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Simulating Crop Growth 
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SALUS Model
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The Green Revolution, through the adoption of new crop varieties, irrigation, and 
agrochemicals, saved about 1 billion people from famine by increasing global 
food production (FAO 2011). We now recognize that these enormous gains in agri-
cultural production were accompanied by harm to agriculture’s natural resource 
base, jeopardizing our future ability to meet human food, fuel, and fiber needs for 
a growing population. Earth’s population is projected to increase from ~7 billion 
in 2011 to ~9 billion in 2050. Given the future challenges to food production and 
environmental integrity, it is imperative that sustainable land management of agri-
cultural production become an important priority for policy makers. Agricultural 
crop and soil management practices often cause degradation of the environment, 
especially the quality of ground and surface water and the fertility of agricultural 
soils. Clearly, a sustainable framework for developing and improving land use for 
crop production must be based on long-term and broad-based perspectives.

Sustainable land management is the focus of many research programs, ranging 
from socioeconomic to ecological, since sustainability is an integrated concept with 
associated challenges. A  multiplicity of factors can prevent production systems 
from being sustainable; the goals set by a sustainable crop production system may 
be in conflict with one another, and solutions that work in one site or region with 
a particular soil, climatic, and socioeconomic setting may not be appropriate in 
others (Robertson and Harwood 2013). On the other hand, with sufficient attention 
to indicators of sustainability, a number of practices and policies could be imple-
mented to accelerate the adoption of sustainable practices. Indicators to quantify 
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changes in crop production systems over time at different hierarchical levels are 
needed for evaluating the sustainability of different land management strategies. 
Indicators should encompass (1) crop productivity, (2) socioeconomic and ecologi-
cal well-being, and (3) resource availability.

Approaches for improving land management for the sustainability of crop pro-
duction should be based on reduced chemical inputs, as well as higher resource use 
efficiency, enhanced nutrient cycling, and integrated pest management. Modeling 
is necessary to identify the best approaches because field experiments cannot be 
conducted with sufficient detail in space and time to find the best land management 
practices for sustainable crop production across diverse environmental settings. 
Input from long-term crop and soil management experiments, including measure-
ments of crop yields, soil properties, biogeochemical fluxes, and relevant socioeco-
nomic indicators, is critical to develop and test the models.

Simulation models, when suitably tested in reasonably diverse locations over 
sufficient time periods, provide a useful tool for finding combinations of manage-
ment strategies to reach the multiple goals required for sustainable crop production. 
Models can provide land managers and policy makers with ways to extrapolate 
experimental results from one location to others where soil, landscape, and climate 
information is available. When biophysical simulation model results are combined 
with socioeconomic information, a Decision Support System (DSS) can pro-
vide management options for maximizing sustainability goals. Decision Support 
Systems describe a wide range of computer software programs designed to make 
site-specific recommendations for pest management (Michalski et al. 1983, Beck 
et al. 1989), farm financial planning (Boggess et al. 1989), and general crop and 
land management (Plant 1989). Decision Support System software packages have 
been designed primarily for use by crop consultants and other specialists who work 
with farmers and policy makers, although some are used directly by farmers. Users 
provide site-specific information about soil properties, crop type and management, 
weather conditions, and other data specific to the software. Typically, a given DSS 
provides a variety of management options to reach desired sustainability goals.

Process-based models of crop growth and development are integral parts of 
the most effective DSS models and have been developed and used for more than 
40 years, since the advent of high-speed computers. During this time, two scien-
tific teams have integrated such models into DSSs, namely, DSSAT (Tsuji et al. 
1998) and APSIM (McCown et al. 1996), and both have proven useful for many 
groups involved in agricultural research and decision making throughout the world. 
The International Consortium of Agricultural Systems Applications (ICASA) was 
formed from several modeling groups to promote the efficient and effective use of 
functional models for problem solving and decision making (Ritchie 1995). Crop 
models that simulate crop growth, the timing of critical growth stages, and grain 
yields have added soil and plant carbon and nitrogen dynamics for different cli-
mate, soil, and management conditions (e.g., Parton et al. 1988).

Here, we provide a general overview of crop simulation models followed by a 
concise description of the model Systems Approach for Land Use Sustainability 
(SALUS) for evaluating the impact of agronomic management on crop yields, car-
bon (C) and nitrogen (N) dynamics, and environmental performance. We describe 
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key model components and the minimum data required for simulating crop yields 
under different management practices. Research at the Kellogg Biological Station 
Long-Term Ecological Research Site (KBS LTER) provides the opportunity to test 
models of long-term changes in soil carbon, nitrogen leaching, crop yields, and 
gaseous emissions from soil. Data from KBS LTER also provide an excellent con-
text for illustrating the utility and limitations of crop models, and we use these data 
to show two examples of model applications: (1) an evaluation of nitrate leaching 
as affected by nitrogen fertilizer management in a corn (Zea mays L.) and alfalfa 
(Medicago sativa L.) rotation and (2) soil carbon dynamics under various tillage 
systems. We also illustrate spatially connected processes by linking SALUS to digi-
tal terrain modeling.

