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Soil drying and rewetting cycles would become increasingly 

important process in mesic ecosystems with intensification 

of the water cycle due to climatic change. Understanding 

the effect of rewetting on soil greenhouse gases (GHG’s) 

emissions in mesic agricultural ecosystems is especially 

essential since agriculture is the major land-use in 

temperate climatic zones. In addition, understanding of 

controls on soil GHG emissions after rewetting is important 

for both biogeochemical modeling and carbon and 

nitrogen budget calculations. 
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Rewetting of mesic agricultural soils induced large fluxes of nitrous oxide and carbon dioxide.
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Objective

To study effect of rewetting on soil N2O and CO2 emissions in 

agricultural soils in temperate climate. 

Comparison of ground based methods

• Soil N2O emissions are controlled by the water availability and magnitude is 

controlled by carbon availability once nitrogen is available.

• Soil CO2 emissions are controlled by water availability only.

• Quantum cascade laser and in situ infrared analysis techniques can be used 

interchangeably with GC based techniques for soil GHG emissions research.

• Open-path Eddy Covariance for N2O measurements is a promising technique 

with large potential.

Conclusions

CO2 fluxesN2O fluxes

Study sites

AGR-C

CRP-C REF

Soil N2O and CO2 flux measurements

Open-path N2O analyzer 

coupled with EC tower
Ground based measurements with: 

Closed-path Los Gatos quantum cascade laser (QCL) + 

LI-COR and standard GC-ECD + LI-COR 

QCL

GC-ECD

Environmental conditions and management

Soil properties and productivity

527   (58)0.3 (0.0)3.0 (0.2)1.5 (0.1)REF

1438 (218)0.1 (0.0)1.4 (0.1) 1.6 (0.1)AGR-C

1970 (174)0.3 (0.0)2.9 (0.1)1.5 (0.1)CRP-C

g d.m. m-2 y-1%System

ANPPNCBulk 

Density

g g-1

"GC off site" N2O flux (ppb min
-1

)

0 100 200 300 400
"Q

C
L 

in
 s

it
u

" 
N

2
O

 f
lu

x 
(p

p
b

 m
in

-1
)

0

100

200

300

400

"GC off site"CO
2
 flux (ppm min

-1
)

0 20 40 60 80

"Q
C

L 
in

 s
it

u
" 

C
O

2
 f

lu
x
 (

p
p

m
 m

in
-1

)

0

20

40

60

80

Both methods highly correlated and suitable for N2O and CO2 flux 

measurements
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