Publications for the Scale-up Experiment > M1 CRP-Corn

Publications associated with KBS LTER, GLBRC and LTAR projects. Click on the pdf link to get open access papers or to sign-in (free and immediate) to get other papers. Click on the data link to get formally published datasets (other datasets available as noted within the publications). Other ways to view KBS LTER publications can be accessed by the Research | Publications menu above.

Publications are also available on our KBS LTER Google Scholar page

  • 2024

    Falvo, G. 2024.On radiative forcing and land use change: Causes, consequences and solutions. ,

  • 2023

    Menefee, D., T. O. Lee, K. C. Flynn, J. Chen, M. Abraha, J. Baker, and A. Suyker. 2023.Machine learning algorithms improve MODIS GPP estimates in United States croplands. Frontiers in Remote Sensing 4:1240895., DOI: 10.3389/frsen.2023.1240895

  • Sciusco, P. 2023.Global warming impacts of landscape mosaic in Southwestern Michigan: A cross-scale assessment of climate benefit potentials of albedo and net ecosystem exchange. ,

  • 2022

    Menefee, D., R. L. Scott, M. Abraha, J. G. Alfieri, J. Baker, D. M. Browning, J. Chen, J. Gonetg, J. M. Johnson, G. R. Miller, R. Nifong, G. P. Robertson, E. S. Ressel, N. Saliendra, A. P. Schreiner-Mcgraw, A. E. Suyker, P. Wagle, C. Wente, P. M. White, and D. Smith. 2022.Unraveling the effects of management and climate on carbon fluxes of U.S. croplands using the USDA Long-Term Agroecosystem (LTAR) network. Agricultural and Forest Meterology 326:109154., DOI: 10.1016/j.agrformet.2022.109154

  • Pan, D., I. Gelfand, L. Tao, M. Abraha, K. Sun, X. Guo, J. Chen, G. P. Robertson, and M. A. Zondlo. 2022.A new open-path eddy covariance method for nitrous oxide and other trace gases that minimizes temperature corrections. Global Change Biology 28:1446-1457., DOI: 10.1111/gcb.15986

  • Shirkey, G., R. John, J. Chen, K. Dahlin, M. Abraha, P. Sciusco, C. Lei, and D. E. Reed. 2022.Fine resolution remote sensing spectra improves estimates of gross primary production of croplands. Agricultural and Forest Meteorology 326:109175., DOI: 10.1016/j.agrformet.2022.109175

  • 2021

    Abraha, M., J. Chen, S. K. Hamilton, P. Sciusco, C. Lei, G. Shirkey, J. Yuan, and G. P. Robertson. 2021.Albedo-induced global warming impact of Conservation Reserve Program grasslands converted to annual and perennial bioenergy crops. Environmental Research Letters 16:084059., DOI: 10.1088/1748-9326/ac1815

  • Helms IV, J. A., K. A. Roeder, S. E. Ijelu, I. Ratcliff, and N. M. Haddad. 2021.Bioenergy landscapes drive trophic shifts in generalist ants. Journal of Animal Ecology 90:738-750., DOI: 10.1111/1365-2656.13407

  • Lei, C., M. Abraha, J. Chen, and Y. J. Su. 2021.Long-term variability of root production in bioenergy crops from ingrowth core measurements. Journal of Plant Ecology 14:757-770., DOI: 10.1093/jpe/rtab018

  • Pan, D. 2021.Improving observations of greenhouse gases, reactive nitrogen, and particulate matter for effective policymaking. ,

  • Reed, D. E., J. M. Poe, M. Abraha, K. M. Dahlin, and J. Chen. 2021.Modeled surface-atmosphere fluxes from paired sites in the Upper Great Lakes Region using neural networks. Journal of Geophysical Research Biogeosciences 126:e2021JG006363., DOI: 10.1029/2021JG006363