Crop Models

Crop simulation models range from simple to complex. Simple models are often 
adopted to estimate yield across large land areas based on statistical information 
related to climate and historical yields and include little detail about the soil–plant 
system. The more sophisticated physically based models are capable of providing 
additional details on processes in the soil–plant–atmosphere system, but sophisti-
cated models demand detailed initial environmental and agronomic information 
that may be unavailable in many situations.

Crop models may be either deterministic or stochastic. Deterministic models 
provide a specific outcome for a certain set of conditions, with all plants and soil 
within the simulation space assumed to be uniform. Stochastic models produce out-
comes that incorporate uncertainty due to spatial variability of soil properties, tem-
poral variability of weather conditions, abiotic and biotic factors not accounted for 
in a deterministic model, and uncertainties of model logic and functions. However, 
stochastic crop models are at an early stage of development and not used in DSSs 
to our knowledge.

To overcome some of the problems of using deterministic crop models, soils 
with known spatial variability can be grouped into small homogenous units and 
the results aggregated to model yield at the whole-field scale. Similarly, running 
simulations over multiple years with deterministic yields accounts for temporal 
variability (Basso et al. 2007).

Deterministic crop models can be statistical, mechanistic, or functional 
(Addiscott and Wagenet 1985, Ritchie and Alagarswamy 2002). Statistical  
models—fitting a function to observed weather variables and crop regional yield 
statistics to predict crop yield—were the first crop models used for large-scale yield 
estimations. Average regional yields were regressed on time to reveal a general 
trend in crop yields (Thompson 1969; Gage et al. 2015, Chapter 4 in this volume). 
An example is the upward trend in crop yield over the past several decades due to 
technological advancements in genetics and management, especially the increased 
use of fertilizers. Thompson (1986) quantified the impact of climate change and 
variability on corn yield in five U.S. states using a statistical model. In that study, 
preseason precipitation (September–June), June temperature, and temperature and 
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rainfall in July and August were closely correlated with corn yield variations from 
the trend. Recently, Gage et al. (2015, Chapter 4 in this volume) incorporated cli-
mate effects into regional yield trends with the use of a Crop Stress Index (CSI). 
This approach significantly improved predictions of historical yields of corn and 
soybean.

In general, the results of statistical models cannot be extrapolated to other 
places and time periods because of variation in soils, landscapes, and weather 
not included in the population of information from which the statistical relation-
ship was derived. Furthermore, the impact of agricultural technology cannot be 
extrapolated over space and time. Despite these limitations, statistical models 
can provide many insights about past yields and historical influences (Gage et 
al. 2015, Chapter 4 in this volume) and can be used to inform the other kinds of 
models.

Mechanistic models are based on known physical, chemical, and biological pro-
cesses occurring in the soil–plant–atmosphere continuum. Soon after computers 
became available, mechanistic models were developed to simulate photosynthetic 
processes such as light interception, uptake of carbon dioxide (CO

2
), carbon allo-

cation to different plant organs, and loss of CO
2
 during respiration, as well as the 

dynamics of soil water including infiltration, evaporation, drainage, and root uptake.
Mechanistic models describe processes at fine time scales (e.g., photosynthesis 

and transpiration processes) but a large amount of input information is required to 
execute them. Uncertainties in some assumptions make mechanistic model out-
comes less certain and often make them less useful to those outside of the model 
development group (Basso et al. 2012a). Mechanistic models are rarely adopted to 
solve problems; rather, they are often used for academic purposes to gain a better 
understanding of specific processes and interactions.

Functional models are based on empirical functions that approximate complex 
processes, such as a crop’s interception of energy using plant leaf area (as an indica-
tor of biomass) and radiation use efficiency (as a measure of biomass produced per 
unit of radiation intercepted). This type of function is relatively simple and usually 
produces reasonable results when compared to field measurements, although it has 
uncertainties related to the fraction of biomass partitioned to roots and nonlinear 
photosynthetic responses to light. Another example is the simulation of potential 
evapotranspiration using the well-known functional Penman or Priestley–Taylor 
equations, which have been used successfully for decades although they are highly 
simplified compared to mechanistic evapotranspiration models.

Functional crop models use simplified equations and logic to partition simulated 
biomass into various plant organs, which are integrated to estimate total biomass 
and yield. Functional models primarily use “capacity” concepts to describe the 
amount of water available to plants as compared to using “instantaneous rate” con-
cepts from soil physics. The difference between the upper and lower limits of soil 
water-holding capacity determines the amount of water available to plants.

Functional models typically use daily time step inputs for weather and man-
agement variables such as precipitation, solar radiation, temperature, irrigation, 
and fertilizer use. Low data input requirements make these models attractive when 
detailed data on biophysical processes are lacking. These models, when properly 
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tested, can provide an appropriate level of detail needed for assessing many aspects 
of crop production. Functional type models are now routinely used in DSSs.

Examples of Models to Simulate Crop Ecosystems

Here, we provide a brief summary of the most widely adopted models to simulate 
soil organic matter, soil water, and biogeochemical fluxes and how these variables 
affect crop growth in response to land management.

