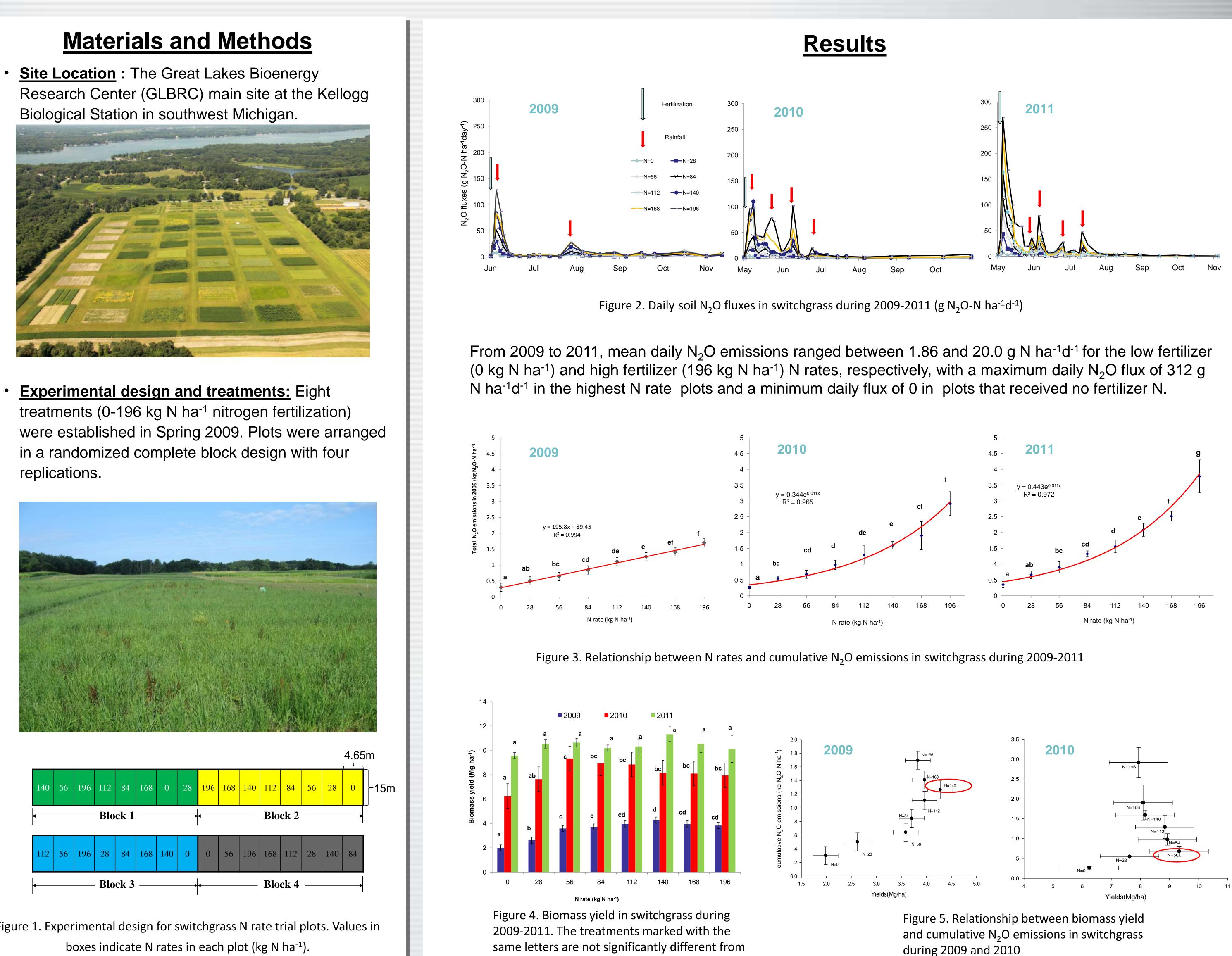
The Impacts of N Fertilizer Management on Nitrous Oxide Emissions in Switchgrass

Introduction

- Switchgrass (Panicum virgatum L.), a native warmseason, perennial grass, has been identified as a promising cellulosic biofuel crop.
- Perennial cellulosic crops do not have high fertilizer requirements, but producers may apply more N fertilizer than minimum recommended levels especially if the price of biofuel crops yield is much higher than fertilizer costs.
- N input can directly increase soil N₂O emissions, which offsets the effects of reduced greenhouse gas (GHG) emissions of biofuels.
- Currently, most studies use the linear IPCC (2006) emissions factor to estimate soil N₂O emissions in assessing biofuels GHG balance, which is based on the assumption that 1% of the fertilizer N converts to N_2O during cultivation.

Objective and Hypothesis


<u>Objective</u>: We studied the response in soil N_2O emissions to the input of N fertilizer in switchgrass.

Hypothesis:

- The response in soil N_2O emissions to the inputs of N fertilizer in switchgrass will be non-linear; in particular, fluxes will increase sharply after biomass yields no longer increase. Two corollaries follow:
- a) the linear IPCC emission factor of 1% may be used to predict soil N₂O emissions only when N inputs are less than or equal to those required for maximum yields, after which emissions will increase significantly
- b) cumulative N₂O emissions may be predicted by soil available N

Acknowledgements: we thank Emma Robertson, Poonam Jasrotia, Neville Millar, Stacey VanderWulp, Kevin Kahmark, Cathy McMinn, Joe Simmons, Julie Doll, Sven Bohm, Suzanne Sippel, Sara Syswerda, Ilya Gelfand, Ajay Bhardwaj, Iurii Shcherbak , Terenzio Zenone and many lab technicians for assistance in the field and lab and insightful comments. We would also thank Wei Wang and Sasha Kravchenko for the help with statistical analysis. We are particularly grateful to Steve Hamilton for many suggestions and insightful comments.

Leilei Ruan and G. Philip Robertson

140	56	196	112	84	168	0	28	196	168	140	112	84	56	28	0	-15
Block 1 Block 2																
112	56	196	28	84	168	140	0	0	56	196	168	112	28	140	84	1
└	← Block 3										Blo	ck 4				

Figure 1. Experimental design for switchgrass N rate trial plots. Values in boxes indicate N rates in each plot (kg N ha⁻¹).

Gases measurements and analysis:

Crop and Soil Sciences and W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI

same letters are not significantly different from each other (α <0.05) in each year.

Conclusions

- 1. A linear relationship between N input and cumulative N₂O emissions occurred in the establishment year 2009 but a non-linear relationship occurred in 2010 and 2011.
- 2. N_2O fluxes were strongly correlated with precipitation.
- 3. Most of the N fertilizer-associated N_2O increase occurred within 40 days following fertilization.
- 4. Switchgrass yields were responsive to N fertilizer in 2009 (to 140 kg N ha⁻¹) and 2010 (to 56 kg N ha⁻¹) but there were no significant yield differences among treatments in 2011.