  • 2020

    Abraha, M., J. Chen, S. K. Hamilton, and G. P. Robertson. 2020.Long-term evapotranspiration rates for rainfed corn versus perennial bioenergy crops in a mesic landscape. Hydrological Processes 34:810-822., DOI: 10.1002/hyp.13630

  • Helms IV, J. A., S. E. Ijelu, B. D. Wills, D. A. Landis, and N. M. Haddad. 2020.Ant biodiversity and ecosystem services in bioenergy landscapes. Agriculture, Ecosystems and Environment 290:106780., DOI: 10.1016/j.agee.2019.106780

  • Reed, D., J. Chen, M. Abraha, G. P. Robertson, and K. Dahlin. 2020.The shifting role of mRUE for regulating ecosystem production. Ecosystems 23:359-369., DOI: 10.1007/s10021-019-00407-4

  • Ruan, L. and G. P. Robertson. 2020.No-till establishment improves the climate benefit of bioenergy crops on marginal grasslands. Soil Science Society of America Journal 84:1280-1295., DOI: 10.1002/saj2.20082

  • Ruan, L. and G. P. Robertson. 2020.Data from: No-till establishment improves the climate benefit of bioenergy crops on marginal grasslands. Dryad, Dataset https://doi.org/10.5061/dryad.cfxpnvx2v., DOI: 10.5061/dryad.cfxpnvx2v

  • 2019

    Abraha, M., J. Chen, S. K. Hamilton, and G. P. Robertson. 2019.Long-term evapotranspiration rates for rainfed corn vs. perennial bioenergy crops in a mesic landscape. Dryad, Dataset https://doi.org/10.5061/dryad.7m0cfxpq1., DOI: 10.5061/dryad.7m0cfxpq1

  • Abraha, M., I. Gelfand, S. K. Hamilton, J. Chen, and G. P. Robertson. 2019.Carbon debt of field-scale Conservation Reserve Program grasslands converted to annual and perennial bioenergy crops. Environmental Research Letters 14:024019., DOI: 10.1088/1748-9326/aafc10

  • Abraha, M., I. Gelfand, S. K. Hamilton, J. Chen, and G. P. Robertson. 2019.Data from: Carbon debt of field-scale Conservation Reserve Program grasslands converted to annual and perennial bioenergy crops. Dryad Digital Repository. doi: 10.5061/dryad.224rg77, DOI: 10.5061/dryad.224rg77

  • Jha, P. K. 2019.Agronomic management of corn using seasonal climate predictions, remote sensing and crop simulation models. ,

  • 2018

    Abraha, M., S. K. Hamilton, J. Chen, and G. P. Robertson. 2018.Ecosystem carbon exchange on conversion of Conservation Reserve Program grasslands to annual and perennial cropping systems. Agricultural and Forest Meteorology 253-254:151-160., DOI: 10.1016/j.agrformet.2018.02.016

  • Abraha, M., S. K. Hamilton, J. Chen, and G. Robertson. 2018.Data from: Ecosystem carbon exchange on conversion of Conservation Reserve Program grasslands to annual and perennial cropping systems. Dryad Digital Repository. https://doi.org/10.5061/dryad.sc41rn3., DOI: 10.5061/dryad.sc41rn3

  • Abraha, M., I. Gelfand, S. K. Hamilton, J. Chen, and G. P. Robertson. 2018.Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems. Ecological Applications 28:1362-1369., DOI: 10.1002/eap.1745

  • Abraha, M., I. Gelfand, S. K. Hamilton, J. Chen, and G. P. Robertson. 2018.Data from: Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems. Dryad Digital Repository https://doi.org/10.5061/dryad.17g36j4., DOI: 10.5061/dryad.17g36j4

  • Landis, D. A., C. Gratton, R. D. Jackson, K. L. Gross, D. S. Duncan, C. Liang, T. D. Meehan, B. A. Robertson, T. M. Schmidt, K. A. Stahlheber, J. M. Tiedje, and B. P. Werling. 2018.Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass and Bioenergy 114:18-29., DOI: 10.1016/j.biombioe.2017.02.003