Soil Organic Matter and Gas Emission Models

One of the most widely used soil organic matter (SOM) models is the CENTURY 
model developed by Parton et  al. (1988) to simulate long-term (10–1000 years) 
patterns in surface SOM dynamics, plant production, and nutrient cycling (N, phos-
phorus [P]‌, and sulfur [S]). The model uses a monthly time step with monthly aver-
age maximum air temperature (at 2 m height), monthly precipitation, soil texture 
(sand, silt, and clay content), nutrient and lignin content of dead plant material, and 
atmospheric and soil inputs of N. Plant material is divided into structural (difficult 
to decompose) and metabolic (readily decomposable) fractions. Soil organic mat-
ter is divided into active, slow, and passive pools. Decomposition of plant material 
and SOM is a function of soil water and temperature, and is influenced by soil type 
and the C/N ratio of decomposing material. A complete description of the N and 
soil C model is presented by Parton et al. (1987). The plant submodel is highly 
simplified, using only inputs of stored water at planting, precipitation during plant 
growth, a fixed water-use efficiency, and available soil N. Partitioning of C and N 
into various plant components is performed using fixed partitioning coefficients. 
While emphasizing long-term organic matter dynamics, the CENTURY model 
lacks details important for short-term soil water and crop growth dynamics as well 
as soil management other than N inputs.

A daily incrementing modification of CENTURY called NGAS-DAYCENT or 
simply DAYCENT (Parton et  al. 1996, 1998, 2001; Del Grosso et  al. 2000a, b) 
simulates trace gas fluxes of nitric oxide (NO), nitrous oxide (N

2
O), and dinitrogen 

(N
2
) from soils as well as methane (CH

4
) formation and oxidation. The DAYCENT 

model has been used to simulate national N
2
O emissions in the United States from 

major cropped soil regions (Del Grosso et  al. 2006). Soil water calculations are 
performed at hourly time steps, which may not match other processes simulated at 
daily time steps (Basso et al. 2010, 2011).

Another mechanistic SOM and gas emission model is the DeNitrification–
DeComposition (DNDC) model. The DNDC model has been used for estimating 
N

2
O and CH

4
 emissions from agricultural lands (Li 1995, 2000), but it requires 

substantially more input detail than other models.
While providing much detail about soil greenhouse gas emissions and carbon 

dynamics, these three models lack detail for estimating crop yield. Thus, they are 
useful for simulating SOM and soil greenhouse gas dynamics but have limited util-
ity for evaluating the sustainable production of food, fuel, and fiber.
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Crop and Soil Water Models

The Decision Support System for Agrotechnology Transfer (DSSAT) (Tsuji et al. 
1998) contains a suite of crop models widely used to simulate crop biomass and 
yield as influenced by weather, soil, crop management, and crop genotype. The 
primary crop models contained in DSSAT are CROPGRO for major grain legumes, 
CERES for cereal crops, and SUBSTOR for crops with belowground storage 
organs. The models were developed with a goal of minimizing the data needed 
for prediction and control purposes. Simulations are executed on a daily time step 
using solar radiation, temperatures (maximum and minimum), and precipitation, 
thereby accounting for day-to-day variation that can be substantial. They are based 
on empirical functions to estimate the soil water balance (runoff, drainage, evapo-
transpiration, soil storage) and biomass production. Input needs include soil physi-
cal and chemical properties for several depth increments as available in soil surveys. 
Crop management input needs include date of sowing, plant population, dates and 
quantities of nutrient and irrigation water applications, photoperiod, and crop geno-
type. Air temperature and photoperiod during critical phases of development deter-
mine plant ontogeny and biomass partitioning, and are based on plant genotype. 
The DSSAT system has two options for simulating N balance and SOM: the origi-
nal SOM model (Godwin and Singh 1998) and a modified CENTURY model that 
operates on a daily time increment and at soil depth increments that conform to 
DSSAT (Gijsman et al. 2002).

The Environmental Policy Integrated Climate (EPIC) model was originally 
designed to simulate soil erosion and its effects on soil fertility (Williams et  al. 
1984). EPIC has now evolved into a comprehensive agro-ecosystem model capable 
of simulating biomass and yields of crops grown in complex rotations and under 
diverse management practices such as tillage, irrigation, fertilization, and liming 
(Williams 1995). The SOM module in EPIC uses processes similar to CENTURY 
but with daily time increments and several soil depths. The soil water balance sub-
model is similar to that in DSSAT models.

The Agricultural Production Simulator (APSIM) model is another widely used 
model (Keating et  al. 2003)  similar in detail to DSSAT and EPIC. APSIM was 
developed with a modular structure to allow testing and use of various methods of 
simulating several components of the soil, plant, and atmosphere system.

Rivington and Koo (2010), in a recent comprehensive meta-analysis of crop 
modeling for climate change and food security, reported that DSSAT crop models 
were the models most commonly used by various groups surveyed throughout the 
world. The report revealed perceived model limitations and made suggestions for 
model improvements based on user feedback.

