Farmer Decisions that Shape Agro-Ecosystem Outcomes

Scott M. Swinton

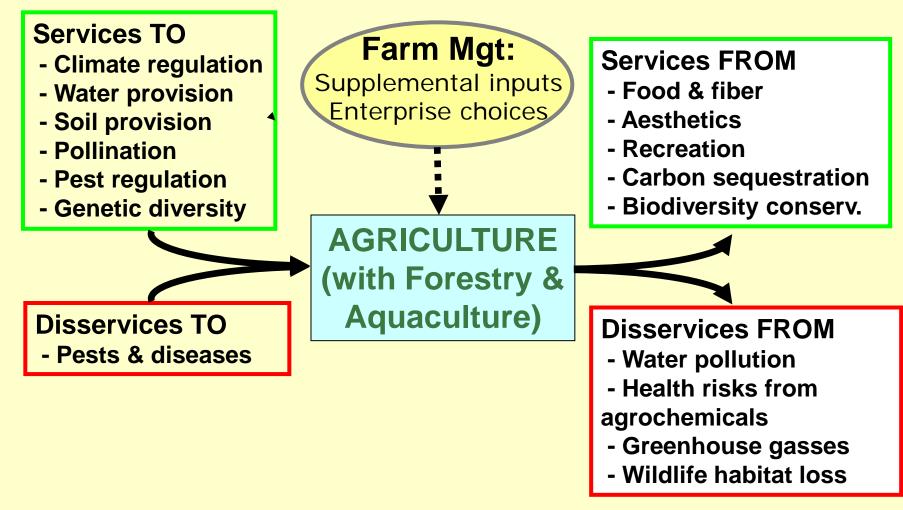
KBS LTER Kellogg Biological Station Long-term Ecological Research

Department of Agricultural, Food, and Resource Economics

Farming for Ecosystem Services: New Directions for Long-term Ecological Research in Agriculture KBS-LTER Symposium, April 15-16, 2015

To learn more about measuring & modeling complex, dynamic systems (including the IMPACT model), see Chap. 7 and appendices of:

A Framework for Assessing the Effects of the Food System (2015) http://www.iom.edu/foodsystem


INSTITUTE OF MEDICINE AND NATIONAL RESEARCH COUNCIL

OF THE NATIONAL ACADEMIES

Biological research findings from KBS-LTER ... and management subtext

- Greenhouse gas emissions are regulated by vegetation and microbial communities
 - \rightarrow Do not till; Keep vegetative cover; Build soil org. matter
- Nitrogen movement regulated by vegetation and N application rate & timing
 - \rightarrow Plant cover crops; Reduce N; Apply N just-in-time
- Pests are regulated by natural enemies that rely on habitat
 - → Diversify crops; Enhance non-crop habitat; Avoid pesticides

Agricultural ecosystems both receive and generate ecosystem services

Swinton et al, Ecol Econ 2007

Advocated for sustainable agriculture

• Designing landscapes for ecosystem services

• Farmers who ...

Why Do Farmers Do What They Do?

- Why till?
- Why not curtail chemical inputs?
- Why not plant cover crops?
- Why not time chemical inputs to minimize risk of unwelcome side-effects?

How Do Farmers Make Decisions? A Conceptual Framework

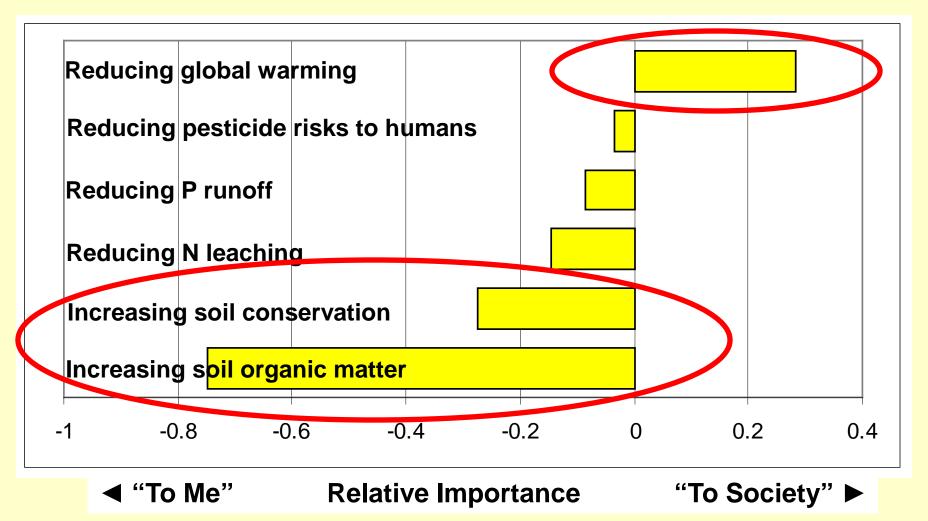
- Goals & objectives: What do they seek?
 - Profit (Revenues direct costs opportunity costs)
 - Stewardship
 - Other (health, friends, eminence ...)
- Resources and barriers: Are they constrained?
 - Knowledge
 - Equipment, time and labor
 - Land & water traits
 - Regulations & commercial standards

Learning about farmer decisions

- Interviews: Individual and in groups
- Decision setting with budget constraints to evoke real-world choices:
 - Surveys: Would you change farming practices for a specific payment?
 - Auctions: What is the smallest payment you would accept to change practices?