  • 2017

    Su, Y. 2017.The carbon sequestration and soil respiration after land use conversion in biofuel cropping ecosystems. ,

  • 2016

    Abraha, M., I. Gelfand, S. K. Hamilton, C. Shao, Y. J. Su, G. P. Robertson, and J. Chen. 2016.Ecosystem water-use efficiency of annual corn and perennial grasslands: Contributions from land-use history and species composition. Ecosystems 19:1001-1012., DOI: 10.1007/s10021-016-9981-2

  • 2015

    Abraha, M., J. Chen, H. Chu, T. Zenone, R. John, Y. J. Su, S. K. Hamilton, and G. P. Robertson. 2015.Evapotranspiration of annual and perennial biofuel crops in a variable climate. Global Change Biology Bioenergy 7:1344-1356., DOI: 10.1111/gcbb.12239

  • Gelfand, I., M. Cui, J. Tang, and G. P. Robertson. 2015.Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest. Agriculture, Ecosystems and Environment 212:127-133., DOI: 10.1016/j.agee.2015.07.005

  • Kallenbach, C. and A. S. Grandy. 2015.Land-use legacies regulate decomposition dynamics following bioenergy crop conversion. Global Change Biology Bioenergy 7:1232-1244., DOI: 10.1111/gcbb.12218

  • Kallenbach, C. M. 2015.Microbial influences on decomposition and soil organic matter formation in agricultural soils. ,

  • 2014

    Deal, M. W., J. Xu, R. John, T. Zenone, J. Chen, J. Chu, P. Jasrotia, K. Kahmark, J. Bossenbroek, and C. Mayer. 2014.Net primary production in three bioenergy crop systems following land conversion. Journal of Plant Ecology 7:451-460., DOI: 10.1093/jpe/rtt057

  • Ruan, L. 2014.Impacts of biofuel crops on greenhouse gas emissions from agricultural ecosystems. ,

  • 2013

    Ruan, L. and G. P. Robertson. 2013.Initial nitrous oxide, carbon dioxide, and methane costs of converting conservation reserve program grassland to row crops under no-till vs. conventional tillage. Global Change Biology 19:2478-2489., DOI: 10.1111/gcb.12216

  • Ruan, L. and G. P. Robertson. 2013.Data from: Initial nitrous oxide, carbon dioxide, and methane costs of converting Conservation Reserve Program grassland to row crops under no-till vs. conventional tillage. Dryad Digital Repository https://doi.org/10.5061/dryad.s34cm., DOI: 10.5061/dryad.s34cm

  • Zenone, T., I. Gelfand, J. Chen, S. K. Hamilton, and G. P. Robertson. 2013.From set-aside grassland to annual and perennial cellulosic biofuel crops: effects of land use change on carbon balance. Agricultural & Forest Meteorology 182:1-12., DOI: 10.1016/j.agrformet.2013.07.015

  • 2011

    Bhardwaj, A. K., T. Zenone, P. Jasrotia, G. P. Robertson, J. Chen, and S. K. Hamilton. 2011.Water and energy footprints of bioenergy crop production on marginal lands. 3:208-222., DOI: 10.1111/j.1757-1707.2010.01074.x

  • Deal, M. 2011.Net primary production in three bioenergy crop systems following land conversion. ,

  • Gelfand, I., T. Zenone, P. Jasrotia, J. Chen, S. K. Hamilton, and G. P. Robertson. 2011.Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proceedings of the National Academy of Sciences USA 108:13864-13869., DOI: 10.1073/pnas.1017277108

  • Zenone, T., J. Chen, M. W. Deal, B. Wilske, P. Jasrotia, J. Xu, A. K. Bhardwaj, S. K. Hamilton, and G. P. Robertson. 2011.CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. Global Change Biology Bioenergy 3:401-412., DOI: 10.1111/j.1757-1707.2011.01098.×

Sign In