Simulation of Crop Yield

Yield simulation in crop models is based on two processes: crop growth and devel-
opment. The fraction of total biomass partitioned into grain or other harvested bio-
mass is termed the economic yield. Crop simulations thus involve the two-step 
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process of estimating total biomass using crop growth rate and duration and parti-
tioning that biomass into harvested components. Separating growth and develop-
ment processes also allows a distinction between sources and sinks of assimilate 
(i.e., photosynthetically produced carbon) within the various plant organs. A plant 
can be exposed to source or sink limitation during its growth cycle, where “source” 
refers to the production of organic matter by photosynthesis, and “sink” refers to 
the assimilation of that organic matter in tissues. The assimilates are stored in roots 
or elsewhere if the sink demand is less than source supply, as the aboveground plant 
parts cannot grow faster than the sink demand. During seed development, stored 
assimilates become available to augment daily grain fill demand.

Table 10.1 summarizes the environmental factors that influence crop growth and 
development and the sensitivity of these processes to water and N deficits. In the 
next sections, we discuss the three major processes—growth, development, and 
yield and yield components—important in simulating crop yield.

Crop Growth

Net photosynthesis is simulated in functional models using radiation use efficiency 
(RUE), which assumes that daily biomass production is directly proportional to inter-
cepted photosynthetically active radiation (IPAR), a concept introduced by Monteith 
(1977). Model simulations need to consider variations in the RUE proportionality 
constant over the time interval measured (hourly, weekly, or seasonal), the form of 
biomass measured (aboveground, belowground, or specific plant part), and the type 
of radiation measured (i.e., total solar or photosynthetically active radiation).

Accurate leaf area index (LAI) estimates are crucial for models based on IPAR. 
Since LAI is the ratio of plant leaf area to the average ground area covered, it can 
change dramatically over the growing season until a full plant canopy has developed.

Table 10.1.  Factors affecting crop growth and development and their sensitivity to 
water and nitrogen deficits.

Growth Rate Development (Duration)

Mass Expansion Phasic Morphological

Principal 
environmental factor 
affecting the process

Solar radiation Temperature Temperature,
photoperiod

Temperature

Degree of variation 
between genotypes

Low Low High Low

Sensitivity to water 
deficit

Low–Stomata
Moderate–Leaf 

wilting and 
rolling

High–Vegetative 
stage

Low–Grain filling 
stage

Low–Delay in 
vegetative stage

Low–Main stem
High–Tillers and 

branches

Sensitivity to nitrogen 
deficiency

Low High Low Low–Main stem
High–Tillers and 

branches

Source: Ritchie and Alagarswamy (2002).
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Crop Development

Phasic development describes the duration of different growth phases and the bio-
mass partitioning among different plant organs. Morphological development refers 
to organ development during the plant life cycle. Both are affected by temperature 
(Table 10.1), as calculated by growing degree-days. Phasic development is also 
affected by photoperiod and genetics (Table 10.1). Genetic diversity within a crop 
species enables plants to be adapted to diverse settings in different regions of the 
world. For example, wheat genotypes are grown from temperate Argentina (latitude 
50° S) to Sweden (60° N) and in tropical regions between.

Plant growth rate and duration are equally important in determining potential 
crop yields; hence, the accuracy of yield simulation models. Record high yields of 
annual crops are always obtained in cooler environments where there is maximal 
duration of daylight for plant growth. Warmer climates can equal the total annual 
yields of the cooler region yields by growing more than one crop per year.

The principal functional approach used to estimate the duration of crop growth is 
based on thermal time calculation (Gallagher 1979). Thermal time (t

d
) is the accu-

mulation of degree-days (i.e., °C d) above a base temperature and is calculated as

	 t T Td i

n

a b= −( )
=
Σ

1 	

where T
a
 is 24-hour daily mean temperature; T

b
 is the base temperature below 

which the crop growth ceases; and n is the number of days. T
a
 is usually approxi-

mated by taking the mean of daily maximum and minimum temperatures (Ritchie 
and NeSmith 1991).

Thermal time to simulate development requires temperature to be measured 
close to the growing point of the plant. Ritchie and NeSmith (1991) showed that 
using air temperatures to calculate thermal time and to predict the number of leaf 
tips and leaf development overpredicted leaf numbers in the CERES corn model, 
and required correction using a higher phyllochron value (i.e., duration between 
leaf tip appearances) (Vinocur and Ritchie 2001).

Several crop species are sensitive to photoperiod. In general, plants adapted 
to grow in shorter day lengths (e.g., corn, sorghum, and soybean) develop more 
quickly when exposed to shorter days. Plants adapted to grow in longer day 
lengths (e.g., wheat and barley) grow more quickly when exposed to longer 
days. In addition to temperature, Ritchie and NeSmith (1991) showed that pho-
toperiod in corn can significantly affect leaf number and the duration of vegeta-
tive stages.