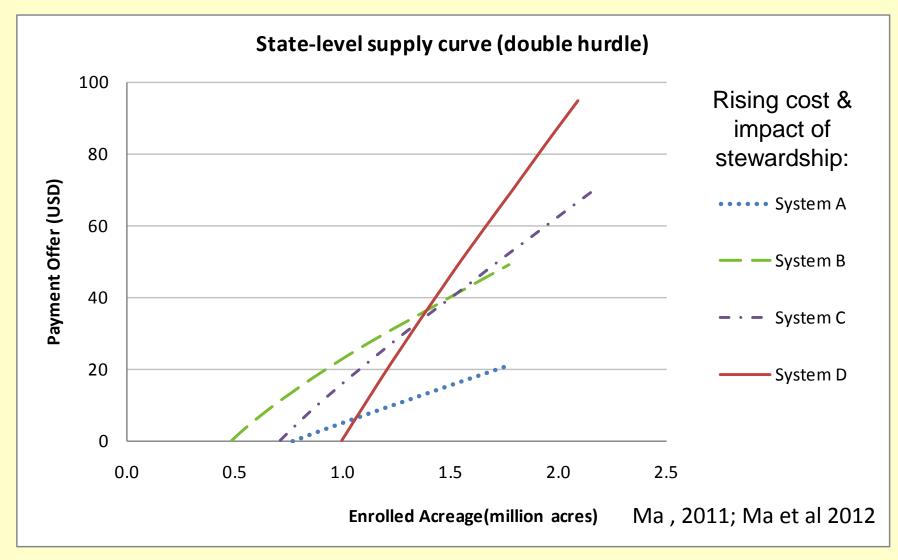
What would induce you to manage for more environmental benefits?

- "earning more per acre"
- "I would be willing to try something new to be a better steward of the land"



• "maybe help environment, increase organic matter"

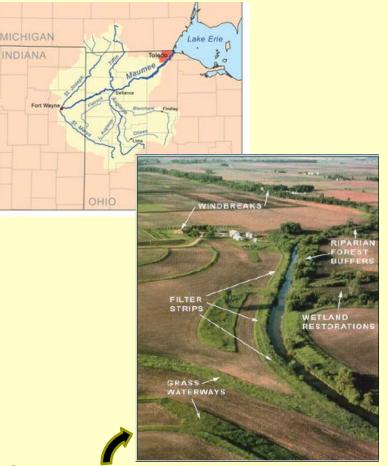
Knowledge: Farmers well-informed, but beliefs don't always match behavior


- Cropping practices affect environmental quality (>80% agree).
- Less tillage conserves soil(>80% agree).
 - 83% use reduced tillage
 - 56% use no-till
 - 32% use no-till 4 years in a row
- Winter cover crops conserve soil & Cover crops boost soil fertility (>80% agree).
 - But only 19% grow cover before corn.

<u>Attitudes</u>: Farmers more willing to provide ES that have private benefits than public

N=1800 Michigan corn-soy farms. Swinton et al, 2015.

Heterogeneity of farmers: Some are lower cost providers of ES


Early lessons: Farmer decisions about choice of practices

- Biology can replace chemicals—but only to a degree
- Unless offered incentives, most MI corn-soy farmers prefer conventional systems. Why?
 - Cover crops are expensive in labor and inputs.
 - Low fertilizer use looks risky.
 - Some rotational crops (e.g., wheat) reduce profits.
- Incentive payments can compensate for costs of providing public goods

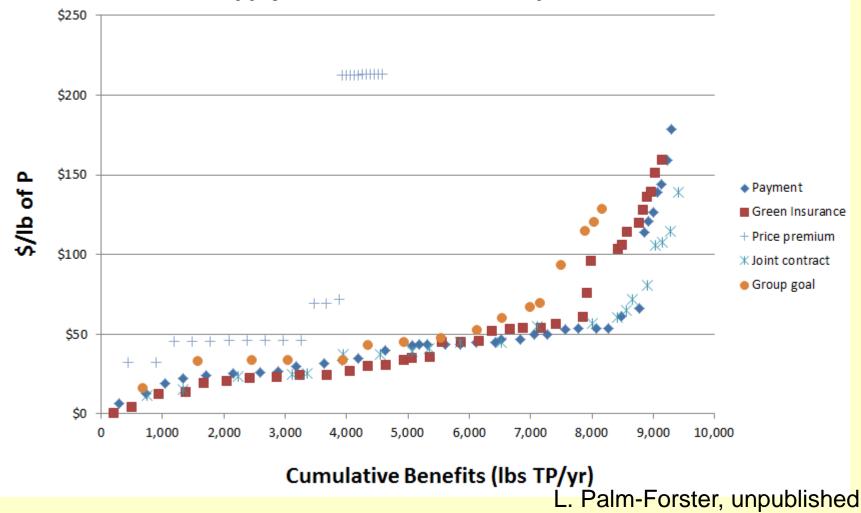
Incentives are costly. How to use them cost-effectively?

