Nitrous Oxide Emissions from Cover Crop Systems:

Comparisons between Conventional and Organic Management During an Establishment Phase

Neville Millar^{1,2}, D.G. Baas³, D.R. Mutch³, G.P. Robertson^{1,2}, S.R. Miller⁴

1. W.K. Kellogg Biological Station, Michigan State University. 2. Dept. of Plant, Soil and Microbial Sciences, Michigan State University. 3. Michigan State University Extension, Michigan State University. 4. Agricultural, Food, and Resource Economics, Michigan State University.

CHALLENGE

- Reduce reactive nitrogen (N) in the environment without compromising productivity
- Implement practices that minimize N inputs and maximize N conservation, i.e., increase nitrogen-use efficiency (NUE)

OVERVIEW

- Nitrous oxide (N₂O) is the largest contributor to the Greenhouse Gas (GHG) burden of cropping systems
- Very few studies have directly compared N dynamics in Certified Organic and Conventional management systems
- There is a shortage of $\rm N_2O$ emissions data from agricultural systems that include cover crops in their rotation
- Cropland N_2O emissions are primarily due to soil management activities, particularly N inputs
- Quantifying N₂O emissions is important for:
- Improving accuracy of inventories of agricultural GHG emissions;
- Evaluating potential for GHG and N pollution mitigation strategies

HYPOTHESIS

With effective management, cover crop use can: Decrease N_2O emissions; Improve NUE; and, Increase soil C accumulation

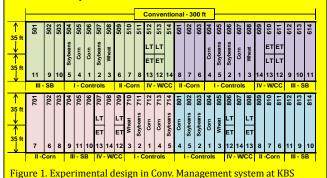


Figure 2. Management practices at the experimental site.

METHODS & MANAGEMENT

Design: Randomized split-split-block; 4 replications; Corn-soybean-wheat rotation; Conventional and Certified Organic management (Figure 1).

Treatments:

- Corn Cereal rye, No cover crop/no-till, No cover crop.
- Soybeans Wheat cover/cash crop, No cover crop/no-till, No cover crop. Wheat Red clover, Oilseed radish, Annual ryegrass, No cover crop.
- Management: Independent according to common practice in Michigan using timing based on growing season (Figure 5).
- *Organic*: Organic certified or non-GMO seed, organic fertilizers and rotary hoe/cultivation for weed control.
- ${\it Conventional:}\ GMO$ seed, synthetic fertilizers and herbicides for weed control (Figure 2).

Sampling and Analysis: Simultaneous at both sites - Determined by management; GHG, Plant/Soil C:N, Fiber, Lignin (Figures 3 and 4).

Figure 3. Sampling at the experimental site.

Figure 4. Sample analysis techniques.

Figure 5. Year 1-2 management practices, timing and sampling dates.

During establishment phase, preliminary results compare:

- Management (Organic vs. Conventional)
- Fertilization (UAN vs. Poultry Manure)
- Tillage (Conventional till vs. No-till)

RESULTS

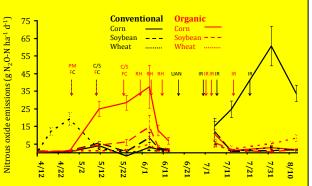


Figure 6. Daily N₂O emissions during 2012 growing season.

Figure 7. Average daily N_2O emissions in corn, soybean, and wheat. Figure 8 (inset). Average daily N_2O emissions in no-till / tilled corn.

CONCLUSIONS

- N₂O emissions greatest under Org. management in May-June, and under Conv. management in July-Aug. (Figure 6).
- N₂O emissions increase following input of org. N (poultry manure) and synthetic N (UAN) fertilizers (Figure 6).
- N₂O emissions influenced by irrigation and field cultivation
- N₂O emissions highest in the corn treatments (Figure 7).
- N₂O emissions are lower under no-till corn (Figure 8).

ACKNOWLEDGEMENTS AND FUNDING

T. Martin, J. Dykstra, K. Kahmark, C. McMinn, LTER/GLBRC/MSUE staff MICHIGAN STATE Extension

UNIVERSITY