Yield and Yield Components

Simulation procedures for yield estimates differ among crop models. One approach 
is to assume a constant fraction of biomass produced at maturity (i.e., the point of 
economic yield) or to assume a constant increment of biomass production each day 
after grain filling starts. Another approach is to separately estimate the yield com-
ponents (ear number, kernels per ear, and kernel weight).
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The simplest level of yield simulation assumes that economic yield is a constant 
fraction of total aboveground biomass at maturity, known as the harvest index (HI). 
This index can range from 0.40 to 0.55 for corn. Both the EPIC (Williams et al. 
1989) and CROPSYS (Stockle et al. 1994) models are based on HI calculations. 
Some models estimate corn yields using a constant rate of change in HI after silk-
ing (Muchow et al. 1990, Muchow and Sinclair 1991, Sinclair and Muchow 1995). 
In this case, the rate of change of HI for corn is 0.015 d−1 during the entire period 
of kernel growth. The accuracy of yield simulations by models based on the HI 
concept depends on the accuracy of simulating total aboveground biomass as well 
as the stability of HI. Such models are of more limited value in situations where the 
crop yields are low because of water deficits that constrain HI.

Kernel number (KN) is an important predictor of yield in most cereal crops 
(Evans 1993), and reflects the irreversible effects of water deficit and nutrient defi-
ciencies that occur around the time of anthesis. Crop models using the KN concept 
are based on two approaches. A simple approach calculates KN from biomass at 
anthesis, while a more complex one estimates KN from biomass production during 
a critical period (around silking in the case of corn). SALUS, for example, uses the 
simulated stem weight at anthesis to simulate grain number.

The Systems Approach to Land Use Sustainability Model

The Systems Approach to Land Use Sustainability (SALUS) (Basso et al. 2006, 
2010)  is similar to the DSSAT family of models but is designed to simulate not 
only yields of crops in rotation, but also soil, water and nutrient dynamics as a func-
tion of management strategies over multiple years (Fig. 10.1). SALUS accounts 
for the effects of rotations, planting dates, plant populations, irrigation and fertil-
izer applications, and tillage practices. The model simulates daily plant growth and 
soil processes on a daily time step during the growing season and fallow periods. 
SALUS contains (1)  crop growth modules, (2)  SOM and nutrient cycling mod-
ules, and (3) soil water balance and temperature modules. The model simulates the 
effects of climate and management on the water balance, SOM, N and P dynamics, 
heat balance, plant growth, and plant development. Within the water balance, sur-
face runoff, infiltration, surface evaporation, saturated and unsaturated soil water 
flow, drainage, root water uptake, soil evaporation, and transpiration are simulated. 
Soil organic matter decomposition, along with N mineralization and formation of 
ammonium and nitrate, N immobilization, and gaseous N losses are also simulated.

Crop development in the SALUS model is based on thermal time calculations 
modified by day length and vernalization. Potential crop growth depends on inter-
cepted light using solar radiation data and simulated LAI, and is reduced by water 
or nitrogen limitations. The crop growth modules in SALUS are derived from the 
CERES model originally developed for single-year and monoculture simulations 
(Ritchie 1998, Ritchie et al. 1998). Phasic development is controlled by tempera-
ture and photoperiod and is governed by variety-specific genetic coefficients. The 
main external inputs required for the crop growth simulations are the genetic coef-
ficients and climate data (daily solar radiation, precipitation, and air temperature).
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The SALUS soil N and SOM modules are derived from CENTURY (Parton 
et al. 1988) with several new additions and modifications. The model simulates 
SOM and N mineralization/immobilization from three soil organic carbon pools 
(active, slow, and passive) that vary in their turnover rates and characteristic C:N 
ratios (see Paul et al. 2015, Chapter 5 in this volume). There are two crop residue/
fresh organic matter pools (structural and metabolic) for representing recalcitrant 
and easily decomposable residues, based on residue lignin and N content. A surface 
active SOM pool associated with the surface residue pools was added to better 
represent conservation tillage systems and perennial crops. A soil P model incorpo-
rates inorganic and organic P dynamics. Inorganic P is divided into labile, active, 
and stable pools.

The soil water balance module has advanced from the DSSAT models with new 
improvements in calculating infiltration, drainage, evaporation, and runoff. The 
time-to-ponding (TP) concept (White and Sully 1989) replaces the previous runoff 
and infiltration calculations based on the USDA-NRCS runoff curve number. SALUS 
does not account for impacts of pests, disease, or extreme weather such as hail.

Input data required by SALUS consist of weather, soil and crop management, 
soil properties, genetic characteristics of the crop, and the site location. When mod-
els are to be used in new locations, plant data such as phenology, biomass, and eco-
nomic yield are needed. To test the soil simulations, information on water content 
and nitrate concentrations is helpful.

Weather uncertainty is the major source of insecurity and risk in agricultural 
production. SALUS accounts for weather variability by using several decades of 
existing weather information. The minimum weather dataset required for SALUS 
is listed in Table 10.2. Daily totals of rainfall and solar radiation along with the 

Runoff
Soil erosion

Biotic Interactions Weather Management
Crop sequencing
Planting
Residue
Tillage
Fertilizer
Manure
Pesticide
Irrigation
Drainage

Crops
Wheat
Barley
Maize
Soybean
Potato
etc....

Soil
Water balance

Carbon balance
Heat balance

Nutrient balance (N&P)Roots

Atmospheric flux Drainage
Leaching

Yield

Socio-economic Environmental

Figure 10.1.  Components of the System Approach for Land Use Sustainability (SALUS) model.
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maximum and minimum temperature are considered the minimum needed for rela-
tively accurate crop simulation. The main weather element of greatest concern in 
most agricultural regions is the temporal distribution of rainfall. Solar radiation is 
the main weather variable for describing the energy available for crop growth and 
evapotranspiration (ET). Temperature is necessary to simulate crop phenology and 
to modify growth and ET.