- Focus on ecological outcomes
 - Models to simulate outcomes
- For a limited budget, how to get the most environmental benefit per dollar spent?
- What factors influence cost-effectiveness?
- Will farmers cooperate across a landscape?

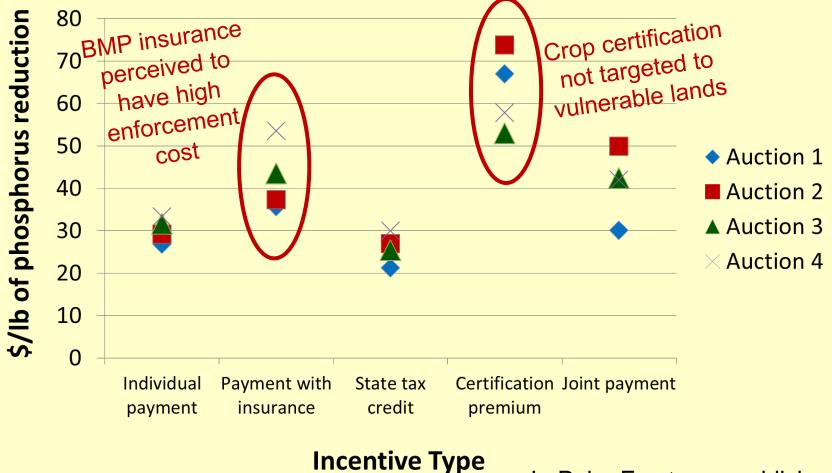
Case Study: Phosphorus runoff and harmful algal blooms in Lake Erie

Conservation practices can reduce phosphorus loadings in Lake Erie, but farmers have to be willing to adopt them.

- Maumee Watershed
 - 80% agric. land use
 - Water drains into Lake Erie.
- Multiple private landowners
 - Different costs
 - Sites very in potential environmental impacts due to slope, soil texture, proximity to streams


Experimental auctions: Lowest bid to adopt P-reducing practices

- Type of incentive
 - Direct payment
 - Green insurance
 - Tax credit
 - Price premium tied to certification
- Practices offered
 - Cover crop
 - Reduced tillage
 - No fall fertilization
 - Filter strips


Cost-effectiveness: Some sites give much better value for money

Supply of benefits for In-field practices

Inefficient use of funds when 1) poor site targeting or 2) farmers see high costs

Cost-effectiveness of Conservation Auctions for In-Field* Practices

L. Palm-Forster, unpublished

Broader lessons from real conservation auction in 2014

- Low participation undermines cost-effectiveness
 - Only 1% of landowners participated—not unusual.
 - Few fields \rightarrow Very few high-impact sites
- Additionality: Hard to attract new adopters
 - Stewardship-loving farmers already do BMPs
 - Higher cost to induce profit-oriented farmers to adopt
- Auctions are costly to operate
 - Costly for farmers to participate
 - Costly to simulate field-level outcomes

Palm-Forster, in prep.

Next steps: How to shape the decisions that shape agro-ecological outcomes?

Incentives for voluntary change

- Payments for Ecosystem Services: Redesign to:
 - Reduce transaction costs
 - Target high-impact zones
 - Focus on outcomes
- Policy experiments to test cost-effectiveness and cost incidence of:
 - Conservation auctions
 - Fixed payments in vulnerable zones
 - Mandated change of practices

Info technology to shape decisions

- Decision tools with targeted, field-level info
 - KBS-LTER data to build ecological parameters and validate models
- Site-specific simulation of practice outcomes
 - Profitability
 - Environmental effects
- Producer can do "what-if" simulations
 - (So can members of the public)

Acknowledgments

A Few Key People

- Farmers, landowners & residents in Michigan, Ohio & Wisconsin
 - Focus groups
 - Mail surveys
 - Auctions
- Research collaborators

A Few Key Funders

- NSF
 - Human & Social Dynamics
 - LTER
- Dept of Energy
 - Great Lakes Bioenergy Research Center
- Great Lakes Protection Fund (w/ Nature Conservancy & LimnoTech)

