Bioinformatics 2010; 2		
helusmond, J.R., Stra	athmann, T. J. and A. M.	-	cation of carbamazepine bio		hylotypes sensitive to carbam	azepine exposure in two so