Ideally, weather data should be obtained at a site near the area where the 
model is to be applied, especially for daily rainfall. Temperature and radiation 
are more spatially uniform, so the weather station need not be on-site. Most 
weather stations record rainfall and temperature but not always solar radia-
tion. Accurate solar radiation data can be obtained from NASA (http://power.
larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi), although the spatial resolution is 
given in 1° grid cells. This NASA site also provides all the daily weather data 
required by DSSAT and SALUS, but with the same spatial resolution issues as 
with solar radiation.

The minimum soil information required to run crop simulation models such as 
SALUS is listed in Table 10.3. On-site measurement of soil properties is recom-
mended where possible to validate the model for a specific site. Not all soil input 
data may be available, in which case soil characteristics such as texture, bulk den-
sity, and organic matter content can serve as surrogate measures. However, the lower 
limit of available soil water and the field capacity or drained upper limit (DUL) 
water content are often more accurate when measured in the field than when using 
laboratory measurements of field soil samples. These measurements must be made 
when field conditions are at or near their lower and upper limits. In well-drained 
soil, the DUL can best be measured after the profile has been thoroughly wetted and 
allowed to drain without irrigation until drainage practically stops. The lower limit 
is best measured during a dry period in the growing season when water content 
ceases to decline in the root-zone because of a shortage of soil water.

The minimum crop management information required to run crop simulation 
models such as SALUS is listed in Table 10.4. When irrigation is used, the dates, 
amounts and mode of application are required. Information on the type, dates, 
and mode of fertilizer application is necessary to simulate nutrient dynamics, 
although often model assessments of crop yield assume that nutrient availability 
is not limiting.

Table 10.2.  The minimum and optional weather datasets required as inputs for 
crop simulation models.

Minimum Optional

Daily solar radiation Daily dewpoint temperature

Daily maximum temperature Daily wind run

Daily minimum temperature Daily net radiation

Daily precipitation Precipitation intensity

Source: Ritchie and Alagarswamy (2002).

http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi
http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi
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The crop variety, genotype, or cultivars also must be specified; cultivars may 
vary significantly in the duration of developmental phases and in the partitioning 
of assimilates within the plant. Wheat and corn cultivar information is generally 
expressed as genetic coefficients, which allow models to simulate crop phenology 
over a wide range of latitudes and planting times.

Table 10.3.  Soil datasets required as inputs for crop simulation models.

Minimum Desirable for Specific  
Applications

Initial Conditions

Lower limit water content at 
10- to 20-cm depths

Hydraulic conductivity and water 
retention curves at 10- to 20-cm 
depths

Water content at 10- to 20-cm 
depths

Field capacity soil water 
content at 10- to 20-cm depths

Runoff curve number Soil nitrate concentration at 10- to 
20-cm depths

Crop rooting depth Surface albedo Soil ammonium concentration at 
10- to 20-cm depths

Hydraulic conductivity at soil 
depths that restrict water flow

Soil pH at 10- to 20-cm depths Soil extractable phosphorus at 
10- to 20-cm depths (if phosphorus 
subroutine is run)

Soil organic carbon in upper 
depths

Fresh plant residues or manure 
amounts and depth of incorporation

Soil textural characterization for 
10- to 20-cm depths

Surface water ponding capacity

Soil bulk density at 10- to 20-cm 
depths

Groundwater depth bypass flow 
fraction

Source: Ritchie and Alagarswamy (2002).

Table 10.4.  Crop management datasets required as inputs for crop simulation 
models.

Minimum Optional

Crop cultivar characteristics Row spacing

Planting date and depth Row direction

Plant population density Pesticide inputs

Irrigation inputs (date, amount, depth) Harvest date

Fertilizer inputs (date, amount, type)

Crop residues or manure inputs
(dates, quality, amount)

Source: Ritchie and Alagarswamy (2002).
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Assessment of Biogeochemical Fluxes under Different 
Management Strategies Using SALUS

Nitrate Leaching Following Manure Application

Organic sources of N are often considered superior to inorganic fertilizers because 
they decompose slower and promote better soil structure and overall soil quality. 
However, there has been little field-based research to quantify nitrate leaching 
when animal manure is applied as the primary source of nutrients in intensive crop 
production systems. It is possible that when organic sources of N fertilizer are used, 
nitrate leaching may be greater than when using inorganic N because organic N is 
converted to inorganic N only slowly, so large quantities of organic N are needed to 
provide enough N to rapidly growing crop plants during the relatively short time of 
intense N uptake. More surplus N may then be mineralized and available for leach-
ing at the end of the growing season.

Basso and Ritchie (2005) quantified N leaching from KBS plots receiving 
large quantities of either animal manure (18 ton ha−1 yr−1) or inorganic N fertil-
izer (120 kg N ha−1 yr−1) from January 1994 to December 1999 in a corn–alfalfa 
rotation. The results were used to validate the ability of SALUS to simulate 
nitrate leaching. Most of the water drainage occurred early in the season or 
after harvest and was lower during the growing period of the crop. SALUS 
provided a reasonable simulation of the amount of water drained and nitrate 
leached for both manure and inorganic N fertilizer over the 6 years of the study 
(Table 10.5). The manure plots leached 33% more N as nitrate (NO

3
−) than did 

the plots treated with inorganic N, illustrating the trade-off between the organic 
matter benefits of manure and a greater N loss to the environment (Millar and 
Robertson 2015, Chapter 9 in this volume). Field studies and the validated 
model results showed that leaching can be substantial if a high quantity of 
manure is applied to soils in autumn (Basso and Ritchie 2005, Beckwith et al. 
1998, Chambers et al. 2000).

Soil Carbon Changes in Cropped and Unmanaged Ecosystems

Soil tillage has contributed significantly to the increase in atmospheric CO
2
 that has 

occurred over the last two centuries (Wilson 1978). Historically, intensive tillage of 
agricultural soils has led to substantial losses of soil C, ranging from 30 to 50% of 
preconversion levels (Davidson and Ackerman 1993). These CO

2
 losses are related 

to soil fracturing and opening, which facilitates the movement of CO
2
 out of—and 

oxygen into—the soil (Reicosky 1997, Lal 2004), and especially to the destruction 
of soil aggregates (e.g., Grandy and Robertson 2006; Paul et al. 2015, Chapter 5 
in this volume), which exposes otherwise protected organic matter to microbial 
attack. Although conventional moldboard plowing buries nearly all plant residue, 
it leaves the soil in a rough, loose, and open condition, which maximizes CO

2
 loss 

and results in a consistent reduction in SOM. Reduced tillage results in more soil 
C retention or sequestration, which reduces its atmospheric release (Cole 1996, 
Paustian et al. 1998, Rasmussen et al. 1998).
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A major concern among producers is the possibility of yield reductions associ-
ated with permanent no-till management compared to conventional tillage (Grandy 
et al. 2006). Residue cover on the soil surface reflects solar radiation and acts as 
an insulator, slowing warming of the soils in the spring. This effect is more notice-
able in temperate climates with wet and cool springs because high soil water con-
tent maintained by residue cover is combined with low incoming energy (Allmaras 
et al. 1977). Reicosky et al. (1977) reported that on poorly drained soils, corn yields 
were decreased because poorly drained soils are usually colder in the growing sea-
son due to higher water content. When vegetative corn development is delayed by 
lower soil temperature because of residue cover, yield can be lost due to a short-
ened growth period. However, residue cover can improve soil water availability 
by increasing infiltration, protecting the soil surface from erosion, and reducing 
evaporative losses. Thus, residue cover can improve yields in lower rainfall years 
and in drier locations (Basso et al. 2006, Bertocco et al. 2008).

SALUS was recently used to simulate soil carbon changes in different land use 
management practices, including tillage, at the KBS LTER (Senthilkumar et al. 
2009; Paul et al. 2015, Chapter 5 in this volume). The simulations of soil C changes 
obtained using SALUS were consistent with measurements in the Conventional and 
No-till systems of the KBS Main Cropping System Experiment (Fig. 10.2). The 
model also simulated the observed large loss of soil C in fertilized, conventionally 
tilled plots in an adjacent experiment.

Table 10.5.  Comparison of SALUS simulations to field measurements for cropping 
systems with either inorganic nitrogen (N) or manure additions.

Variable Inorganic N (140 kg ha−1) Manure (18 ton ha−1)

Biomass (kg ha−1)

Measureda 20,893 21,015

Simulateda 21,450 21,932

(RMSEb) 450 645

Cumulative Nitrate Leachingc (kg NO3-N ha−1)

Measured 279 367

Simulated 273 362

RMSEb 15.7 14.3

Cumulative Drainagec (mm)

Measured 1904 1857

Simulated 1901 1862

RMSEb 24.4 54.5

aCorn dry biomass harvested for silage (1997).
bRMSE = Root Mean Square Error.
cNitrate leaching and drainage were measured and modeled over a 6-year (1994–1999) corn–alfalfa rotation at the 
W.K. Kellogg Biological Station south of the KBS LTER Main Cropping System Experiment (selected data from 
Basso and Ritchie 2005).
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Linking Crop Models with Digital Terrain Analysis for Assessing 
Spatially Connected Processes

The assessment of soil water spatial patterns is crucial for understanding crop yield 
variation across the landscape. Soil water within a field is highly variable in space 
and time as a result of several processes that occur at different scales and because 
of complex interactions among weather, topography, soil, and vegetation. The 
effect of topographic convergence and divergence in natural landscapes has a major 
impact on soil water balance (Moore and Grayson 1991). Without consideration 
of the terrain characteristics, accurate simulation of soil water balance in entire, 
nonuniform fields is not possible. Spatial variability of soil water content is often 
the cause of yield variation over space and time. Accurate estimation of the spatial 
variability of soil water is also important for other applications including soil ero-
sion, groundwater flow models, and precision agriculture.

The dynamics of soil water balance and crop growth have been extensively mod-
eled to assess the risk associated with uncertainty in water availability (Jones et al. 
1993). Soil–plant–atmosphere models often simulate vertical drainage but not lat-
eral movement and water routing across the landscape (Basso 2000).

Existing digital terrain models are able to partition the landscape into a series of 
interconnected elements to spatially route water flow (Moore et al. 1993, Vertessy 
et al. 1993). Most digital terrain models fill the depressions in landscapes to provide 

Figure 10.2.  Measured and simulated changes in soil carbon after 18–21 years of different 
management systems at the KBS LTER Main Cropping System Experiment (MCSE) and at 
the Interactions Experiment, an adjacent continuous corn tillage (conventional vs. no-till) 
× nitrogen fertilizer (fertilized vs. not fertilized) experiment. Modified from Senthilkumar 
et al. (2009).
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a continuous flow of water to streams, making their application for agricultural 
purposes limited. Basso (2000) created a spatial soil water balance model called 
SALUS-TERRAE that accounts for water pooling in depressions, surface and sub-
surface water movements, and the water runoff–runon mechanism occurring on 
the landscape. SALUS-TERRAE was developed by coupling the Ritchie vertical–
soil–water balance model (Ritchie 1998) with TERRAE, a digital terrain model 
developed by Gallant and Basso (2013). SALUS-TERRAE is a spatial soil water 
balance model composed of vertical and lateral components of the water balance. 
The model requires a digital elevation map for partitioning the landscape into a 
series of interconnected irregular elements. Weather and soil information for the 
soil water balance simulation is also needed.

SALUS-TERRAE has been applied at a location in Michigan similar to the KBS 
LTER. Figure 10.3 shows the spatial variability of soil water content across the 
landscape the day after a rainfall event of 65 mm. SALUS-TERRAE was able to 
simulate the higher surface ponding capacities in the depression areas. The model 
performed well when compared to field measurements of soil water content for 
the entire growing season (Fig. 10.4): the root mean square error (RMSE) between 
measured and simulated results varied from 0.22  cm to 0.68  cm (Basso 2000, 
Batchelor et al. 2002). The net surface flow (Fig. 10.5) is the difference between the 
amount of water leaving each element (runoff) from that running onto the element 
(runon). The highest value (–5 cm) is observed at summit positions in the landscape 
since these elements do not have any water running into them. Application of the 
SALUS-TERRAE model can benefit precision agriculture by being able to select 
the appropriate management strategy for optimizing management practices across 
the landscape.

Figure 10.3.  Simulated kriged map of soil water content (cm) for the surface (0–26 cm) 
soil layer using the digital terrain model SALUS-TERRAE in a sandy loam soil in Durand, 
Michigan. Redrawn from Basso (2000).
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A current limitation in most crop models is the assumption of uniform plant 
distribution. Yield variability at the field scale is the norm rather than the exception 
(Sadler et al. 1994; Basso et al. 2001, 2012b). Visual observations as well as mea-
surements commonly indicate that crops are not uniformly distributed, and there-
fore assuming they are can be an unrealistic assumption and a significant source 
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Figure  10.4.  Measured and simulated water content for the soil profile (0–26  cm) and 
(26–77 cm) in the medium elevation zone (upper saddle) for the entire season in Durand, 
Michigan. Redrawn from Basso (2000).

Figure 10.5.  Simulated kriged map of net surface flow (cm) calculated as the difference 
between run-on and run-off using SALUS-TERRAE on a sandy loam soil in Durand, 
Michigan. Redrawn from Basso (2000).
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of uncertainty in yield simulations. A correction procedure based on the extent of 
variation in plant stand uniformity or dominant plant density may be necessary. 
Correction also is required to compensate for yield loss from plants missing in a 
population; to some extent, neighboring plants can compensate for missing plants 
because they have more space to intercept light. Pommel and Bonhomme (1998) 
demonstrated the degree of compensation and losses from irregular stands in corn.

Summary

Simulation models are important for providing producers and policy makers with 
better decision-making capabilities. By predicting the response of different sus-
tainability indicators to changes in crop management and climate, models can 
provide much needed information for designing sustainable cropping systems and 
landscapes. Functional models are particularly useful in that they integrate crop 
growth and yield with environmental responses such as nitrate leaching, carbon 
sequestration, erosion, and nitrous oxide emissions. It would be impossible for a 
single model to address all the issues regarding sustainable crop productivity or 
meet the goals of every researcher, planner, or policy maker. However, based on 
the successes of models like DSSAT, CENTURY, SALUS, and EPIC—along with 
continuing technological improvements—it is reasonable to expect development of 
more useful Decision Support System models to meet a growing range of demands. 
SALUS is promising because it has a crop model with several years of testing and 
is coupled with tested conservative simulations of soil C, N, and P models, allowing 
users to account for the impact of agronomic management on crop net primary pro-
ductivity and on the environment. It also has tested capability to simulate climate 
change impact on production and the environment. The coupling with TERRAE 
makes SALUS a unique system with the capabilities of simulating the effects of 
topography and terrain attributes on water routing across the landscape.
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